1
|
Mari M, Boniburini M, Tosato M, Zanni F, Bonini F, Faglioni F, Cuoghi L, Belluti S, Imbriano C, Asti M, Ferrari E. Bridging pyrimidine hemicurcumin and Cisplatin: Synthesis, coordination chemistry, and in vitro activity assessment of a novel Pt(II) complex. J Inorg Biochem 2024; 260:112702. [PMID: 39163714 DOI: 10.1016/j.jinorgbio.2024.112702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
In the upcoming decades, the incidence and mortality rates of cancer are expected to rise globally, with colorectal and prostate cancers among the most prevalent types. Despite advancements in molecular targeted therapy, platinum-based chemotherapies remain the cornerstone of treatment, especially for colorectal and prostate cancer, with oxaliplatin and cisplatin being extremely effective due to their DNA-targeting capabilities. In our pursuit of new platinum-based chemotherapeutics that are potentially less toxic and more effective, we have explored the combination of the Pt-binding groups of the diaminocyclohexane ring used in oxaliplatin, with the stable amino-pyrimidine hemicurcumin moiety. This new derivative exhibit improved stability in physiological conditions and increased solubility in aqueous media, demonstrating promising effects on cell proliferation of both colorectal and prostate cells. We report herein the complete synthesis and chemical characterization in solution of the new derivative [(1R,2R)-N1-(3-(4-((E)-2-(2-Amino-6-methylpyrimidin-4-yl)vinyl)-2-methoxyphenoxy) propyl) cyclohexane-1,2-diamine] (MPYD). Our analysis includes an examination of its acid-base equilibria, speciation and stability in physiological conditions. The synthesis and in situ formation of Pt(II) complexes were investigated by nuclear magnetic resonance spectroscopy, while density functional theory calculations were employed to elucidate the chemical structure in solution. Results on the biological activity were obtained through cell viability assays on different colorectal and prostate cell lines (HCT116, HT29, PC3 and LNCaP).
Collapse
Affiliation(s)
- Matteo Mari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi, 103, 41125 Modena, Italy
| | - Matteo Boniburini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi, 103, 41125 Modena, Italy
| | - Marianna Tosato
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi, 103, 41125 Modena, Italy; Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, Azienda USL-IRCCS Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Francesca Zanni
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi, 103, 41125 Modena, Italy
| | - Filippo Bonini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi, 103, 41125 Modena, Italy
| | - Francesco Faglioni
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi, 103, 41125 Modena, Italy
| | - Laura Cuoghi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/d, 41125 Modena, Italy.
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/d, 41125 Modena, Italy.
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/d, 41125 Modena, Italy.
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, Azienda USL-IRCCS Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy.
| | - Erika Ferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi, 103, 41125 Modena, Italy.
| |
Collapse
|
2
|
Babaei M, Abrishami A, Iranpour S, Saljooghi AS, Matin MM. Harnessing curcumin in a multifunctional biodegradable metal-organic framework (bio-MOF) for targeted colorectal cancer theranostics. Drug Deliv Transl Res 2024:10.1007/s13346-024-01707-6. [PMID: 39302530 DOI: 10.1007/s13346-024-01707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
Despite significant advancements in managing colorectal cancer (CRC), the issues of efficient diagnosis and targeted therapy remain demanding. To address these challenges and improve treatment outcomes while reducing the cost and side effects, there is a need for more effective theranostic systems that combine diagnostic techniques with therapeutic modalities. This study introduces a pioneering approach for the synthesis of a porous bio-MOF (biodegradable metal-organic framework) using iron as the metal component and curcumin as the pharmaceutical ingredient. Subsequently, the developed drug delivery system was equipped with the anticancer drug doxorubicin (DOX), coated with biocompatible polyethylene glycol (PEG), and targeted with a CRC-specific aptamer (EpCAM). The physicochemical characterization confirmed the successful synthesis of the bio-MOF, demonstrating high encapsulation efficiency and pH-dependent release of DOX. In vitro studies for anticancer activity, cellular uptake, and mechanism of cell death demonstrated that in the case of positive EpCAM HT-29 cells, Apt-PEG-MOF@DOX had enhanced internalization that resulted in massive apoptosis. In vivo studies of the nanoparticles were then conducted in immunocompromised C57BL/6 mice bearing HT-29 tumors. These studies showed that the targeted platform could induce efficient tumor regression with reduced systemic toxicity. The targeted bio-MOF also exhibited MRI imaging properties useful for monitoring tumors. Significantly, the biocompatibility of the introduced bio-MOF was enhanced by pursuing the green synthesis method, which does not engage toxic solvents and strong acids. Overall, this multimodal system acts diversely as a tumor imaging agent and a therapeutic delivery platform suitable for CRC theranostics.
Collapse
Affiliation(s)
- Maryam Babaei
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Abrishami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sonia Iranpour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
3
|
Araujo-Abad S, Berna JM, Lloret-Lopez E, López-Cortés A, Saceda M, de Juan Romero C. Exosomes: from basic research to clinical diagnostic and therapeutic applications in cancer. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00990-2. [PMID: 39298081 DOI: 10.1007/s13402-024-00990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer continues to pose a global threat despite potent anticancer drugs, often accompanied by undesired side effects. To enhance patient outcomes, sophisticated multifunctional approaches are imperative. Small extracellular vesicles (EVs), a diverse family of naturally occurring vesicles derived from cells, offer advantages over synthetic carriers. Among the EVs, the exosomes are facilitating intercellular communication with minimal toxicity, high biocompatibility, and low immunogenicity. Their tissue-specific targeting ability, mediated by surface molecules, enables precise transport of biomolecules to cancer cells. Here, we explore the potential of exosomes as innovative therapeutic agents, including cancer vaccines, and their clinical relevance as biomarkers for clinical diagnosis. We highlight the cargo possibilities, including nucleic acids and drugs, which make them a good delivery system for targeted cancer treatment and contrast agents for disease monitoring. Other general aspects, sources, and the methodology associated with therapeutic cancer applications are also reviewed. Additionally, the challenges associated with translating exosome-based therapies into clinical practice are discussed, together with the future prospects for this innovative approach.
Collapse
Affiliation(s)
- Salomé Araujo-Abad
- Cancer Research Group, Faculty of Engineering and Applied Sciences, Universidad de Las Américas, Quito, 170124, Ecuador
| | - José Marcos Berna
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Elena Lloret-Lopez
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, 170124, Ecuador
| | - Miguel Saceda
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Camino de Juan Romero
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain.
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain.
| |
Collapse
|
4
|
Xie Y, Qi J, Liu J. Curcumin suppresses the malignant phenotype of laryngeal squamous cell carcinoma through downregulating E2F1 to inhibit FLNA. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6929-6939. [PMID: 38592439 DOI: 10.1007/s00210-024-03059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
Curcumin is a kind of polyphenol substance extracted from the rhizome of Curcuma longa. Because of its good biological activity and pharmacological effects, it has been used in anti-tumor research. The aim of this study was to investigate the anti-cancer mechanism of curcumin on laryngeal squamous cell carcinoma (LSCC). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to check the expression level of transcription factor E2F1 (E2F1) and filamin A (FLNA) mRNA. E2F1 and FLNA protein and proliferation-associated protein were detected through western blot. Cell viability was showed by MTT assay, and flow cytometry was used to exhibit cell cycle distribution and cell apoptosis. Tube formation assay was used to detect the angiogenesis ability of cells. Transwell was used as a method to observe cell migration and invasion. The online website JASPAR predicted the binding site of E2F1 and FLNA promoter, and chromatin immunoprecipitation (ChIP) and dual-luciferase report experiment verified the combination. Curcumin treatment made LSCC cells viability reduce, cell cycle retardant, angiogenesis decrease, metastasis inhibition and apoptosis increase. And curcumin treatment could downregulate the expression of E2F1, and E2F1 overexpression would reverse the influence of curcumin treatment in LSCC cells. Moreover, E2F1 could bind to FLAN promoter and promote FLNA expression. The expression level of FLNA was higher in LSCC tissue and cells compared with normal tissue and cells. E2F1 knockdown inhibited malignant phenotype of LSCC cells, which would be reversed by FLNA addition. In addition, FLNA had high level in LSCC tissue and cells. Curcumin regulated FLNA expression via inhibiting E2F1. Finally, in vivo assay showed that curcumin inhibition restrained LSCC tumor formation. Curcumin downregulated FLNA expression through inhibiting E2F1, thereby suppressing the malignant phenotype and angiogenesis of LSCC cells, which was a new regulatory pathway in LSCC.
Collapse
Affiliation(s)
- Yuanchun Xie
- Department of Otorhinolaryngology-Head and Neck Surgery, Jingmen People's Hospital, Jingmen, China.
| | - Jingjing Qi
- Department of Otorhinolaryngology-Head and Neck Surgery, Jingmen No.2 People's Hospital, No.39, Xiangshan Avenue, Jingmen City, 448000, Hubei, China.
| | - Ju Liu
- Department of Operating Theatre, Jingmen No.2 People's Hospital, Jingmen City, 448000, Hubei, China
| |
Collapse
|
5
|
Mukkavilli V, Ramakrishnan G, Gujjula KR, S B, Chamarthy S, Mekala JR. Molecular Understanding and Pharmacological Potency of Plant-Derived Compounds in Colorectal Cancer (CRC): A Critical Analysis and Future Perspectives. Cell Biochem Biophys 2024; 82:1777-1795. [PMID: 38965179 DOI: 10.1007/s12013-024-01370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
Colorectal cancer (CRC) is the main driver of fatality and the 3rd most often determined malignancy. Despite advances in detection and therapy, colorectal cancer (CRC) endures as the largest driver of cancer-related morbidity, and mortality. Modern habits and dietary negligence might be one of the reasons that have enhanced cancer prevalence. Thus, changes in Dietary habits will have a better impact, and help in finding a better cure for CRC. Initially, CRC was explored as a genetic event and currently, the research is focused on the epigenetic modifications of chromatin and microRNA (miRNA) in CRC cells. Natural products such as Curcumin, Resveratrol, Flavonoids, and Ellagitannins are been explored as compounds from the perspective of genetic, epigenetic, and miRNA modifications which will have future therapeutic aspects. Also, the extracts of these key players and their analogs will intervene the signaling pathway activation that involves in cancer propagation, apoptosis, cell cycle arrest, and epigenetic and miRNA modifications. Modulations of these miRNAs, and modification globally might have impact on CRC progression, and cancer tumor cell sensitivity.
Collapse
Affiliation(s)
- Vaagdevi Mukkavilli
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India
| | - Gnanasekaran Ramakrishnan
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India.
| | - Koteswara Reddy Gujjula
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India
| | - Balachandran S
- Dept of Chemical Engineering, Saveetha Engineering College, Saveetha Nagar Thandalam, 602105, Chennai, Tamil Nadu, India
| | - Sahiti Chamarthy
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India
| | - Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India.
| |
Collapse
|
6
|
Jha CB, Singh C, Randhawa JK, Kaul A, Varshney R, Singh S, Kaushik A, Manna K, Mathur R. Synthesis and evaluation of curcumin reduced and capped gold nanoparticles as a green diagnostic probe with therapeutic potential. Colloids Surf B Biointerfaces 2024; 241:114050. [PMID: 38936032 DOI: 10.1016/j.colsurfb.2024.114050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Curcumin, a compound in turmeric, shows promise for its anti-cancer properties. In this study, we successfully synthesised curcumin-reduced and capped gold nanoparticles. Most evaluations have been limited to in-vitro studies for these nanoparticles; our study takes a step further by highlighting the in-vivo assessment of these curcumin-reduced and capped gold nanoparticles (GNPCs) using non-invasive imaging (SPECT and optical) and possible therapeutic potential. The GNPCs showed an average hydrodynamic diameter of 58 nm and a PDI of 0.336. The synthesised and fully characterised GNPCs showed ex-vivo hemolysis value of ≤ 1.74 % and serum stability of ≥ 95 % over 24 h. Using in-vivo non-invasive (SPECT and optical Imaging), prolonged circulation and enhanced bioavailability of GNPCs were seen. The biodistribution studies after radiolabelling GNPCs with 99 mTc complemented the optical imaging. The SPECT images showed higher uptake of the GNPCs at the tumour site, viz the contralateral muscle and the native Curcumin, resulting in a high target-to-non-target ratio that differentiated the tumour sufficiently and enhanced the diagnostics. Other organs also accumulate radiolabeled GNPCs in systemic circulation; bio dosimetry is performed. It was found that the dose received by the different organs was safe for use, and the in-vivo toxicity studies in rats indicated negligible toxicity over 30 days. The tumour growth was also reduced in mice models treated with GNPCs compared to the control. These significant findings demonstrate that GNPC shows synergistic activity in vivo, indicating its ability as a green diagnostic probe that has the potential for therapy.
Collapse
Affiliation(s)
- Chandan Bhogendra Jha
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India; Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chitrangda Singh
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | | | - Ankur Kaul
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Raunak Varshney
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Sweta Singh
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Aruna Kaushik
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Rashi Mathur
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India.
| |
Collapse
|
7
|
Cui L, Perini G, Palmieri V, De Spirito M, Papi M. Plant-Derived Extracellular Vesicles as a Novel Frontier in Cancer Therapeutics. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1331. [PMID: 39195369 DOI: 10.3390/nano14161331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Recent advancements in nanomedicine and biotechnology have unveiled the remarkable potential of plant-derived extracellular vesicles (PDEVs) as a novel and promising approach for cancer treatment. These naturally occurring nanoscale particles exhibit exceptional biocompatibility, targeted delivery capabilities, and the capacity to load therapeutic agents, positioning them at the forefront of innovative cancer therapy strategies. PDEVs are distinguished by their unique properties that facilitate tumor targeting and penetration, thereby enhancing the efficacy of drug delivery systems. Their intrinsic biological composition allows for the evasion of the immune response, enabling the efficient transport of loaded therapeutic molecules directly to tumor sites. Moreover, PDEVs possess inherent anti-cancer properties, including the ability to induce cell cycle arrest and promote apoptotic pathways within tumor cells. These vesicles have also demonstrated antimetastatic effects, inhibiting the spread and growth of cancer cells. The multifunctional nature of PDEVs allows for the simultaneous delivery of multiple therapeutic agents, further enhancing their therapeutic potential. Engineering and modification techniques, such as encapsulation, and the loading of therapeutic agents via electroporation, sonication, and incubation, have enabled the customization of PDEVs to improve their targeting efficiency and therapeutic load capacity. This includes surface modifications to increase affinity for specific tumor markers and the encapsulation of various types of therapeutic agents, such as small molecule drugs, nucleic acids, and proteins. Their plant-derived origin offers an abundant and renewable source to produce therapeutic vesicles, reducing costs and facilitating scalability for clinical applications. This review provides an in-depth analysis of the latest research on PDEVs as emerging anti-cancer agents in cancer therapy.
Collapse
Affiliation(s)
- Lishan Cui
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| |
Collapse
|
8
|
Ming T, Lei J, Peng Y, Wang M, Liang Y, Tang S, Tao Q, Wang M, Tang X, He Z, Liu X, Xu H. Curcumin suppresses colorectal cancer by induction of ferroptosis via regulation of p53 and solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 signaling axis. Phytother Res 2024; 38:3954-3972. [PMID: 38837315 DOI: 10.1002/ptr.8258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/07/2024]
Abstract
Driven by iron-dependent lipid peroxidation, ferroptosis is regulated by p53 and solute carrier family 7 member 11 (SLC7A11)/glutathione/glutathione peroxidase 4 (GPX4) axis in colorectal cancer (CRC). This study aimed to investigate the influence of curcumin (CUR) on ferroptosis in CRC. The efficacies of CUR on the malignant phenotype of CRC cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, wound healing, and clonogenic assays. The effects of CUR on ferroptosis of CRC cells were evaluated by transmission electron microscopy, lactate dehydrogenase release assay, Fe2+ staining, and analyses of reactive oxygen species, lipid peroxide, malondialdehyde, and glutathione levels. CUR's targets in ferroptosis were predicted by network pharmacological study and molecular docking. With SW620 xenograft tumors, the efficacy of CUR on CRC was investigated, and the effects of CUR on ferroptosis were assessed by detection of Fe2+, malondialdehyde, and glutathione levels. The effects of CUR on expressions of p53, SLC7A11, and GPX4 in CRC cells and tumors were analyzed by quantitative reverse transcription-polymerase chain reaction, western blotting, and immunohistochemistry. CUR suppressed the proliferation, migration, and clonogenesis of CRC cells and xenograft tumor growth by causing ferroptosis, with enhanced lactate dehydrogenase release and Fe2+, reactive oxygen species, lipid peroxide, and malondialdehyde levels, but attenuated glutathione level in CRC. In silico study indicated that CUR may bind p53, SLC7A11, and GPX4, consolidated by that CUR heightened p53 but attenuated SLC7A11 and GPX4 mRNA and protein levels in CRC. CUR may exert an inhibitory effect on CRC by inducing ferroptosis via regulation of p53 and SLC7A11/glutathione/GPX4 axis.
Collapse
Affiliation(s)
- Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiarong Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Minmin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanjing Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Muqing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomeng Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziyu He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Tümen D, Heumann P, Huber J, Hahn N, Macek C, Ernst M, Kandulski A, Kunst C, Gülow K. Unraveling Cancer's Wnt Signaling: Dynamic Control through Protein Kinase Regulation. Cancers (Basel) 2024; 16:2686. [PMID: 39123414 PMCID: PMC11312265 DOI: 10.3390/cancers16152686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Since the initial identification of oncogenic Wnt in mice and Drosophila, the Wnt signaling pathway has been subjected to thorough and extensive investigation. Persistent activation of Wnt signaling exerts diverse cancer characteristics, encompassing tumor initiation, tumor growth, cell senescence, cell death, differentiation, and metastasis. Here we review the principal signaling mechanisms and the regulatory influence of pathway-intrinsic and extrinsic kinases on cancer progression. Additionally, we underscore the divergences and intricate interplays of the canonical and non-canonical Wnt signaling pathways and their critical influence in cancer pathophysiology, exhibiting both growth-promoting and growth-suppressing roles across diverse cancer types.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (D.T.); (N.H.)
| |
Collapse
|
10
|
Amaroli A, Panfoli I, Bozzo M, Ferrando S, Candiani S, Ravera S. The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management. Cancers (Basel) 2024; 16:2580. [PMID: 39061221 PMCID: PMC11275093 DOI: 10.3390/cancers16142580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Curcumin, a polyphenolic compound derived from Curcuma longa, exhibits significant therapeutic potential in cancer management. This review explores curcumin's mechanisms of action, the challenges related to its bioavailability, and its enhancement through modern technology and approaches. Curcumin demonstrates strong antioxidant and anti-inflammatory properties, contributing to its ability to neutralize free radicals and inhibit inflammatory mediators. Its anticancer effects are mediated by inducing apoptosis, inhibiting cell proliferation, and interfering with tumor growth pathways in various colon, pancreatic, and breast cancers. However, its clinical application is limited by its poor bioavailability due to its rapid metabolism and low absorption. Novel delivery systems, such as curcumin-loaded hydrogels and nanoparticles, have shown promise in improving curcumin bioavailability and therapeutic efficacy. Additionally, photodynamic therapy has emerged as a complementary approach, where light exposure enhances curcumin's anticancer effects by modulating molecular pathways crucial for tumor cell growth and survival. Studies highlight that combining low concentrations of curcumin with visible light irradiation significantly boosts its antitumor efficacy compared to curcumin alone. The interaction of curcumin with cytochromes or drug transporters may play a crucial role in altering the pharmacokinetics of conventional medications, which necessitates careful consideration in clinical settings. Future research should focus on optimizing delivery mechanisms and understanding curcumin's pharmacokinetics to fully harness its therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Andrea Amaroli
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy;
| | - Matteo Bozzo
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Sara Ferrando
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Simona Candiani
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Ravera
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
11
|
Ma C, Li H, Lu S, Li X. Thyroid-associated ophthalmopathy: the role of oxidative stress. Front Endocrinol (Lausanne) 2024; 15:1400869. [PMID: 39055057 PMCID: PMC11269105 DOI: 10.3389/fendo.2024.1400869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Thyroid-associated ophthalmopathy (TAO) is an autoimmune condition affecting the eyes, characterized by proptosis, extraocular muscle involvement, and in severe cases, vision impairment including diplopia, optic neuropathy, and potential blindness. The exact etiology of TAO remains elusive; however, increased oxidative stress and decreased antioxidant capacity are pivotal in its pathogenesis. Elevated oxidative stress not only directly damages orbital tissues but also influences thyroid function and autoimmune responses, exacerbating tissue destruction. This review explores the role of oxidative stress in TAO, elucidates its mechanisms, and evaluates the efficacy and limitations of antioxidant therapies in managing TAO. The findings aim to enhance understanding of oxidative stress mechanisms in TAO and propose potential antioxidant strategies for future therapeutic development.
Collapse
Affiliation(s)
- Chao Ma
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haoyu Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, Hunan, China
| | - Shuwen Lu
- Department of Ophthalmology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xian Li
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
12
|
Barathan M, Zulpa AK, Ng SL, Lokanathan Y, Ng MH, Law JX. Innovative Strategies to Combat 5-Fluorouracil Resistance in Colorectal Cancer: The Role of Phytochemicals and Extracellular Vesicles. Int J Mol Sci 2024; 25:7470. [PMID: 39000577 PMCID: PMC11242358 DOI: 10.3390/ijms25137470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is a significant public health challenge, with 5-fluorouracil (5-FU) resistance being a major obstacle to effective treatment. Despite advancements, resistance to 5-FU remains formidable due to complex mechanisms such as alterations in drug transport, evasion of apoptosis, dysregulation of cell cycle dynamics, tumor microenvironment (TME) interactions, and extracellular vesicle (EV)-mediated resistance pathways. Traditional chemotherapy often results in high toxicity, highlighting the need for alternative approaches with better efficacy and safety. Phytochemicals (PCs) and EVs offer promising CRC therapeutic strategies. PCs, derived from natural sources, often exhibit lower toxicity and can target multiple pathways involved in cancer progression and drug resistance. EVs can facilitate targeted drug delivery, modulate the immune response, and interact with the TME to sensitize cancer cells to treatment. However, the potential of PCs and engineered EVs in overcoming 5-FU resistance and reshaping the immunosuppressive TME in CRC remains underexplored. Addressing this gap is crucial for identifying innovative therapies with enhanced efficacy and reduced toxicities. This review explores the multifaceted mechanisms of 5-FU resistance in CRC and evaluates the synergistic effects of combining PCs with 5-FU to improve treatment efficacy while minimizing adverse effects. Additionally, it investigates engineered EVs in overcoming 5-FU resistance by serving as drug delivery vehicles and modulating the TME. By synthesizing the current knowledge and addressing research gaps, this review enhances the academic understanding of 5-FU resistance in CRC, highlighting the potential of interdisciplinary approaches involving PCs and EVs for revolutionizing CRC therapy. Further research and clinical validation are essential for translating these findings into improved patient outcomes.
Collapse
Affiliation(s)
- Muttiah Barathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Khusairy Zulpa
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
13
|
Brockmueller A, Ruiz de Porras V, Shakibaei M. Curcumin and its anti-colorectal cancer potential: From mechanisms of action to autophagy. Phytother Res 2024; 38:3525-3551. [PMID: 38699926 DOI: 10.1002/ptr.8220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Colorectal cancer (CRC) development and progression, one of the most common cancers globally, is supported by specific mechanisms to escape cell death despite chemotherapy, including cellular autophagy. Autophagy is an evolutionarily highly conserved degradation pathway involved in a variety of cellular processes, such as the maintenance of cellular homeostasis and clearance of foreign bodies, and its imbalance is associated with many diseases. However, the role of autophagy in CRC progression remains controversial, as it has a dual function, affecting either cell death or survival, and is associated with cellular senescence in tumor therapy. Indeed, numerous data have been presented that autophagy in cancers serves as an alternative to cell apoptosis when the latter is ineffective or in apoptosis-resistant cells, which is why it is also referred to as programmed cell death type II. Curcumin, one of the active constituents of Curcuma longa, has great potential to combat CRC by influencing various cellular signaling pathways and epigenetic regulation in a safe and cost-effective approach. This review discusses the efficacy of curcumin against CRC in vitro and in vivo, particularly its modulation of autophagy and apoptosis in various cellular pathways. While clinical studies have assessed the potential of curcumin in cancer prevention and treatment, none have specifically examined its role in autophagy. Nonetheless, we offer an overview of potential correlations to support the use of this polyphenol as a prophylactic or co-therapeutic agent in CRC.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
14
|
Okpoghono J, Isoje EF, Igbuku UA, Ekayoda O, Omoike GO, Adonor TO, Igue UB, Okom SU, Ovowa FO, Stephen-Onojedje QO, Ejueyitsi EO, Seigha AA. Natural polyphenols: A protective approach to reduce colorectal cancer. Heliyon 2024; 10:e32390. [PMID: 38961927 PMCID: PMC11219337 DOI: 10.1016/j.heliyon.2024.e32390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Background A form of cancer that affects the rectum or colon (large intestine) is called colorectal cancer (CRC). The main risk factors for CRC include dietary, lifestyle, and environmental variables. Currently natural polyphenols have demonstrated impressive anticarcinogenic capabilities. Objective The main objective was to provide an updated, thorough assessment of the defensive mechanism of natural polyphenols for the global suppression of colorectal cancer. More precisely, this study aimed to analyze a set of chosen polyphenols with demonstrated safety, effectiveness, and biochemical defense mechanism on colon cancer models in order to facilitate future research. Methods This review was carried out with purposefully attentive and often updated scientific databases, including PubMed, Scopus, Science Direct, and Web of Science. After selecting approximately 178 potentially relevant papers based just on abstracts, 145 studies were meticulously reviewed and discussed. Results The outcomes disclosed that anti-CRC mechanisms of natural polyphenols involved the control of several molecular and signaling pathways. Natural polyphenols have also been shown to have the ability to limit the growth and genesis of tumors via altering the gut microbiota and cancer stem cells. However, the biochemical uses of many natural polyphenols have remained restricted because of their truncated water solubility and low bioavailability. In order to attain synergistic properties it is recommended to combine the use of different natural polyphenols because of their low bioavailability and volatility. However, the use of lipid-based nano- and micro-carriers also may be helpful to solve these problems with efficient distribution system to target sites. Conclusion In conclusion, the use of polyphenols for CRC treatment appears promising. To ascertain their efficacy, more clinical research is anticipated.
Collapse
Affiliation(s)
- Joel Okpoghono
- Department of Biochemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Endurance F. Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Ufuoma A. Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Ovigueroye Ekayoda
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria
| | - Godson O. Omoike
- Department of Public Health, School of Health and Society, University of Wolverhampton, United Kingdom
| | - Treasure O. Adonor
- Department of Biotechnology, Faculty of Life Science, University of Essex, United Kingdom
| | - Udoka B. Igue
- Department of Chemical Sciences, Novena University, Ogume, Delta State, Nigeria
| | - Solomon U. Okom
- Department of Biochemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Faith O. Ovowa
- Department of Science Laboratory Technology (Biochemistry Option), Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Queen O. Stephen-Onojedje
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria
| | - Ejiro O. Ejueyitsi
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria
| | - Anita A. Seigha
- Department of Chemical Sciences, Novena University, Ogume, Delta State, Nigeria
| |
Collapse
|
15
|
Ochoa-Sanchez A, Sahare P, Pathak S, Banerjee A, Estevez M, Duttaroy AK, Luna-Bárcenas G, Paul S. Evaluation of the synergistic effects of curcumin-resveratrol co-loaded biogenic silica on colorectal cancer cells. Front Pharmacol 2024; 15:1341773. [PMID: 38919255 PMCID: PMC11196415 DOI: 10.3389/fphar.2024.1341773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health concern, being the third most diagnosed cancer in men and the second most diagnosed cancer in women, with alarming mortality rates. Natural phytochemicals have gained prominence among various therapeutic avenues explored due to their diverse biological properties. Curcumin, extracted from turmeric, and resveratrol, a polyphenol found in several plants, have exhibited remarkable anticancer activities. However, their limited solubility and bioavailability hinder their therapeutic efficacy. To enhance the bioavailability of these compounds, nanomaterials work as effective carriers with biogenic silica (BS) attracting major attention owing to their exceptional biocompatibility and high specific surface area. In this study, we developed Curcumin-resveratrol-loaded BS (Cur-Res-BS) and investigated their effects on colorectal cancer cell lines (HCT-116 and Caco-2). Our results demonstrated significant concentration-dependent inhibition of cell viability in HCT-116 cells and revealed a complex interplay of crucial proto-onco or tumor suppressor genes, such as TP53, Bax, Wnt-1, and CTNNB1, which are commonly dysregulated in colorectal cancer. Notably, Cur-Res-BS exhibited a synergistic impact on key signaling pathways related to colorectal carcinogenesis. While these findings are promising, further investigations are essential to comprehensively understand the mechanisms and optimize the therapeutic strategy. Moreover, rigorous safety assessments and in vitro studies mimicking the in vivo environment are imperative before advancing to in vivo experiments, ensuring the potential of Cur-Res-BS as an efficient treatment for CRC.
Collapse
Affiliation(s)
- Adriana Ochoa-Sanchez
- NatProLab, School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| | - Padmavati Sahare
- Institute of Advanced Materials for Sustainable Manufacturing, School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Miriam Estevez
- Centre of Applied Physics and Advanced Technologies (CFATA), National Autonomous University of Mexico, Queretaro, Mexico
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gabriel Luna-Bárcenas
- Institute of Advanced Materials for Sustainable Manufacturing, School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| | - Sujay Paul
- NatProLab, School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| |
Collapse
|
16
|
Zhang Y, Xie J. Targeting ferroptosis regulators by natural products in colorectal cancer. Front Pharmacol 2024; 15:1374722. [PMID: 38860170 PMCID: PMC11163120 DOI: 10.3389/fphar.2024.1374722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/22/2024] [Indexed: 06/12/2024] Open
Abstract
Colorectal cancer (CRC) poses a significant global health challenge, ranking as the third most diagnosed cancer and the second leading cause of cancer-related deaths. Despite advancements in treatment, challenges such as delayed diagnosis, multidrug resistance, and limited therapeutic effectiveness persist, emphasizing the need for innovative approaches. This review explores the potential of natural products, nutraceuticals, and phytochemicals for targeting ferroptosis-related regulators as a novel strategy in CRC. Ferroptosis, a form of regulated cell death characterized by iron-dependent lethal lipid peroxide accumulation, holds substantial importance in CRC progression and therapy resistance. Natural products, known for their diverse bioactive effects and favorable safety profiles, emerge as promising candidates to induce ferroptosis in CRC cells. Exploring amino acid, iron, lipid metabolism regulators, and oxidative stress regulators reveals promising avenues for inducing cell death in CRC. This comprehensive review provides insights into the multifaceted effects of natural products on proteins integral to ferroptosis regulation, including GPX4, SLC7A11, ACSL4, NCOA4, and HO-1. By elucidating the intricate mechanisms through which natural products modulate these proteins, this review lays the foundation for a promising therapeutic strategy in CRC.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd., Shanghai, China
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd., Shanghai, China
| |
Collapse
|
17
|
Maulina T, Purnomo YY, Khamila N, Garna D, Sjamsudin E, Cahyanto A. Analgesic Potential Comparison Between Piperine-Combined Curcumin Patch and Non-Piperine Curcumin Patch: A Pragmatic Trial on Post-Cleft Lip/Palate Surgery Pediatric Patients. J Pain Res 2024; 17:1903-1915. [PMID: 38812820 PMCID: PMC11135569 DOI: 10.2147/jpr.s463159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Purpose Despite its well-acknowledged analgesic potential, curcumin's low bioavailability has been recognized. Piperine, a substance naturally contained in pepper, has been known for its effect on increasing curcumin bioavailability. To investigate the analgesic potential of curcumin and piperine addition to curcumin patch used as adjuvant therapy in the management of acute postoperative orofacial pain. Patients and Methods This pragmatic trial recruited 75 patients that underwent oromaxillofacial surgery at Unpad Dental Hospital, Bandung, Indonesia. Research participants were randomly assigned to three different groups: the first group that did not receive any intervention other than the post-operative standard treatment (POST), the second group that received POST and non-piperine curcumin patch, and the third group that received POST and piperine-combined curcumin patch. Participants' pain intensity was evaluated by using the face, leg, activity, cry, and consolability (FLACC) pain scale and salivary prostaglandin-E2 (PGE2) level for two-time points, which were eight hours apart. All data were gathered and analyzed to compare the within and between-group differences. Results Within groups comparison of the FLACC scores for two evaluation points showed significant differences for all groups (p < 0.01). For salivary PGE2 analysis, a comparison of the non-piperine group to the piperine group also showed significant results. Yet, when all three groups were compared, regardless of the differences, the results were not statistically significant. Conclusion Despite of the proven efficacy of curcumin patch, the addition of piperine to the curcumin patch in the current study did not provide any significant effects. Further investigation is of importance.
Collapse
Affiliation(s)
- Tantry Maulina
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
- Dentistry Department, Radboud University, Nijmegen, the Netherlands
| | | | - Nadya Khamila
- Oral Surgery and Maxillofacial Specialist Program, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Devy Garna
- Periodontology Department, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Endang Sjamsudin
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Arief Cahyanto
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Wei H, Li X, Liu F, Li Y, Luo B, Huang X, Chen H, Wen B, Ma P. Curcumin inhibits the development of colorectal cancer via regulating the USP4/LAMP3 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1749-1762. [PMID: 37728623 DOI: 10.1007/s00210-023-02721-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
In this study, we aimed to explore the effects of curcumin on the progression of colorectal cancer and its underlying mechanisms involved. Cell proliferation, apoptosis and invasion were determined through CCK-8 assay, colony formation assay, EdU assay, flow cytometry, and transwell invasion assay, respectively. The protein expression of Bax, MMP2, USP4 and LAMP3 was measured using western blot. Pearson correlation coefficient was used to evaluate the relationship between USP4 and LAMP3. Co-IP was also conducted to determine the interaction between USP4 and LAMP3. Xenograft tumor model was established to explore the role of curcumin in colorectal cancer in vivo. IHC was utilized to measure the expression of Bax, MMP2, USP4 and LAMP3 in tumor tissues from mice. Curcumin significantly accelerated cell apoptosis, and inhibited cell proliferation and invasion in LoVo and HCT-116 cells. LAMP3 was augmented in colorectal cancer tissues and cells, and curcumin could reduce the expression of LAMP3. Curcumin decreased LAMP3 expression to exhibit the inhibition role in the progression of colorectal cancer. USP4 interacted with LAMP3, and positively regulated LAMP3 expression in colorectal cancer cells. LAMP3 overexpression could reverse the suppressive effects of USP4 knockdown on the development of colorectal cancer. Curcumin downregulated USP4 to impeded the progression of colorectal cancer via repressing LAMP3 expression. In addition, curcumin obviously restrained tumor growth in mice through downregulating USP4 and LAMP3 expression. These data indicated that curcumin exert the anti-tumor effects on the development of colorectal cancer through modulating the USP4/LAMP3 pathway.
Collapse
Affiliation(s)
- Hai Wei
- Department of Gastrointestinal Surgery, Nanyang First People's Hospital, Nanyang, 473000, China
| | - Xianzhe Li
- Department of General Surgery, Nanshi Hospital, Nanyang, 473065, China
| | - Fu Liu
- Department of Gastrointestinal Surgery, Nanyang First People's Hospital, Nanyang, 473000, China
| | - Yuan Li
- Department of Gastrointestinal Surgery, Nanyang First People's Hospital, Nanyang, 473000, China
| | - Bin Luo
- Department of Gastrointestinal Surgery, Nanyang First People's Hospital, Nanyang, 473000, China
| | - Xin Huang
- Department of Gastrointestinal Surgery, Nanyang First People's Hospital, Nanyang, 473000, China
| | - Hang Chen
- Department of Gastrointestinal Surgery, Nanyang First People's Hospital, Nanyang, 473000, China
| | - Bo Wen
- Department of Gastrointestinal Surgery, Nanyang First People's Hospital, Nanyang, 473000, China
| | - Pei Ma
- Department of Gastrointestinal Surgery, Nanyang First People's Hospital, Nanyang, 473000, China.
| |
Collapse
|
19
|
Kabagwira J, Fuller RN, Vallejos PA, Sugiono CS, Andrianarijaona VM, Chism JB, O'Leary MP, Molina DC, Langridge W, Senthil M, Wall NR. Amplifying Curcumin's Antitumor Potential: A Heat-Driven Approach for Colorectal Cancer Treatment. Onco Targets Ther 2024; 17:63-78. [PMID: 38313386 PMCID: PMC10838088 DOI: 10.2147/ott.s448024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction Peritoneal metastases from colorectal cancer (CRC) present a significant clinical challenge with poor prognosis, often unresponsive to systemic chemotherapy. Cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) is a treatment approach for select patients. The use of curcumin, a natural compound with antitumor properties, in HIPEC is of interest due to its lower side effects compared to conventional drugs and potential for increased efficacy through direct delivery to the peritoneal cavity. Methods An in vitro hyperthermic model was developed to simulate clinical HIPEC conditions. Three colon cancer cell lines (SK-CO-1, COLO205, SNU-C1) representing different genetic mutations (p53, KRAS, BRAF) were treated with either curcumin (25 µM) or mitomycin-C (1 µM) for 1, 2, or 3 hours. Post-treatment, cells were incubated at 37°C (normothermia) or 42°C (hyperthermia). Cell viability and proliferation were assessed at 24, 48 and 72 hours post-treatment using Annexin V/PI, MTT assay, trypan blue exclusion, and Hoffman microscopy. Results Hyperthermia significantly enhanced the antitumor efficacy of curcumin, evidenced by a two-fold reduction in cell viability compared to normothermia across all cell lines. In the SNU-C1 cell line, which harbors a p53 mutation, mitomycin-C failed to significantly impact cell viability, unlike curcumin, suggesting mutation-specific differences in treatment response. Discussion The findings indicate that hyperthermia augments the antitumor effects of curcumin in vitro, supporting the hypothesis that curcumin could be a more effective HIPEC agent than traditional drugs like mitomycin-C. Mutation-associated differences in response to treatments were observed, particularly in p53 mutant cells. While further studies are needed, these preliminary results suggest that curcumin in HIPEC could represent a novel therapeutic strategy for CRC patients with peritoneal metastases. This approach may offer improved outcomes with fewer side effects, particularly in genetically distinct CRC subtypes.
Collapse
Affiliation(s)
- Janviere Kabagwira
- Department of Basic Science, Division of Biochemistry, Loma Linda University, Loma Linda, CA, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Ryan N Fuller
- Department of Basic Science, Division of Biochemistry, Loma Linda University, Loma Linda, CA, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Paul A Vallejos
- Department of Basic Science, Division of Biochemistry, Loma Linda University, Loma Linda, CA, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Chase S Sugiono
- Department of Basic Science, Division of Biochemistry, Loma Linda University, Loma Linda, CA, USA
| | | | - Jazmine Brianna Chism
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Michael P O'Leary
- Division of Surgical Oncology, Department of Surgery, Loma Linda University Health, Loma Linda, CA, USA
| | - David Caba Molina
- Division of Surgical Oncology, Department of Surgery, Loma Linda University Health, Loma Linda, CA, USA
| | - William Langridge
- Department of Basic Science, Division of Biochemistry, Loma Linda University, Loma Linda, CA, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Maheswari Senthil
- Division of Surgical Oncology, Department of Surgery, Irvine Medical Center, University of California, Orange, CA, USA
| | - Nathan R Wall
- Department of Basic Science, Division of Biochemistry, Loma Linda University, Loma Linda, CA, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
20
|
Dourado D, Miranda JA, de Oliveira MC, Freire DT, Xavier-Júnior FH, Paredes-Gamero EJ, Alencar ÉDN. Recent Trends in Curcumin-Containing Inorganic-Based Nanoparticles Intended for In Vivo Cancer Therapy. Pharmaceutics 2024; 16:177. [PMID: 38399238 PMCID: PMC10891663 DOI: 10.3390/pharmaceutics16020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Curcumin is a natural compound that has been widely investigated thanks to its various biological properties, including antiproliferative. This molecule acts on different cancers such as lung, breast, pancreatic, colorectal, etc. However, the bioactive actions of curcumin have limitations when its physicochemical properties compromise its pharmacological potential. As a therapeutic strategy against cancer, curcumin has been associated with inorganic nanoparticles. These nanocarriers are capable of delivering curcumin and offering physicochemical properties that synergistically enhance anticancer properties. This review highlights the different types of curcumin-based inorganic nanoparticles and discusses their physicochemical properties and in vivo anticancer activity in different models of cancer.
Collapse
Affiliation(s)
- Douglas Dourado
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife 50670-420, PE, Brazil;
| | - Júlio Abreu Miranda
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal 59010-180, RN, Brazil; (J.A.M.); (M.C.d.O.)
| | - Matheus Cardoso de Oliveira
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal 59010-180, RN, Brazil; (J.A.M.); (M.C.d.O.)
| | - Danielle Teixeira Freire
- College of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (D.T.F.); (E.J.P.-G.)
| | - Francisco Humberto Xavier-Júnior
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil;
| | - Edgar Julian Paredes-Gamero
- College of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (D.T.F.); (E.J.P.-G.)
| | - Éverton do Nascimento Alencar
- College of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (D.T.F.); (E.J.P.-G.)
| |
Collapse
|
21
|
Azad AK, Lai J, Sulaiman WMAW, Almoustafa H, Alshehade SA, Kumarasamy V, Subramaniyan V. The Fabrication of Polymer-Based Curcumin-Loaded Formulation as a Drug Delivery System: An Updated Review from 2017 to the Present. Pharmaceutics 2024; 16:160. [PMID: 38399221 PMCID: PMC10892401 DOI: 10.3390/pharmaceutics16020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 02/25/2024] Open
Abstract
Turmeric contains curcumin, a naturally occurring compound with noted anti-inflammatory and antioxidant properties that may help fight cancer. Curcumin is readily available, nontoxic, and inexpensive. At high doses, it has minimal side effects, suggesting it is safe for human use. However, curcumin has extremely poor bioavailability and biodistribution, which further hamper its clinical applications. It is commonly administered through oral and transdermal routes in different forms, where the particle size is one of the most common barriers that decreases its absorption through biological membranes on the targeted sites and limits its clinical effectiveness. There are many studies ongoing to overcome this problem. All of this motivated us to conduct this review that discusses the fabrication of polymer-based curcumin-loaded formulation as an advanced drug delivery system and addresses different approaches to overcoming the existing barriers and improving its bioavailability and biodistribution to enhance the therapeutic effects against cancer and other diseases.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Faculty of Pharmacy, University College of MAIWP International, Batu Caves, Kuala Lumpur 68100, Malaysia;
| | - Joanne Lai
- Faculty of Pharmacy, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
| | | | - Hassan Almoustafa
- Faculty of Medicine, Universiti Malaya, Federal Territory of Kuala Lumpur, Kuala Lumpur 50603, Malaysia;
| | | | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia;
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
22
|
Ahmad I, Ahmad S, Ahmad A, Zughaibi TA, Alhosin M, Tabrez S. Curcumin, its derivatives, and their nanoformulations: Revolutionizing cancer treatment. Cell Biochem Funct 2024; 42:e3911. [PMID: 38269517 DOI: 10.1002/cbf.3911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
Curcumin is a natural compound derived from turmeric and can target malignant tumor molecules involved in cancer propagation. It has potent antioxidant activity, but its effectiveness is limited due to poor absorption and rapid elimination from the body. Various curcumin derivatives have also shown anticancer potential in in-vitro and in-vivo models. Curcumin can target multiple signaling pathways involved in cancer development/progression or induce cancer cell death through apoptosis. In addition, curcumin and its derivatives could also enhance the effectiveness of conventional chemotherapy, radiation therapy and reduce their associated side effects. Lately, nanoparticle-based delivery systems are being developed/explored to overcome the challenges associated with curcumin's delivery, increasing its overall efficacy. The use of an imaging system to track these formulations could also give beneficial information about the bioavailability and distribution of the nano-curcumin complex. In conclusion, curcumin holds significant promise in the fight against cancer, especially in its nanoform, and could provide precise delivery to cancer cells without affecting normal healthy cells.
Collapse
Affiliation(s)
- Iftikhar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sameer Ahmad
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biotechnology & Genetics, Faculty of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Xu W, Shen Y. Curcumin affects apoptosis of colorectal cancer cells through ATF6-mediated endoplasmic reticulum stress. Chem Biol Drug Des 2024; 103:e14433. [PMID: 38230779 DOI: 10.1111/cbdd.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024]
Abstract
Colorectal cancer (CRC) is the main cause of cancer-associated death. Herein, we treated SW620 and HT-29 CRC cells with different curcumin concentrations, followed by treatment with the half maximal inhibitory concentration (IC50) curcumin/endoplasmic reticulum stress (ERS) inhibitor 4-phenyl butyric acid (4-PBA)/activating transcription factor 6 (ATF6) interference plasmid (si-ATF6). We detected cell proliferation/apoptosis, ATF6 cellular localization/nuclear translocation, ion concentration, ATF6 protein/apoptotic protein (Bax/Bcl-2/Cleaved Caspase-3) levels, and ERS-related proteins (glucose-regulated protein 78 [Grp78]/C/EBP homologous protein [CHOP]). We discovered inhibited cell proliferation/growth, enhanced cell apoptosis/(Bax/Bcl-2) ratio/Cleaved Caspase-3 levels/Ca2+ concentration in the cytoplasm/ERS-related protein (Grp78/CHOP) levels, and activated ERS following treatment with IC50 curcumin. 4-PBA partially reversed the inhibitory effect of curcumin on SW620 cells by restraining ERS. Curcumin stimulated ATF6 expression and its nuclear translocation to activate ERS. ATF6 silencing partly annulled the inhibitory effect of curcumin on SW620 cells. Our study explored the molecular mechanism of curcumin affecting CRC cell apoptosis through ATF6.
Collapse
Affiliation(s)
- Wei Xu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Hangzhou Cancer Hospital, Hangzhou, China
| | - Yu Shen
- Health Management Center, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou, China
| |
Collapse
|
24
|
Hussen BM, Abdullah ST, Abdullah SR, Younis YM, Hidayat HJ, Rasul MF, Mohamadtahr S. Exosomal non-coding RNAs: Blueprint in colorectal cancer metastasis and therapeutic targets. Noncoding RNA Res 2023; 8:615-632. [PMID: 37767111 PMCID: PMC10520679 DOI: 10.1016/j.ncrna.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is ranked as the world's third-most prevalent cancer, and metastatic CRC considerably increases cancer-related fatalities globally. A number of complex mechanisms that are strictly controlled at the molecular level are involved in metastasis, which is the primary reason for death in people with CRC. Recently, it has become clear that exosomes, which are small extracellular vesicles released by non-tumorous and tumorigenic cells, play a critical role as communication mediators among tumor microenvironment (TME). To facilitate communication between the TME and cancer cells, non-coding RNAs (ncRNAs) play a crucial role and are recognized as potent regulators of gene expression and cellular processes, such as metastasis and drug resistance. NcRNAs are now recognized as potent regulators of gene expression and many hallmarks of cancer, including metastasis. Exosomal ncRNAs, like miRNAs, circRNAs, and lncRNAs, have been demonstrated to influence a number of cellular mechanisms that contribute to CRC metastasis. However, the molecular mechanisms that link exosomal ncRNAs with CRC metastasis are not well understood. This review highlights the essential roles that exosomal ncRNAs play in the progression of CRC metastatic disease and explores the therapeutic choices that are open to patients who have CRC metastases. However, exosomal ncRNA treatment strategy development is still in its early phases; consequently, additional investigation is required to improve delivery methods and find novel therapeutic targets as well as confirm the effectiveness and safety of these therapies in preclinical and clinical contexts.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Yousif Mohammed Younis
- Department of Nursing, College of Nursing, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Sayran Mohamadtahr
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| |
Collapse
|
25
|
Jang BY, Shin MK, Han DH, Sung JS. Curcumin Disrupts a Positive Feedback Loop between ADMSCs and Cancer Cells in the Breast Tumor Microenvironment via the CXCL12/CXCR4 Axis. Pharmaceutics 2023; 15:2627. [PMID: 38004606 PMCID: PMC10675183 DOI: 10.3390/pharmaceutics15112627] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Adipose tissue has a significant impact on breast cancer initiation and progression owing to its substantial proportion in the breast. Adipose-derived mesenchymal stem cells (ADMSCs) are major players in the breast tumor microenvironment (TME) as they interact with cancer cells. The intricate interaction between ADMSCs and cancer cells not only drives the differentiation of ADMSCs into cancer-associated fibroblasts (CAFs) but also the metastasis of cancer cells, which is attributed to the CXCL12/CXCR4 axis. We investigated the effects of curcumin, a flavonoid known for CXCL12/CXCR4 axis inhibition, on breast TME by analyzing whether it can disrupt the ADMSC-cancer positive loop. Using MCF7 breast cancer cell-derived conditioned medium (MCF7-CM), we induced ADMSC transformation and verified that curcumin diminished the phenotypic change, inhibiting CAF marker expression. Additionally, curcumin suppressed the CXCL12/CXCR4 axis and its downstream signaling both in ADMSCs and MCF7 cells. The CM from ADMSCs, whose ADMSC-to-CAF transformation was repressed by the curcumin treatment, inhibited the positive feedback loop between ADMSCs and MCF7 as well as epithelial-mesenchymal transition in MCF7. Our study showed that curcumin is a potent anti-cancer agent that can remodel the breast TME, thereby restricting the ADMSC-cancer positive feedback loop associated with the CXCL12/CXCR4 axis.
Collapse
Affiliation(s)
| | | | | | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (B.-Y.J.); (M.K.S.); (D.-H.H.)
| |
Collapse
|
26
|
Mari M, Boniburini M, Tosato M, Rigamonti L, Cuoghi L, Belluti S, Imbriano C, Avino G, Asti M, Ferrari E. Development of Stable Amino-Pyrimidine-Curcumin Analogs: Synthesis, Equilibria in Solution, and Potential Anti-Proliferative Activity. Int J Mol Sci 2023; 24:13963. [PMID: 37762266 PMCID: PMC10531168 DOI: 10.3390/ijms241813963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
With the clear need for better cancer treatment, naturally occurring molecules represent a powerful inspiration. Recently, curcumin has attracted attention for its pleiotropic anticancer activity in vitro, especially against colorectal and prostate cancer cells. Unfortunately, these encouraging results were disappointing in vivo due to curcumin's low stability and poor bioavailability. To overcome these issues, herein, the synthesis of eight new pyrimidine-curcumin derivatives is reported. The compounds were fully characterized (1H/13C NMR (Nuclear Magnetic Resonance), LC-MS (Liquid Chromatography-Mass Spectrometri), UV-Vis spectroscopy), particularly their acid/base behavior; overall protonation constants were estimated, and species distribution, as a function of pH, was predicted, suggesting that all the compounds are in their neutral form at pH 7.4. All the compounds were extremely stable in simulated physiological media (phosphate-buffered saline and simulated plasma). The compounds were tested in vitro (48 h incubation treatment) to assess their effect on cell viability in prostate cancer (LNCaP and PC3) and colorectal cancer (HT29 and HCT116) cell lines. Two compounds showed the same anti-proliferative activity as curcumin against HCT116 cells and improved cytotoxicity against PC3 cells.
Collapse
Affiliation(s)
- Matteo Mari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (M.M.); (M.B.); (M.T.); (L.R.)
| | - Matteo Boniburini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (M.M.); (M.B.); (M.T.); (L.R.)
| | - Marianna Tosato
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (M.M.); (M.B.); (M.T.); (L.R.)
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, Azienda USL-IRCCS Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy;
| | - Luca Rigamonti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (M.M.); (M.B.); (M.T.); (L.R.)
| | - Laura Cuoghi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/d, 41125 Modena, Italy; (L.C.); (S.B.); (C.I.)
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/d, 41125 Modena, Italy; (L.C.); (S.B.); (C.I.)
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/d, 41125 Modena, Italy; (L.C.); (S.B.); (C.I.)
| | - Giulia Avino
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (M.M.); (M.B.); (M.T.); (L.R.)
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, Azienda USL-IRCCS Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy;
| | - Erika Ferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (M.M.); (M.B.); (M.T.); (L.R.)
| |
Collapse
|
27
|
Madeo LF, Schirmer C, Cirillo G, Froeschke S, Hantusch M, Curcio M, Nicoletta FP, Büchner B, Mertig M, Hampel S. Facile one-pot hydrothermal synthesis of a zinc oxide/curcumin nanocomposite with enhanced toxic activity against breast cancer cells. RSC Adv 2023; 13:27180-27189. [PMID: 37701282 PMCID: PMC10493854 DOI: 10.1039/d3ra05176e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Zinc oxide/Curcumin (Zn(CUR)O) nanocomposites were prepared via hydrothermal treatment of Zn(NO3)2 in the presence of hexamethylenetetramine as a stabilizing agent and CUR as a bioactive element. Three ZnO : CUR ratios were investigated, namely 57 : 43 (Zn(CUR)O-A), 60 : 40 (Zn(CUR)O-B) and 81 : 19 (Zn(CUR)O-C), as assessed by thermogravimetric analyses, with an average hydrodynamic diameter of nanoaggregates in the range of 223 to 361 nm. The interaction of CUR with ZnO via hydroxyl and ketoenol groups (as proved by X-ray photoelectron spectroscopy analyses) was found to significantly modify the key properties of ZnO nanoparticles with the obtainment of a bilobed shape (as shown by scanning electron microscopy), and influenced the growth process of the composite nanoparticles as indicated by the varying particle sizes determined by powder X-ray diffraction. The efficacy of Zn(CUR)O as anticancer agents was evaluated on MCF-7 and MDA-MB-231 cancer cells, obtaining a synergistic activity with a cell viability depending on the CUR amount within the nanocomposite. Finally, the determination of reactive oxygen species production in the presence of Zn(CUR)O was used as a preliminary evaluation of the mechanism of action of the nanocomposites.
Collapse
Affiliation(s)
- Lorenzo Francesco Madeo
- Leibniz Institute for Solid State and Materials Research Dresden Dresden 01069 Germany +49 3514659883
| | - Christine Schirmer
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V. Kurt-Schwabe-Straße 4 Waldheim 04736 Germany
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende 87036 CS Italy
| | - Samuel Froeschke
- Leibniz Institute for Solid State and Materials Research Dresden Dresden 01069 Germany +49 3514659883
| | - Martin Hantusch
- Leibniz Institute for Solid State and Materials Research Dresden Dresden 01069 Germany +49 3514659883
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende 87036 CS Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende 87036 CS Italy
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research Dresden Dresden 01069 Germany +49 3514659883
- Institute of Solid State and Materials Physics, Technische Universität Dresden Dresden 01062 Germany
| | - Michael Mertig
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V. Kurt-Schwabe-Straße 4 Waldheim 04736 Germany
- Institute of Physical Chemistry, Technische Universität Dresden Dresden 01062 Germany
| | - Silke Hampel
- Leibniz Institute for Solid State and Materials Research Dresden Dresden 01069 Germany +49 3514659883
| |
Collapse
|
28
|
Qiu F, Wang Y, Du Y, Zeng C, Liu Y, Pan H, Ke C. Current evidence for J147 as a potential therapeutic agent in nervous system disease: a narrative review. BMC Neurol 2023; 23:317. [PMID: 37674139 PMCID: PMC10481599 DOI: 10.1186/s12883-023-03358-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Curcumin has anti-inflammatory, antioxidant, and anticancer effects and is used to treat diseases such as dermatological diseases, infection, stress, depression, and anxiety. J147, an analogue of curcumin, is designed and synthesized with better stability and bioavailability. Accumulating evidence demonstrates the potential role of J147 in the prevention and treatment of Alzheimer's disease, diabetic neuropathy, ischemic stroke, depression, anxiety, and fatty liver disease. In this narrative review, we summarized the background and biochemical properties of J147 and discussed the role and mechanism of J147 in different diseases. Overall, the mechanical attributes of J147 connote it as a potential target for the prevention and treatment of neurological diseases.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yanmei Wang
- Department of critical care medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yunbo Du
- Department of critical care medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518025, Guangdong, China.
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China.
| |
Collapse
|
29
|
Pouliquen DL, Trošelj KG, Anto RJ. Curcuminoids as Anticancer Drugs: Pleiotropic Effects, Potential for Metabolic Reprogramming and Prospects for the Future. Pharmaceutics 2023; 15:1612. [PMID: 37376060 DOI: 10.3390/pharmaceutics15061612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of published studies on curcuminoids in cancer research, including its lead molecule curcumin and synthetic analogs, has been increasing substantially during the past two decades. Insights on the diversity of inhibitory effects they have produced on a multitude of pathways involved in carcinogenesis and tumor progression have been provided. As this wealth of data was obtained in settings of various experimental and clinical data, this review first aimed at presenting a chronology of discoveries and an update on their complex in vivo effects. Secondly, there are many interesting questions linked to their pleiotropic effects. One of them, a growing research topic, relates to their ability to modulate metabolic reprogramming. This review will also cover the use of curcuminoids as chemosensitizing molecules that can be combined with several anticancer drugs to reverse the phenomenon of multidrug resistance. Finally, current investigations in these three complementary research fields raise several important questions that will be put among the prospects for the future research related to the importance of these molecules in cancer research.
Collapse
Affiliation(s)
- Daniel L Pouliquen
- Université d'Angers, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Koraljka Gall Trošelj
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ruby John Anto
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram 695317, India
| |
Collapse
|
30
|
Sowa-Kasprzak K, Totoń E, Kujawski J, Olender D, Lisiak N, Zaprutko L, Rubiś B, Kaczmarek M, Pawełczyk A. Synthesis, Cytotoxicity and Molecular Docking of New Hybrid Compounds by Combination of Curcumin with Oleanolic Acid. Biomedicines 2023; 11:1506. [PMID: 37371601 DOI: 10.3390/biomedicines11061506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Curcumin and oleanolic acid are natural compounds with high potential in medicinal chemistry. These products have been widely studied for their pharmacological properties and have been structurally modified to improve their bioavailability and therapeutic value. In the present study, we discuss how these compounds are utilized to develop bioactive hybrid compounds that are intended to target cancer cells. Using a bifunctional linker, succinic acid, to combine curcumin and triterpenoic oleanolic acid, several hybrid compounds were prepared. Their cytotoxicity against different cancer cell lines was evaluated and compared with the activity of curcumin (the IC50 value (24 h), for MCF7, HeLaWT and HT-29 cancer cells for KS5, KS6 and KS8 compounds was in the range of 20.6-94.4 µM, in comparison to curcumin 15.6-57.2 µM). Additionally, in silico studies were also performed. The computations determined the activity of the tested compounds towards proteins selected due to their similar binding modes and the nature of hydrogen bonds formed within the cavity of ligand-protein complexes. Overall, the curcumin-triterpene hybrids represent an important class of compounds for the development of effective anticancer agents also without the diketone moiety in the curcumin molecule. Moreover, some structural modifications in keto-enol moiety have led to obtaining more information about different chemical and biological activities. Results obtained may be of interest for further research into combinations of curcumin and oleanolic acid derivatives.
Collapse
Affiliation(s)
- Katarzyna Sowa-Kasprzak
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland
| | - Jacek Kujawski
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Dorota Olender
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland
| | - Lucjusz Zaprutko
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Diagnostics and Immunology, Gene Therapy Unit, Greater Poland Cancer Centre, Garbary 15 Str., 61-866 Poznań, Poland
| | - Anna Pawełczyk
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| |
Collapse
|
31
|
Liu C, Rokavec M, Huang Z, Hermeking H. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis. Cell Death Differ 2023:10.1038/s41418-023-01178-1. [PMID: 37210578 DOI: 10.1038/s41418-023-01178-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023] Open
Abstract
Curcumin, a natural phytochemical isolated from tumeric roots, represents a candidate for prevention and therapy of colorectal cancer/CRC. However, the exact mechanism of action and the downstream mediators of curcumin's tumor suppressive effects have remained largely unknown. Here we used a genetic approach to determine the role of the p53/miR-34 pathway as mediator of the effects of curcumin. Three isogenic CRC cell lines rendered deficient for the p53, miR-34a and/or miR-34b/c genes were exposed to curcumin and subjected to cell biological analyses. siRNA-mediated inhibition and ectopic expression of NRF2, as well as Western blot, qPCR and qChIP analyses of its target genes were performed. CRC cells were i.v. injected into NOD/SCID mice and lung-metastases formation was determined by longitudinal, non-invasive imaging. In CRC cells curcumin induced apoptosis and senescence, and suppressed migration and invasion in a p53-independent manner. Curcumin activated the KEAP1/NRF2/ARE pathway by inducing ROS. Notably, curcumin induced miR-34a and miR-34b/c expression in a ROS/NRF2-dependent and p53-independent manner. NRF2 directly induced miR-34a and miR-34b/c via occupying multiple ARE motifs in their promoter regions. Curcumin reverted repression of miR-34a and miR-34b/c induced by IL6 and hypoxia. Deletion of miR-34a and miR-34b/c significantly reduced curcumin-induced apoptosis and senescence, and prevented the inhibition of migration and invasion by curcumin or ectopic NRF2. In CRC cells curcumin induced MET and prevented the formation of lung-metastases in mice in a miR-34a-dependent manner. In addition, we found that curcumin may enhance the therapeutic effects of 5-FU on CRC cells deficient for p53 and miR-34a/b/c. Activation of the KEAP1/NRF2/miR-34a/b/c axis mediates the tumor suppressive activity of curcumin and suggests a new approach for activating miR-34 genes in tumors for therapeutic purposes.
Collapse
Affiliation(s)
- Chunfeng Liu
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität, Thalkirchner Strasse 36, 80337, Munich, Germany
| | - Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität, Thalkirchner Strasse 36, 80337, Munich, Germany
| | - Zekai Huang
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität, Thalkirchner Strasse 36, 80337, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität, Thalkirchner Strasse 36, 80337, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, 80336, Munich, Germany.
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
32
|
Ciuca MD, Racovita RC. Curcumin: Overview of Extraction Methods, Health Benefits, and Encapsulation and Delivery Using Microemulsions and Nanoemulsions. Int J Mol Sci 2023; 24:ijms24108874. [PMID: 37240220 DOI: 10.3390/ijms24108874] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Curcumin is the principal curcuminoid found in the rhizomes of turmeric. Due to its therapeutic action against cancer, depression, diabetes, some bacteria, and oxidative stress, it has been used widely in medicine since ancient times. Due to its low solubility, the human organism cannot completely absorb it. Advanced extraction technologies, followed by encapsulation in microemulsion and nanoemulsion systems, are currently being used to improve bioavailability. This review discusses the different methods available for curcumin extraction from plant material, methods for the identification of curcumin in the resulting extracts, its beneficial effects on human health, and the encapsulation techniques into small colloidal systems that have been used over the past decade to deliver this compound.
Collapse
Affiliation(s)
- Maria D Ciuca
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania
| | - Radu C Racovita
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania
| |
Collapse
|
33
|
Nohara LL, Ellis SLS, Dreier C, Dada S, Saranchova I, Munro L, Pfeifer CG, Coyle KM, Morrice JR, Shim DJS, Ahn P, De Voogd N, Williams DE, Cheng P, Garrovillas E, Andersen RJ, Jefferies WA. A novel cell-based screen identifies chemical entities that reverse the immune-escape phenotype of metastatic tumours. Front Pharmacol 2023; 14:1119607. [PMID: 37256225 PMCID: PMC10225555 DOI: 10.3389/fphar.2023.1119607] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/21/2023] [Indexed: 06/01/2023] Open
Abstract
Genetic and epigenetic events have been implicated in the downregulation of the cellular antigen processing and presentation machinery (APM), which in turn, has been associated with cancer evasion of the immune system. When these essential components are lacking, cancers develop the ability to subvert host immune surveillance allowing cancer cells to become invisible to the immune system and, in turn, promote cancer metastasis. Here we describe and validate the first high-throughput cell-based screening assay to identify chemical extracts and unique chemical entities that reverse the downregulation of APM components in cell lines derived from metastatic tumours. Through the screening of a library of 480 marine invertebrate extracts followed by bioassay-guided fractionation, curcuphenol, a common sesquiterpene phenol derived from turmeric, was identified as the active compound of one of the extracts. We demonstrate that curcuphenol induces the expression of the APM components, TAP-1 and MHC-I molecules, in cell lines derived from both metastatic prostate and lung carcinomas. Turmeric and curcumins that contain curcuphenol have long been utilized not only as a spice in the preparation of food, but also in traditional medicines for treating cancers. The remarkable discovery that a common component of spices can increase the expression of APM components in metastatic tumour cells and, therefore reverse immune-escape mechanisms, provides a rationale for the development of foods and advanced nutraceuticals as therapeutic candidates for harnessing the power of the immune system to recognize and destroy metastatic cancers.
Collapse
Affiliation(s)
- Lilian L. Nohara
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Samantha L. S. Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Carola Dreier
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Sarah Dada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Cheryl G. Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Krysta M. Coyle
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Jessica R. Morrice
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Joo Sung Shim
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Paul Ahn
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Nicole De Voogd
- Netherlands Centre for Biodiversity Naturalis, Leiden, Netherlands
| | - David E. Williams
- Departments of Chemistry and Earth Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ping Cheng
- Departments of Chemistry and Earth Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Emmanuel Garrovillas
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Raymond J. Andersen
- Departments of Chemistry and Earth Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wilfred A. Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Liu G, Chen J, Bao Z. Promising antitumor effects of the curcumin analog DMC-BH on colorectal cancer cells. Aging (Albany NY) 2023; 15:2221-2236. [PMID: 36971681 PMCID: PMC10085616 DOI: 10.18632/aging.204610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/04/2023] [Indexed: 04/07/2023]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive system worldwide. DMC-BH, a curcumin analog, has been reported to possess anticancer properties against human gliomas. However, its effects and mechanism on CRC cells are still unknown. Our present study demonstrated that DMC-BH had stronger cytostatic ability than curcumin against CRC cells in vitro and in vivo. It effectively inhibited the proliferation and invasion and promoted the apoptosis of HCT116 and HT-29 cells. RNA-Seq and data analysis indicated that its effects might be mediated by regulation of the PI3K/AKT signaling. Western blotting further confirmed that it dose-dependently suppressed the phosphorylation of PI3K, AKT and mTOR. The Akt pathway activator SC79 reversed the proapoptotic effects of DMC-BH on CRC cells, indicating that its effects are mediated by PI3K/AKT/mTOR signaling. Collectively, the results of the present study suggest that DMC-BH exerts more potent effects than curcumin against CRC by inactivating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Gang Liu
- Department of General Surgery, Suzhou Medical College of Soochow University, Suzhou 215300, Jiangsu Province, China
- Department of General Surgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, Jiangsu Province, China
| | - Jian Chen
- Department of General Surgery, Suzhou Medical College of Soochow University, Suzhou 215300, Jiangsu Province, China
- Department of General Surgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, Jiangsu Province, China
| | - Zhicheng Bao
- Department of Rehabilitation, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| |
Collapse
|
35
|
Hong W, Lou B, Gao Y, Zhao H, Ying S, Yang S, Li H, Yang Q, Yang G. Tumor microenvironment responded naturally extracted F OF1-ATPase loaded chromatophores for antitumor therapy. Int J Biol Macromol 2023; 230:123127. [PMID: 36603722 DOI: 10.1016/j.ijbiomac.2022.123127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Abstract
Tumor microenvironment (TME) plays an important role in the growth, invasion, and metastasis of tumor cells. The pH of TME is more acidic in solid tumors than in normal tissues. Although targeted delivery in TME has progressed, the complex and expensive construction of delivery systems has limited their application. FOF1-ATP synthase (FOF1-ATPase) is a rotation molecular motor found in bacteria, chloroplasts, and mitochondria. Here, FOF1-ATPase loaded chromatophores (chroma) isolated from thermophilic bacteria were extracted and utilized as a new delivery system targeting TME for the first time. Curcumin as model drug was successfully loaded by a filming-rehydration ultrasonic dispersion method to prepare a curcumin-loaded chroma delivery system (Cur-Chroma). The mobility and propensity distributions of Cur-Chroma reveal its specific pH-sensitive targeting driven by the transmembrane proton kinetic potential, demonstrating its distinct distribution in the TME and more favorable targeting delivery. Cellular uptake experiments indicated that Cur-Chroma entered cells through grid pathway-mediated endocytosis. In vivo studies have shown that Cur-Chroma can specifically target tumor tissue and effectively inhibit tumor growth with good safety. Curcumin's bioavailability and anti-tumor effects were significantly improved. These studies demonstrate that ATPase-loaded chromatophores are potentially ideal vehicles for anti-tumor drug delivery and have promising applications.
Collapse
Affiliation(s)
- Weiyong Hong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China; Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| | - Bang Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ying Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China; Zhejiang Moda Biotech Co., Ltd, Hangzhou 310018, China
| | - Hui Zhao
- Department of Intensive Care Unit, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 318050, China
| | - Sanjun Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Saicheng Yang
- Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| | - Hanbing Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
36
|
Qin S, Su Q, Li X, Shao M, Zhang Y, Yu F, Ni Y, Zhong J. Curcumin suppresses cell proliferation and reduces cholesterol absorption in Caco-2 cells by activating the TRPA1 channel. Lipids Health Dis 2023; 22:6. [PMID: 36641489 PMCID: PMC9840307 DOI: 10.1186/s12944-022-01750-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/07/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Curcumin (Cur) is a bioactive dietary polyphenol of turmeric with various biological activities against several cancers. Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths. Intestinal cholesterol homeostasis is associated with CRC. Chemotherapy for CRC is related to varied adverse effects. Therefore, natural products with anti-cancer properties represent a potential strategy for primary prevention of CRC. METHODS The present study used Cur as a therapeutic approach against CRC using the Caco-2 cell line. The cells were treated with different concentrations of Cur for different duration of time and then the proliferation ability of cells was assessed using Cell Counting Kit-8 and 5-Ethynyl-2'-deoxyuridine assays. Oil red O staining and cholesterol assay kit were used to evaluate cellular lipid content and cholesterol outward transportation. Finally, the protein expressions of cholesterol transport-related protein and signal transduction molecules were assessed using Western blot assay. RESULTS Cur inhibited cell proliferation in Caco-2 cells in a dose- and time-dependent manner by activating the transient receptor potential cation channel subfamily A member 1 (TRPA1) channel. Activation of the TRPA1 channel led to increased intracellular calcium, peroxisome proliferator-activated receptor gamma (PPARγ) upregulation, and the subsequent downregulation of the specificity protein-1 (SP-1)/sterol regulatory element-binding protein-2 (SREBP-2)/Niemann-Pick C1-like 1 (NPC1L1) signaling pathway-related proteins, and finally reduced cholesterol absorption in Caco-2 cells. CONCLUSIONS Cur inhibits cell proliferation and reduces cholesterol absorption in Caco-2 cells through the Ca2+/PPARγ/SP-1/SREBP-2/NPC1L1 signaling by activating the TRPA1 channel, suggesting that Cur can be used as a dietary supplement for the primary prevention of CRC. In Caco-2 cells, Cur first stimulates calcium influx by activating the TRPA1 channel, further upregulates PPARγ and downregulates SP-1/SREBP-2/NPC1L1 signaling pathway, and finally inhibits the absorption of cholesterol. TRPA1, transient receptor potential cation channel subfamily A member 1; NPC1L1, Niemann-Pick C1-like 1; PPARγ, peroxisome proliferator-activated receptor gamma; SP-1, specificity protein-1; SREBP-2, sterol regulatory element-binding protein-2; Cur, curcumin.
Collapse
Affiliation(s)
- Si Qin
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| | - Qian Su
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| | - Xiang Li
- grid.11135.370000 0001 2256 9319College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Muqing Shao
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| | - Yindi Zhang
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| | - Fadong Yu
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| | - Yinxing Ni
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| | - Jian Zhong
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| |
Collapse
|
37
|
Lupu A, Rosca I, Gradinaru VR, Bercea M. Temperature Induced Gelation and Antimicrobial Properties of Pluronic F127 Based Systems. Polymers (Basel) 2023; 15:polym15020355. [PMID: 36679236 PMCID: PMC9861663 DOI: 10.3390/polym15020355] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Different formulations containing Pluronic F127 and polysaccharides (chitosan, sodium alginate, gellan gum, and κ-carrageenan) were investigated as potential injectable gels that behave as free-flowing liquid with reduced viscosity at low temperatures and displayed solid-like properties at 37 °C. In addition, ZnO nanoparticles, lysozyme, or curcumin were added for testing the antimicrobial properties of the thermal-sensitive gels. Rheological investigations evidenced small changes in transition temperature and kinetics of gelation at 37 °C in presence of polysaccharides. However, the gel formation is very delayed in the presence of curcumin. The antimicrobial properties of Pluronic F127 gels are very modest even by adding chitosan, lysozyme, or ZnO nanoparticles. A remarkable enhancement of antimicrobial activity was observed in the presence of curcumin. Chitosan addition to Pluronic/curcumin systems improves their viscoelasticity, antimicrobial activity, and stability in time. The balance between viscoelastic and antimicrobial characteristics needs to be considered in the formulation of Pluronic F127 gels suitable for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Alexandra Lupu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Irina Rosca
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bd., 700506 Iasi, Romania
| | - Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
- Correspondence:
| |
Collapse
|
38
|
Phinyo K, Ruangrit K, Pekkoh J, Tragoolpua Y, Kaewkod T, Duangjan K, Pumas C, Suwannarach N, Kumla J, Pathom-aree W, Gu W, Wang G, Srinuanpan S. Naturally Occurring Functional Ingredient from Filamentous Thermophilic Cyanobacterium Leptolyngbya sp. KC45: Phytochemical Characterizations and Their Multiple Bioactivities. Antioxidants (Basel) 2022; 11:antiox11122437. [PMID: 36552645 PMCID: PMC9774153 DOI: 10.3390/antiox11122437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are rich in phytochemicals, which have beneficial impacts on the prevention of many diseases. This study aimed to comprehensively characterize phytochemicals and evaluate multifunctional bioactivities in the ethanolic extract of the cyanobacterium Leptolyngbya sp. KC45. Results found that the extract mainly contained chlorophylls, carotenoids, phenolics, and flavonoids. Through LC-ESI-QTOF-MS/MS analysis, 38 phenolic compounds with promising bioactivities were discovered, and a higher diversity of flavonoids was found among the phenolic compounds identified. The extract effectively absorbed the harmful UV rays and showed high antioxidant activity on DPPH, ABTS, and PFRAP. The extract yielded high-efficiency inhibitory effects on enzymes (tyrosinase, collagenase, ACE, and α-glucosidase) related to diseases. Interestingly, the extract showed a strong cytotoxic effect on cancer cells (skin A375, lung A549, and colon Caco-2), but had a much smaller effect on normal cells, indicating a satisfactory level of safety for the extract. More importantly, the combination of the DNA ladder assay and the TUNEL assay proved the appearance of DNA fragmentation in cancer cells after a 48 h treatment with the extract, confirming the apoptosis mechanisms. Our findings suggest that cyanobacterium extract could be potentially used as a functional ingredient for various industrial applications in foods, cosmetics, pharmaceuticals, and nutraceuticals.
Collapse
Affiliation(s)
- Kittiya Phinyo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khomsan Ruangrit
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (J.P.); (S.S.)
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kritsana Duangjan
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (J.P.); (S.S.)
| |
Collapse
|
39
|
Koh YC, Tsai YW, Lee PS, Nagabhushanam K, Ho CT, Pan MH. Amination Potentially Augments the Ameliorative Effect of Curcumin on Inhibition of the IL-6/Stat3/c-Myc Pathway and Gut Microbial Modulation in Colitis-Associated Tumorigenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14744-14754. [PMID: 36368792 DOI: 10.1021/acs.jafc.2c06645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Epigallocatechin gallate and tetrahydrocurcumin are aminated as colonic metabolites, preserving their bioactivities and improving their capabilities. We compared the bioactivities of unaminated (CUR) and aminated (AC) curcumin in inflammatory colitis-associated tumorigenesis. The anti-inflammatory and anticancer capabilities of CUR and AC were evaluated using RAW264.7 and HT29 cell lines, respectively. An azoxymethane/dextran sodium sulfate-induced colitis-associated carcinogenesis mouse model was used with CUR and two-dose AC interventions. AC had a greater anti-inflammatory effect but a similar anticancer effect as CUR in vitro. CUR and low-dose AC (LAC) significantly preserved colon length and reduced tumor number in vivo. Both CUR and LAC inhibited activation of the protein kinase B (AKT)/nuclear factor kappa B (NF-κB) signaling pathway, its downstream cytokines, and the interleukin (IL)-6/signal transducer and activator of transcription 3 (STAT3)/c-myelocytomatosis oncogene (c-MYC) pathway. However, only LAC significantly preserved E-cadherin, reduced N-cadherin, and facilitated beneficial gut microbial growth, including Akkermansia and Bacteroides, potentially explaining AC's better ameliorative effect at low than high doses.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Wen Tsai
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Sheng Lee
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
40
|
Elzoheiry A, Ayad E, Omar N, Elbakry K, Hyder A. Anti-liver fibrosis activity of curcumin/chitosan-coated green silver nanoparticles. Sci Rep 2022; 12:18403. [PMID: 36319750 PMCID: PMC9626641 DOI: 10.1038/s41598-022-23276-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Liver fibrosis results from the hepatic accumulation of the extracellular matrix accompanied by a failure of the mechanisms responsible for matrix dissolution. Pathogenesis of liver fibrosis is associated with many proteins from different cell types. In the present study, in silico molecular docking analysis revealed that curcumin may inhibit the fibrosis-mediating proteins PDGF, PDGFRB, TIMP-1, and TLR-9 by direct binding. Nano-formulation can overcome curcumin problems, increasing the efficacy of curcumin as a drug by maximizing its solubility and bioavailability, enhancing its membrane permeability, and improving its pharmacokinetics, pharmacodynamics and biodistribution. Therefore, green silver nanoparticles (AgNPs) were synthesized in the presence of sunlight by means of the metabolite of Streptomyces malachiticus, and coated with curcumin-chitosan mixture to serve as a drug delivery tool for curcumin to target CCl4-induced liver fibrosis mouse model. Fibrosis induction significantly increased hepatic gene expression of COL1A1, α-SMA, PDGFRB, and TIMP1, elevated hepatic enzymes, increased histopathological findings, and increased collagen deposition as determined by Mason's trichrome staining. Treatment with naked AgNPs tended to increase these inflammatory effects, while their coating with chitosan, similar to treatment with curcumin only, did not prevent the fibrogenic effect of CCl4. The induction of liver fibrosis was reversed by concurrent treatment with curcumin/chitosan-coated AgNPs. In this nano form, curcumin was found to be efficient as anti-liver fibrosis drug, maintaining the hepatic architecture and function during fibrosis development. This efficacy can be attributed to its inhibitory role through a direct binding to fibrosis-mediating proteins such as PDGFRB, TIMP-1, TLR-9 and TGF-β.
Collapse
Affiliation(s)
- Alya Elzoheiry
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Esraa Ayad
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Nahed Omar
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Kadry Elbakry
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Ayman Hyder
- Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| |
Collapse
|
41
|
Exploring the Mechanism of Curcumin on Retinoblastoma Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2407462. [PMID: 35911143 PMCID: PMC9325604 DOI: 10.1155/2022/2407462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022]
Abstract
Background Curcumin shows great effects of inhibiting tumor cell proliferation, inducing apoptosis, inhibiting tumor metastasis, and inhibiting angiogenesis on a variety of tumors. However, the biological activity and possible mechanisms of curcumin in the treatment of retinoblastoma have not been fully elucidated. This study explored the potential therapeutic targets and pharmacological mechanisms of curcumin against retinoblastoma based on network pharmacology and molecular docking. Methods The genes corresponding to curcumin targets were screened from the HERB, PharmMapper, and SwissTargetPrediction databases. Protein-protein interaction (PPI) networks were constructed for the intersecting targets in the STRING database. Cytoscape 3.7.0 was used for network topology analysis and screening of important targets. R 4.1.0 software was used for Gene Ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of intersection targets. The molecular structures of curcumin and core target proteins were obtained from PubChem and PDB databases, and the two were preprocessed and molecularly docked using AutoDockTools and PyMOL software. Results Through network data mining, we obtained 504 curcumin targets and 966 retinoblastoma disease targets, and 44 potential targets for curcumin treatment of retinoblastoma were obtained by mapping. Three core targets were obtained from network topology analysis. 462 biological processes, 21 cellular compositions, and 34 molecular functions were obtained by GO enrichment analysis. KEGG pathway analysis revealed 94 signaling pathways, mainly involving chemical carcinogenesis-receptor activation, chemical carcinogenesis-reactive oxygen species, viral carcinogenesis, Th17 cell differentiation, etc. The molecular docking results indicated that the binding energy of curcumin to the core targets was less than 0 kJ mol-1, among which the binding energy of RB1 and CDKN2A to curcumin was less than -5 kJ mol-1 with significant binding activity. Conclusion Based on molecular docking technology and network pharmacology, we initially revealed that curcumin exerts its therapeutic effects on retinoblastoma with multitarget, multipathway, and multibiological functions, providing a theoretical basis for subsequent studies.
Collapse
|
42
|
Curcumin-Based β-Diketo Ligands for Ga3+: Thermodynamic Investigation of Potential Metal-Based Drugs. Pharmaceuticals (Basel) 2022; 15:ph15070854. [PMID: 35890151 PMCID: PMC9321647 DOI: 10.3390/ph15070854] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023] Open
Abstract
Curcumin is known for its therapeutic properties; among these, antioxidant, anti-inflammatory and anti-cancer ones stand out. Besides, curcumin metal complexes have shown widespread application in medicine and can be exploited as lead structures for developing metal-based drugs. Unfortunately, curcumin is poorly bioavailable, mainly due to its instability in physiological conditions; this weakness is tightly connected to the presence of the β-diketo moiety undergoing tautomeric equilibrium. Stability and metal-chelating ability can be tuned by modulating the electronic effects and steric hindrance close to the β-diketo moiety; in addition, formation of a metal complex shifts the tautomeric equilibrium towards the β-keto–enol form and increases stability in biological media. Among the metals used in clinical therapy, gallium nitrate has shown to have significant antitumor activity against non-Hodgkin lymphoma and bladder cancer, thus indicating that gallium-based drugs have potential for further development as antineoplastic agents with improved therapeutic activity. Curcuminoids have demonstrated high affinity for gallium(III), allowing the formation of stable positively charged M:L 1:2 β-diketonate complexes that benefit from the therapeutic activity of both the metal and the ligand. Seven new curcumin derivatives were synthesized and completely characterized. The new derivatives retain the solvent-dependent keto–enol tautomerism, with the prevalence of the diketo form in aqueous solution. Enhanced stability in simulated physiological conditions was observed in comparison to the lead compound curcumin. The presence of Ga3+ anticipates the dissociation of the enolic proton, allowing chelate complex formation, and simultaneously it shifts the tautomeric equilibrium towards the keto–enol form. A complete 1H/13C NMR and UV–Vis study was performed to define the metal-to-ligand stoichiometry ratio and the overall stability constants. In addition, we demonstrated that some of the derivatives have increased antiproliferative activity on colon cancer cells compared to curcumin and antioxidant properties. On the whole, the synthesized curcumin-based molecules may act as new gallium(III) chelators with improved stability with respect to curcumin and could open interesting perspectives for the development of novel therapeutic agents for cancer.
Collapse
|
43
|
Kang L, Zhang H, Jia C, Zhang R, Shen C. Targeting Oxidative Stress and Inflammation in Intervertebral Disc Degeneration: Therapeutic Perspectives of Phytochemicals. Front Pharmacol 2022; 13:956355. [PMID: 35903342 PMCID: PMC9315394 DOI: 10.3389/fphar.2022.956355] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Low back pain is a major cause of disability worldwide that declines the quality of life; it poses a substantial economic burden for the patient and society. Intervertebral disc (IVD) degeneration (IDD) is the main cause of low back pain, and it is also the pathological basis of several spinal degenerative diseases, such as intervertebral disc herniation and spinal stenosis. The current clinical drug treatment of IDD focuses on the symptoms and not their pathogenesis, which results in frequent recurrence and gradual aggravation. Moreover, the side effects associated with the long-term use of these drugs further limit their use. The pathological mechanism of IDD is complex, and oxidative stress and inflammation play an important role in promoting IDD. They induce the destruction of the extracellular matrix in IVD and reduce the number of living cells and functional cells, thereby destroying the function of IVD and promoting the occurrence and development of IDD. Phytochemicals from fruits, vegetables, grains, and other herbs play a protective role in the treatment of IDD as they have anti-inflammatory and antioxidant properties. This article reviews the protective effects of phytochemicals on IDD and their regulatory effects on different molecular pathways related to the pathogenesis of IDD. Moreover, the therapeutic limitations and future prospects of IDD treatment have also been reviewed. Phytochemicals are promising candidates for further development and research on IDD treatment.
Collapse
|