1
|
M'Rad Y, Charbonnier C, de Oliveira ME, Guillemin PC, Crowe LA, Kössler T, Poletti PA, Boudabbous S, Ricoeur A, Salomir R, Lorton O. Computer-Aided Intra-Operatory Positioning of an MRgHIFU Applicator Dedicated to Abdominal Thermal Therapy Using Particle Swarm Optimization. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:524-533. [PMID: 39050977 PMCID: PMC11268946 DOI: 10.1109/ojemb.2024.3410118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE Transducer positioning for liver ablation by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) is challenging due to the presence of air-filled organs or bones on the beam path. This paper presents a software tool developed to optimize the positioning of a HIFU transducer dedicated to abdominal thermal therapy, to maximize the treatment's efficiency while minimizing the near-field risk. METHODS A software tool was developed to determine the theoretical optimal position (TOP) of the transducer based on the minimization of a cost function using the particle swarm optimization (PSO). After an initialization phase and a manual segmentation of the abdomen of 5 pigs, the program randomly generates particles with 2 degrees of freedom and iteratively minimizes the cost function of the particles considering 3 parameters weighted according to their criticality. New particles are generated around the best position obtained at the previous step and the process is repeated until the optimal position of the transducer is reached. MR imaging data from in vivo HIFU ablation in pig livers was used for ground truth comparison between the TOP and the experimental position (EP). RESULTS As compared to the manual EP, the rotation difference with the TOP was on average -3.1 ± 7.1° and the distance difference was on average -7.1 ± 5.4 mm. The computational time to suggest the TOP was 20s. The software tool is modulable and demonstrated consistency and robustness when repeating the calculation and changing the initial position of the transducer.
Collapse
Affiliation(s)
- Yacine M'Rad
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
| | | | | | - Pauline Coralie Guillemin
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
| | | | - Thibaud Kössler
- University Hopsitals of GenevaOncology Department1205GenevaSwitzerland
| | | | - Sana Boudabbous
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
- University Hospitals of GenevaRadiology Department1205GenevaSwitzerland
| | - Alexis Ricoeur
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
- University Hospitals of GenevaRadiology Department1205GenevaSwitzerland
| | - Rares Salomir
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
- University Hospitals of GenevaRadiology Department1205GenevaSwitzerland
| | - Orane Lorton
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
- University Hospitals of GenevaRadiology Department1205GenevaSwitzerland
| |
Collapse
|
2
|
Zhao Y, Bai J, Wang X, Zhang Y, Yan X, Qi J, Xia X, Feng Y, Duan B. Threatment Strategies for Recurrent Hepatocellular Carcinoma Patients: Ablation and its Combination Patterns. J Cancer 2024; 15:2193-2205. [PMID: 38495485 PMCID: PMC10937274 DOI: 10.7150/jca.93885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
With the development of guidance technology and ablation equipment, ablative procedures have emerged as important loco-regional alternatives to surgical resection for recurrent hepatocellular carcinoma (rHCC) patients. Currently, ablation modalities used in clinical practice mainly include radiofrequency ablation (RFA), microwave ablation (MWA), laser ablation (LA), cryoablation (CRA), high-intensity focused ultrasound (HIFU), and irreversible electroporation (IRE). Accumulated comparative data of ablation versus surgical resection reveal noninferior responses and outcomes but superior adverse effects. Moreover, studies demonstrate that ablation may serve as an excellent procedure for rHCC given its exact minimal invasiveness and immune modulation. We focus on the current status of ablation in clinical practice for rHCC and discuss new research in the field, including ablation combined with these other modalities, such as targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Ya'ning Zhao
- Department of Medical Oncology of Baoji Central Hospital, Baoji 721008, Shaanxi Province, China
| | - Jun Bai
- Department of Medical Oncology of Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi Province, China
| | - Xi Wang
- Department of Medical Oncology of Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi Province, China
| | - Yaoren Zhang
- Department of Ultrasonography of Baoji Central Hospital, Baoji 721008, Shaanxi Province, China
| | - Xiaohong Yan
- Department of Medical Oncology of Baoji Central Hospital, Baoji 721008, Shaanxi Province, China
| | - Jun'an Qi
- Department of Hepatobiliary Surgery of Baoji Central Hospital, Baoji 721008, Shaanxi Province, China
| | - Xueyan Xia
- Department of Medical Oncology of Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi Province, China
| | - Yuansong Feng
- Department of Medical Oncology of Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi Province, China
| | - Baojun Duan
- Department of Medical Oncology of Baoji Central Hospital, Baoji 721008, Shaanxi Province, China
- Department of Medical Oncology of Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi Province, China
| |
Collapse
|
3
|
Li H, He H, Tang J, Luo T, Yang G, Huang L, Dong X, Liu Z. A new sonoablation using acoustic droplet vaporization and focused ultrasound: A feasibility study. Med Phys 2023; 50:6663-6672. [PMID: 37731063 DOI: 10.1002/mp.16742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Histotripsy and boiling histotripsy are two methods of mechanical ablation that use high-pressure focused ultrasound (FUS). PURPOSE Here, a new bubble sonoablation technique was investigated using low-pressure FUS in combination with local injection of perfluoropentane (PFP) in rabbit liver. METHODS Fifteen healthy New Zealand white rabbits were treated with FUS alone, FUS + PFP or PFP alone. FUS was performed using a single-element focused transducer (frequency 596 kHz, 0.27 ms pulses, 0.54% duty cycle, and peak negative pressure 2.0 MPa). Ten minutes before FUS treatment, the PFP droplet was locally injected into the rabbit liver, where the ultrasound was focused. Contrast-enhanced ultrasound (CEUS) of the liver was performed, and the temperature at the liver surface in the targeted liver region was recorded during treatment. The livers were collected for pathological examination. Statistical significance was set at p < 0.05. Paired t-tests were used to compare the pre- and post-treatment values. One-way analysis of variance was performed to compare multiple groups, and the least significant difference method was used for further comparisons between the two groups. RESULTS Analysis of CEUS data showed that the values of area under the curve (AUC) were significantly different in the PFP + FUS group pre- (10453.644 ± 1182.93) and post-treatment (4058.098 ± 2720.41), and the AUC values of PFP + FUS post-treatment (4058.098 ± 2720.41) were also significantly lower than those of the FUS (9946.694 ± 1071.54) and the PFP (10364.794 ± 2181.53) groups. The peak intensity values also showed the same results, the value of peak intensity of PFP+FUS post-treatment was 82.958 ± 13.99, whereas there was no difference between FUS (106.61 ± 7.61) and PFP (104.136 ± 10.55). Hematoxylin and eosin (H&E) staining revealed that the pathological damage ratings of the PFP + FUS, PFP, and FUS groups were grade 3, grade 1, and grade 0, respectively. Specifically, the area of liver necrosis in the PFP + FUS group (0.99 ± 0.29 cm2 ) was 198 times higher than that in the PFP group (0.005 ± 0.008 cm2 ), whereas no necrosis was observed in the livers treated with FUS alone. Simultaneously, the number of vacuoles in the liver of the PFP + FUS group (35.50 ± 23.31) was approximately five times that of the PFP group (7.00 ± 12.88), whereas no vacuoles were found in the liver treated with FUS alone. CONCLUSION PFP droplets combined with FUS can destroy liver tissue and cause tissue necrosis in the droplet injection area, without affecting the structure of surrounding tissue.
Collapse
Affiliation(s)
- Hui Li
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Huan He
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jiawei Tang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Tingting Luo
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Guoliang Yang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Leidan Huang
- Department of Ultrasound, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaoxiao Dong
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zheng Liu
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
4
|
Yeats E, Hall TL. Aberration correction in abdominal histotripsy. Int J Hyperthermia 2023; 40:2266594. [PMID: 37813397 PMCID: PMC10637766 DOI: 10.1080/02656736.2023.2266594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
In transabdominal histotripsy, ultrasound pulses are focused on the body to noninvasively destroy soft tissues via cavitation. However, the ability to focus is limited by phase aberration, or decorrelation of the ultrasound pulses due to spatial variation in the speed of sound throughout heterogeneous tissue. Phase aberration shifts, broadens, and weakens the focus, thereby reducing the safety and efficacy of histotripsy therapy. This paper reviews and discusses aberration effects in histotripsy and in related therapeutic ultrasound techniques (e.g., high intensity focused ultrasound), with an emphasis on aberration by soft tissues. Methods for aberration correction are reviewed and can be classified into two groups: model-based methods, which use segmented images of the tissue as input to an acoustic propagation model to predict and compensate phase differences, and signal-based methods, which use a receive-capable therapy array to detect phase differences by sensing acoustic signals backpropagating from the focus. The relative advantages and disadvantages of both groups of methods are discussed. Importantly, model-based methods can correct focal shift, while signal-based methods can restore substantial focal pressure, suggesting that both methods should be combined in a 2-step approach. Aberration correction will be critical to improving histotripsy treatments and expanding the histotripsy treatment envelope to enable non-invasive, non-thermal histotripsy therapy for more patients.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
5
|
Lorton O, Guillemin PC, Peloso A, M’Rad Y, Crowe LA, Koessler T, Poletti PA, Boudabbous S, Ricoeur A, Salomir R. In Vivo Thermal Ablation of Deep Intrahepatic Targets Using a Super-Convergent MRgHIFU Applicator and a Pseudo-Tumor Model. Cancers (Basel) 2023; 15:3961. [PMID: 37568777 PMCID: PMC10417404 DOI: 10.3390/cancers15153961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND HIFU ablation of liver malignancies is particularly challenging due to respiratory motion, high tissue perfusion and the presence of the rib cage. Based on our previous development of a super-convergent phased-array transducer, we aimed to further investigate, in vivo, its applicability to deep intrahepatic targets. METHODS In a series of six pigs, a pseudo-tumor model was used as target, visible both on intra-operatory MRI and post-mortem gross pathology. The transcostal MRgHIFU ablation was prescribed coplanar with the pseudo-tumor, either axial or sagittal, but deliberately shifted 7 to 18 mm to the side. No specific means of protection of the ribs were implemented. Post-treatment MRI follow-up was performed at D7, followed by animal necropsy and gross pathology of the liver. RESULTS The pseudo-tumor was clearly identified on T1w MR imaging and subsequently allowed the MRgHIFU planning. The peak temperature at the focal point ranged from 58-87 °C. Gross pathology confirmed the presence of the pseudo-tumor and the well-delineated MRgHIFU ablation at the expected locations. CONCLUSIONS The specific design of the transducer enabled a reliable workflow. It demonstrated a good safety profile for in vivo transcostal MRgHIFU ablation of deep-liver targets, graded as challenging for standard surgery.
Collapse
Affiliation(s)
- Orane Lorton
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Pauline Coralie Guillemin
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Andrea Peloso
- Visceral Surgery Division, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Yacine M’Rad
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | | | - Thibaud Koessler
- Oncology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | | | - Sana Boudabbous
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Alexis Ricoeur
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Rares Salomir
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
6
|
Holman R, Lorton O, Guillemin PC, Desgranges S, Santini F, Preso DB, Farhat M, Contino-Pépin C, Salomir R. Perfluorocarbon emulsion enhances MR-ARFI displacement and temperature in vitro: Evaluating the response with MRI, NMR, and hydrophone. Front Oncol 2022; 12:1025481. [PMID: 36713528 PMCID: PMC9880467 DOI: 10.3389/fonc.2022.1025481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/18/2022] [Indexed: 01/15/2023] Open
Abstract
Sonosensitive perfluorocarbon F8TAC18-PFOB emulsion is under development to enhance heating, increase thermal contrast, and reduce treatment times during focused ultrasound tumor ablation of highly perfused tissue. The emulsion previously showed enhanced heating during ex vivo and in vitro studies. Experiments were designed to observe the response in additional scenarios by varying focused ultrasound conditions, emulsion concentrations, and surfactants. Most notably, changes in acoustic absorption were assessed with MR-ARFI. Phantoms were developed to have thermal, elastic, and relaxometry properties similar to those of ex vivo pig tissue. The phantoms were embedded with varying amounts of F8TAC18-PFOB emulsion or lecithin-PFOB emulsion, between about 0.0-0.3% v:w, in 0.05% v:w increments. MR-ARFI measurements were performed using a FLASH-ARFI-MRT sequence to obtain simultaneous displacement and temperature measurements. A Fabry-Perot hydrophone was utilized to observe the acoustic emissions. Susceptibility-weighted imaging and relaxometry mapping were performed to observe concentration-dependent effects. 19F diffusion-ordered spectroscopy NMR was used to measure the diffusion coefficient of perfluorocarbon droplets in a water emulsion. Increased displacement and temperature were observed with higher emulsion concentration. In semi-rigid MR-ARFI phantoms, a linear response was observed with low-duty cycle MR-ARFI sonications and a mono-exponential saturating response was observed with sustained sonications. The emulsifiers did not have a significant effect on acoustic absorption in semi-rigid gels. Stable cavitation might also contribute to enhanced heating.
Collapse
Affiliation(s)
- Ryan Holman
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Orane Lorton
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pauline C Guillemin
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Desgranges
- Avignon Université, Equipe Systèmes Amphiphiles bioactifs et Formulations Eco-compatibles, Unité Propre de Recherche et d'Innovation (UPRI), Avignon, France
| | - Francesco Santini
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Davide Bernardo Preso
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mohamed Farhat
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christiane Contino-Pépin
- Avignon Université, Equipe Systèmes Amphiphiles bioactifs et Formulations Eco-compatibles, Unité Propre de Recherche et d'Innovation (UPRI), Avignon, France
| | - Rares Salomir
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Radiology Department, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|