1
|
Wu J, Li J, Yan M, Xiang Z. Gut and oral microbiota in gynecological cancers: interaction, mechanism, and therapeutic value. NPJ Biofilms Microbiomes 2024; 10:104. [PMID: 39389989 PMCID: PMC11467339 DOI: 10.1038/s41522-024-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
Gynecologic cancers develop from the female reproductive organs. Microbial dysbiosis in the gut and oral cavity can communicate with each other through various ways, leading to mucosal destruction, inflammatory response, genomic instability, and ultimately inducing cancer and worsening. Here, we introduce the mechanisms of interactions between gut and oral microbiota and their changes in the development of gynecologic tumors. In addition, new therapeutic approaches based on microbiota modulation are discussed.
Collapse
Affiliation(s)
- Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Jiarui Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Dominique GM, Hammond C, Stack MS. The Gut Microbiome in Aging and Ovarian Cancer. AGING AND CANCER 2024; 5:14-34. [PMID: 39132604 PMCID: PMC11309124 DOI: 10.1002/aac2.12071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/30/2024] [Indexed: 08/13/2024]
Abstract
The gut microbiome changes with age and affects regions beyond the gut, including the ovarian cancer tumor microenvironment. In this review summarizing the literature on the gut microbiome in ovarian cancer and in aging, we note trends in the microbiota composition common to both phenomena and trends that are distinctly opposite. Both ovarian cancer and aging are characterized by an increase in proinflammatory bacterial species, particularly those belonging to phylum Proteobacteria and genus Escherichia, and a decrease in short chain fatty acid producers, particularly those in Clostridium cluster XIVa (family Lachnospiraceae) and the Actinobacteria genus Bifidobacterium. However, while beneficial bacteria from family Porphyromonadaceae and genus Akkermansia tend to increase with normal, healthy aging, these bacteria tend to decrease in ovarian cancer, similar to what is observed in obesity or unhealthy aging. We also note a lack in the current literature of research demonstrating causal relationships between the gut microbiome and ovarian cancer outcomes and research on the gut microbiome in ovarian cancer in the context of aging, both of which could lead to improvements to ovarian cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Gena M Dominique
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | | | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| |
Collapse
|
3
|
Ghosh A, Jaaback K, Boulton A, Wong-Brown M, Raymond S, Dutta P, Bowden NA, Ghosh A. Fusobacterium nucleatum: An Overview of Evidence, Demi-Decadal Trends, and Its Role in Adverse Pregnancy Outcomes and Various Gynecological Diseases, including Cancers. Cells 2024; 13:717. [PMID: 38667331 PMCID: PMC11049087 DOI: 10.3390/cells13080717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Gynecological and obstetric infectious diseases are crucial to women's health. There is growing evidence that links the presence of Fusobacterium nucleatum (F. nucleatum), an anaerobic oral commensal and potential periodontal pathogen, to the development and progression of various human diseases, including cancers. While the role of this opportunistic oral pathogen has been extensively studied in colorectal cancer in recent years, research on its epidemiological evidence and mechanistic link to gynecological diseases (GDs) is still ongoing. Thus, the present review, which is the first of its kind, aims to undertake a comprehensive and critical reappraisal of F. nucleatum, including the genetics and mechanistic role in promoting adverse pregnancy outcomes (APOs) and various GDs, including cancers. Additionally, this review discusses new conceptual advances that link the immunomodulatory role of F. nucleatum to the development and progression of breast, ovarian, endometrial, and cervical carcinomas through the activation of various direct and indirect signaling pathways. However, further studies are needed to explore and elucidate the highly dynamic process of host-F. nucleatum interactions and discover new pathways, which will pave the way for the development of better preventive and therapeutic strategies against this pathobiont.
Collapse
Affiliation(s)
- Arunita Ghosh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia;
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| | - Ken Jaaback
- Hunter New England Centre for Gynecological Cancer, John Hunter Hospital, Newcastle, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Angela Boulton
- Newcastle Private Hospital, Newcastle, NSW 2305, Australia; (A.B.); (S.R.)
| | - Michelle Wong-Brown
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Steve Raymond
- Newcastle Private Hospital, Newcastle, NSW 2305, Australia; (A.B.); (S.R.)
| | - Partha Dutta
- Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nikola A. Bowden
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Arnab Ghosh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia;
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| |
Collapse
|
4
|
Kong Y, Liu S, Wang X, Qie R. Associations between gut microbiota and gynecological cancers: A bi-directional two-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37628. [PMID: 38552081 PMCID: PMC10977594 DOI: 10.1097/md.0000000000037628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Growing evidence has suggested that gut microbiota is associated with gynecologic cancers. However, whether there is a causal relationship between these associations remains to be determined. A two-sample Mendelian randomization (MR) evaluation was carried out to investigate the mechanism associating gut microbiota and 3 prevalent gynecological cancers, ovarian cancer (OC), endometrial cancer, and cervical cancer as well as their subtypes in individuals of European ancestry. The Genome-wide association studies statistics, which are publically accessible, were used. Eligible instrumental single nucleotide polymorphisms that were significantly related to the gut microbiota were selected. Multiple MR analysis approaches were carried out, including inverse variance weighted, MR-Egger, Weighted Median methods, and a range of sensitivity analyses. Lastly, we undertook a reverse MR analysis to evaluate the potential of reverse causality. We sifted through 196 bacterial taxa and identified 33 suggestive causal relationships between genetic liability in the gut microbiota and gynecological cancers. We found that 11 of these genera could be pathogenic risk factors for gynecological cancers, while 19 could lessen the risk of cancer. In the other direction, gynecological cancers altered gut microbiota composition. Our MR analysis revealed that the gut microbiota was causally associated with OC, endometrial cancer, and cervical cancer. This may assist in providing new insights for further mechanistic and clinical studies of microbiota-mediated gynecological cancer.
Collapse
Affiliation(s)
- Youqian Kong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shaoxuan Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyu Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rui Qie
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
5
|
Cocomazzi G, Del Pup L, Contu V, Maggio G, Parmegiani L, Ciampaglia W, De Ruvo D, Faioli R, Maglione A, Baldini GM, Baldini D, Pazienza V. Gynecological Cancers and Microbiota Dynamics: Insights into Pathogenesis and Therapy. Int J Mol Sci 2024; 25:2237. [PMID: 38396914 PMCID: PMC10889201 DOI: 10.3390/ijms25042237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the relationship between the microbiota and various aspects of health has become a focal point of scientific investigation. Although the most studied microbiota concern the gastrointestinal tract, recently, the interest has also been extended to other body districts. Female genital tract dysbiosis and its possible impact on pathologies such as endometriosis, polycystic ovary syndrome (PCOS), pelvic inflammatory disease (PID), and gynecological cancers have been unveiled. The incursion of pathogenic microbes alters the ecological equilibrium of the vagina, triggering inflammation and compromising immune defense, potentially fostering an environment conducive to cancer development. The most common types of gynecological cancer include cervical, endometrial, and ovarian cancer, which occur in women of any age but especially in postmenopausal women. Several studies highlighted that a low presence of lactobacilli at the vaginal level, and consequently, in related areas (such as the endometrium and ovary), correlates with a higher risk of gynecological pathology and likely contributes to increased incidence and worse prognosis of gynecological cancers. The complex interplay between microbial communities and the development, progression, and treatment of gynecologic malignancies is a burgeoning field not yet fully understood. The intricate crosstalk between the gut microbiota and systemic inflammation introduces a new dimension to our understanding of gynecologic cancers. The objective of this review is to focus attention on the association between vaginal microbiota and gynecological malignancies and provide detailed knowledge for future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Giovanna Cocomazzi
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy;
| | - Lino Del Pup
- Gynecological Endocrinology and Fertility, University Sanitary Agency Friuli Central (ASUFC), Via Pozzuolo, 330, 33100 Udine, FVG, Italy;
| | - Viviana Contu
- Integrative Medicine Unit, Humanitas Gradenigo, Corso Regina Margherita 8/10, 10153 Torino, FC, Italy;
| | - Gabriele Maggio
- Pia Fondazione Cardinale Giovanni Panico, Via S. Pio X, 4, 73039 Tricase, LE, Italy;
| | - Lodovico Parmegiani
- Next Fertility GynePro, NextClinics International Via T. Cremona 8, 40137 Bologna, RE, Italy; (L.P.); (W.C.)
| | - Walter Ciampaglia
- Next Fertility GynePro, NextClinics International Via T. Cremona 8, 40137 Bologna, RE, Italy; (L.P.); (W.C.)
| | - Daniele De Ruvo
- Gynaecology, Obstetrics and Reproductive Medicine Affidea Promea, Via Menabrea 14, 10126 Torino, TO, Italy;
| | - Raffaele Faioli
- Gynecology and Obstetrics, IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, FG, Italy; (R.F.); (A.M.)
| | - Annamaria Maglione
- Gynecology and Obstetrics, IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, FG, Italy; (R.F.); (A.M.)
| | - Giorgio Maria Baldini
- IVF Center, Momò Fertilife, 76011 Bisceglie Via Cala dell’Arciprete, 76011 Bisceglie, BT, Italy; (G.M.B.); (D.B.)
| | - Domenico Baldini
- IVF Center, Momò Fertilife, 76011 Bisceglie Via Cala dell’Arciprete, 76011 Bisceglie, BT, Italy; (G.M.B.); (D.B.)
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy;
| |
Collapse
|
6
|
Głowienka-Stodolak M, Bagińska-Drabiuk K, Szubert S, Hennig EE, Horala A, Dąbrowska M, Micek M, Ciebiera M, Zeber-Lubecka N. Human Papillomavirus Infections and the Role Played by Cervical and Cervico-Vaginal Microbiota-Evidence from Next-Generation Sequencing Studies. Cancers (Basel) 2024; 16:399. [PMID: 38254888 PMCID: PMC10814012 DOI: 10.3390/cancers16020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review encompasses studies examining changes in the cervical and cervico-vaginal microbiota (CM and CVM) in relation to human papillomavirus (HPV) using next-generation sequencing (NGS) technology. HPV infection remains a prominent global health concern, with a spectrum of manifestations, from benign lesions to life-threatening cervical cancers. The CM and CVM, a unique collection of microorganisms inhabiting the cervix/vagina, has emerged as a critical player in cervical health. Recent research has indicated that disruptions in the CM and CVM, characterized by a decrease in Lactobacillus and the overgrowth of other bacteria, might increase the risk of HPV persistence and the progression of cervical abnormalities. This alteration in the CM or CVM has been linked to a higher likelihood of HPV infection and cervical dysplasia. NGS technology has revolutionized the study of the cervical microbiome, providing insights into microbial diversity, dynamics, and taxonomic classifications. Bacterial 16S rRNA gene sequencing, has proven invaluable in characterizing the cervical microbiome, shedding light on its role in HPV infections and paving the way for more tailored strategies to combat cervical diseases. NGS-based studies offer personalized insights into an individual's cervical microbiome. This knowledge holds promise for the development of novel diagnostic tools, targeted therapies, and preventive interventions for cervix-related conditions, including cervical cancer.
Collapse
Affiliation(s)
- Maria Głowienka-Stodolak
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
| | - Katarzyna Bagińska-Drabiuk
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
| | - Sebastian Szubert
- Division of Gynaecological Oncology, Department of Gynaecology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (S.S.); (A.H.)
| | - Ewa E. Hennig
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
| | - Agnieszka Horala
- Division of Gynaecological Oncology, Department of Gynaecology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (S.S.); (A.H.)
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
| | - Martyna Micek
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland; (M.M.); (M.C.)
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland; (M.M.); (M.C.)
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| | - Natalia Zeber-Lubecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
| |
Collapse
|
7
|
Li Y, Liu G, Gong R, Xi Y. Gut Microbiome Dysbiosis in Patients with Endometrial Cancer vs. Healthy Controls Based on 16S rRNA Gene Sequencing. Curr Microbiol 2023; 80:239. [PMID: 37294364 DOI: 10.1007/s00284-023-03361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Metabolic diseases like obesity, diabetes, and hypertension are considered major risk factors associated with endometrial cancer. Considering that an imbalance in the gut microbiome may lead to metabolic alterations, we hypothesized that alteration in the gut microbioma might be an indirect factor in the development of endometrial cancer. Our aim was to profile the gut microbiota of patients with endometrial cancer compared with healthy controls in this study. Thus, we used 16S rRNA high-throughput gene sequencing on the Illumina NovaSeq platform to profile microbial communities. Fecal samples were collected from 33 endometrial cancer patients (EC group) and 32 healthy controls (N group) between February 2021 and July 2021. The total numbers of operational taxonomic units (OTUs) in the N and EC groups were 28,537 and 18,465, respectively, while the number of OTUs shared by the two groups was 4771. This study was the first to report that the alpha diversity of the gut microbiota was significantly reduced in endometrial cancer patients vs. healthy controls. Also, there was a significant difference in the distribution of microbiome between the two groups: the abundance of Firmicutes, Clostridia, Clostridiales, Ruminococcaceae, Faecalibacterium, and Gemmiger_formicis decreased, while that of Proteobacteria, Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae and Shigella increased significantly in the EC group vs. healthy controls (all p < 0.05). The predominant intestinal microbiota of the endometrial cancer patients was Proteobacteria, Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae, and Shigella. These results imply that adjusting the composition of the gut microbiota and maintaining microbiota homeostasis may be an effective strategy for preventing and treating endometrial cancer.
Collapse
Affiliation(s)
- Yue Li
- Department of Obstetrics and Gynecology, Dalian Municipal Women and Children's Medical Center (Group), No.1, Dunhuang Road, Shahekou District, Dalian, Liaoning, 116033, P.R. China
| | - Geng Liu
- Department of Obstetrics and Gynecology, Dalian Municipal Women and Children's Medical Center (Group), No.1, Dunhuang Road, Shahekou District, Dalian, Liaoning, 116033, P.R. China
| | - Runqi Gong
- Department of Obstetrics and Gynecology, Liaoning Provincial Hospital for women and children, Shenyang, Liaoning, 110004, P.R. China
| | - Yong Xi
- Department of Obstetrics and Gynecology, Dalian Municipal Women and Children's Medical Center (Group), No.1, Dunhuang Road, Shahekou District, Dalian, Liaoning, 116033, P.R. China.
| |
Collapse
|
8
|
Takada K, Melnikov VG, Kobayashi R, Komine-Aizawa S, Tsuji NM, Hayakawa S. Female reproductive tract-organ axes. Front Immunol 2023; 14:1110001. [PMID: 36798125 PMCID: PMC9927230 DOI: 10.3389/fimmu.2023.1110001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
The female reproductive tract (FRT) and remote/versatile organs in the body share bidirectional communication. In this review, we discuss the framework of the "FRT-organ axes." Each axis, namely, the vagina-gut axis, uterus-gut axis, ovary-gut axis, vagina-bladder axis, vagina-oral axis, uterus-oral axis, vagina-brain axis, uterus-brain axis, and vagina-joint axis, is comprehensively discussed separately. Each axis could be involved in the pathogenesis of not only gynecological diseases but also diseases occurring apart from the FRT. Although the microbiota is clearly a key player in the FRT-organ axes, more quantitative insight into the homeostasis of the microbiota could be provided by host function measurements rather than current microbe-centric approaches. Therefore, investigation of the FRT-organ axes would provide us with a multicentric approach, including immune, neural, endocrine, and metabolic aspects, for understanding the homeostatic mechanism of women's bodies. The framework of the FRT-organ axes could also provide insights into finding new therapeutic approaches to maintain women's health.
Collapse
Affiliation(s)
- Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,*Correspondence: Kazuhide Takada, ; Satoshi Hayakawa,
| | | | - Ryoki Kobayashi
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Microbiology and Immunology, Nihon University, School of Dentistry at Matsudo, Chiba, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Noriko M. Tsuji
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Department of Food Science, Jumonji University, Saitama, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,*Correspondence: Kazuhide Takada, ; Satoshi Hayakawa,
| |
Collapse
|
9
|
Association between diabetes and cancer. Current mechanistic insights into the association and future challenges. Mol Cell Biochem 2022:10.1007/s11010-022-04630-x. [PMID: 36565361 DOI: 10.1007/s11010-022-04630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022]
Abstract
Compelling pieces of epidemiological, clinical, and experimental research have demonstrated that Diabetes mellitus (DM) is a major risk factor associated with increased cancer incidence and mortality in many human neoplasms. In the pathophysiology context of DM, many of the main classical actors are relevant elements that can fuel the different steps of the carcinogenesis process. Hyperglycemia, hyperinsulinemia, metabolic inflammation, and dyslipidemia are among the classic contributors to this association. Furthermore, new emerging actors have received particular attention in the last few years, and compelling data support that the microbiome, the epigenetic changes, the reticulum endoplasmic stress, and the increased glycolytic influx also play important roles in promoting the development of many cancer types. The arsenal of glucose-lowering therapeutic agents used for treating diabetes is wide and diverse, and a growing body of data raised during the last two decades has tried to clarify the contribution of therapeutic agents to this association. However, this research area remains controversial, because some anti-diabetic drugs are now considered as either promotors or protecting elements. In the present review, we intend to highlight the compelling epidemiological shreds of evidence that support this association, as well as the mechanistic contributions of many of these potential pathological mechanisms, some controversial points as well as future challenges.
Collapse
|