2
|
Shahrouzi P, Forouz F, Mathelier A, Kristensen VN, Duijf PHG. Copy number alterations: a catastrophic orchestration of the breast cancer genome. Trends Mol Med 2024; 30:750-764. [PMID: 38772764 DOI: 10.1016/j.molmed.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/23/2024]
Abstract
Breast cancer (BCa) is a prevalent malignancy that predominantly affects women around the world. Somatic copy number alterations (CNAs) are tumor-specific amplifications or deletions of DNA segments that often drive BCa development and therapy resistance. Hence, the complex patterns of CNAs complement BCa classification systems. In addition, understanding the precise contributions of CNAs is essential for tailoring personalized treatment approaches. This review highlights how tumor evolution drives the acquisition of CNAs, which in turn shape the genomic landscapes of BCas. It also discusses advanced methodologies for identifying recurrent CNAs, studying CNAs in BCa and their clinical impact.
Collapse
Affiliation(s)
- Parastoo Shahrouzi
- Department of Medical Genetics, Institute of Basic Medical Science, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Farzaneh Forouz
- School of Pharmacy, University of Queensland, Woolloongabba, Brisbane, Australia
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway; Center for Bioinformatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; Division of Medicine, Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Akershus University Hospital, Lørenskog, Norway; Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Pascal H G Duijf
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; Centre for Cancer Biology, UniSA Clinical and Health Sciences, University of South Australia and SA Pathology, Adelaide, Australia.
| |
Collapse
|
3
|
Bhatia S, Khanna KK, Duijf PHG. Targeting chromosomal instability and aneuploidy in cancer. Trends Pharmacol Sci 2024; 45:210-224. [PMID: 38355324 DOI: 10.1016/j.tips.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Cancer development and therapy resistance are driven by chromosomal instability (CIN), which causes chromosome gains and losses (i.e., aneuploidy) and structural chromosomal alterations. Technical limitations and knowledge gaps have delayed therapeutic targeting of CIN and aneuploidy in cancers. However, our toolbox for creating and studying aneuploidy in cell models has greatly expanded recently. Moreover, accumulating evidence suggests that seven conventional antimitotic chemotherapeutic drugs achieve clinical response by inducing CIN instead of mitotic arrest, although additional anticancer activities may also contribute in vivo. In this review, we discuss these recent developments. We also highlight new discoveries, which together show that 25 chromosome arm aneuploidies (CAAs) may be targetable by 36 drugs across 14 types of cancer. Collectively, these advances offer many new opportunities to improve cancer treatment.
Collapse
Affiliation(s)
- Sugandha Bhatia
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health and Centre for Biomedical Technologies at the Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Pascal H G Duijf
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health and Centre for Biomedical Technologies at the Translational Research Institute, Woolloongabba, QLD 4102, Australia; Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
4
|
Khamidullina AI, Abramenko YE, Bruter AV, Tatarskiy VV. Key Proteins of Replication Stress Response and Cell Cycle Control as Cancer Therapy Targets. Int J Mol Sci 2024; 25:1263. [PMID: 38279263 PMCID: PMC10816012 DOI: 10.3390/ijms25021263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Replication stress (RS) is a characteristic state of cancer cells as they tend to exchange precision of replication for fast proliferation and increased genomic instability. To overcome the consequences of improper replication control, malignant cells frequently inactivate parts of their DNA damage response (DDR) pathways (the ATM-CHK2-p53 pathway), while relying on other pathways which help to maintain replication fork stability (ATR-CHK1). This creates a dependency on the remaining DDR pathways, vulnerability to further destabilization of replication and synthetic lethality of DDR inhibitors with common oncogenic alterations such as mutations of TP53, RB1, ATM, amplifications of MYC, CCNE1 and others. The response to RS is normally limited by coordination of cell cycle, transcription and replication. Inhibition of WEE1 and PKMYT1 kinases, which prevent unscheduled mitosis entry, leads to fragility of under-replicated sites. Recent evidence also shows that inhibition of Cyclin-dependent kinases (CDKs), such as CDK4/6, CDK2, CDK8/19 and CDK12/13 can contribute to RS through disruption of DNA repair and replication control. Here, we review the main causes of RS in cancers as well as main therapeutic targets-ATR, CHK1, PARP and their inhibitors.
Collapse
Affiliation(s)
- Alvina I. Khamidullina
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Yaroslav E. Abramenko
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Victor V. Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
5
|
Pearson ADJ, Federico S, Gatz SA, Ortiz M, Lesa G, Scobie N, Gounaris I, Weiner SL, Weigel B, Unger TJ, Stewart E, Smith M, Slotkin EK, Reaman G, Pappo A, Nysom K, Norga K, McDonough J, Marshall LV, Ludwinski D, Ligas F, Karres D, Kool M, Horner TJ, Henssen A, Heenen D, Hawkins DS, Gore L, Bender JG, Galluzzo S, Fox E, de Rojas T, Davies BR, Chakrabarti J, Carmichael J, Bradford D, Blanc P, Bernardi R, Benchetrit S, Akindele K, Vassal G. Paediatric Strategy Forum for medicinal product development of DNA damage response pathway inhibitors in children and adolescents with cancer: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2023; 190:112950. [PMID: 37441939 DOI: 10.1016/j.ejca.2023.112950] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
DNA damage response inhibitors have a potentially important therapeutic role in paediatric cancers; however, their optimal use, including patient selection and combination strategy, remains unknown. Moreover, there is an imbalance between the number of drugs with diverse mechanisms of action and the limited number of paediatric patients available to be enrolled in early-phase trials, so prioritisation and a strategy are essential. While PARP inhibitors targeting homologous recombination-deficient tumours have been used primarily in the treatment of adult cancers with BRCA1/2 mutations, BRCA1/2 mutations occur infrequently in childhood tumours, and therefore, a specific response hypothesis is required. Combinations with targeted radiotherapy, ATR inhibitors, or antibody drug conjugates with DNA topoisomerase I inhibitor-related warheads warrant evaluation. Additional monotherapy trials of PARP inhibitors with the same mechanism of action are not recommended. PARP1-specific inhibitors and PARP inhibitors with very good central nervous system penetration also deserve evaluation. ATR, ATM, DNA-PK, CHK1, WEE1, DNA polymerase theta and PKMYT1 inhibitors are early in paediatric development. There should be an overall coordinated strategy for their development. Therefore, an academia/industry consensus of the relevant biomarkers will be established and a focused meeting on ATR inhibitors (as proof of principle) held. CHK1 inhibitors have demonstrated activity in desmoplastic small round cell tumours and have a potential role in the treatment of other paediatric malignancies, such as neuroblastoma and Ewing sarcoma. Access to CHK1 inhibitors for paediatric clinical trials is a high priority. The three key elements in evaluating these inhibitors in children are (1) innovative trial design (design driven by a clear hypothesis with the intent to further investigate responders and non-responders with detailed retrospective molecular analyses to generate a revised or new hypothesis); (2) biomarker selection and (3) rational combination therapy, which is limited by overlapping toxicity. To maximally benefit children with cancer, investigators should work collaboratively to learn the lessons from the past and apply them to future studies. Plans should be based on the relevant biology, with a focus on simultaneous and parallel research in preclinical and clinical settings, and an overall integrated and collaborative strategy.
Collapse
Affiliation(s)
- Andrew D J Pearson
- ACCELERATE, c/o BLSI, Clos Chapelle-aux-Champs 30, Bte 1.30.30 BE-1200 Brussels, Belgium.
| | - Sara Federico
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Susanne A Gatz
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Michael Ortiz
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, the Netherlands
| | | | - Ioannis Gounaris
- Merck Serono Ltd (an affiliate of Merck KGaA, Darmstadt, Germany), Feltham, UK
| | | | | | - T J Unger
- Repare Therapeutics, Cambridge, MA, USA
| | | | | | | | - Gregory Reaman
- US Food and Drug Administration, Silver Springs, MD, USA
| | - Alberto Pappo
- St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Koen Norga
- Antwerp University Hospital, Antwerp, Belgium; Paediatric Committee of the European Medicines Agency (EMA), Amsterdam, the Netherlands; Federal Agency for Medicines and Health Products, Brussels, Belgium
| | - Joe McDonough
- The Andrew McDonough B+ Foundation, Wilmington, DE, USA
| | - Lynley V Marshall
- The Royal Marsden NHS Foundation Hospital, The Institute of Cancer Research, Sutton, Surrey, UK
| | | | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, the Netherlands
| | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, the Netherlands
| | - Marcel Kool
- Hopp Children's Cancer Center, Heidelberg, Germany
| | | | | | | | - Douglas S Hawkins
- Seattle Children's Hospital, Seattle, WA, USA; Children's Oncology Group, Seattle, WA, USA
| | - Lia Gore
- Children's Hospital Colorado, Aurora, CO, USA; University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | - Elizabeth Fox
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Teresa de Rojas
- ACCELERATE, c/o BLSI, Clos Chapelle-aux-Champs 30, Bte 1.30.30 BE-1200 Brussels, Belgium
| | | | | | - Juliet Carmichael
- The Royal Marsden NHS Foundation Hospital, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Diana Bradford
- US Food and Drug Administration, Silver Springs, MD, USA
| | | | - Ronald Bernardi
- Genentech, a Member of the Roche Group, South San Francisco, CA, USA
| | - Sylvie Benchetrit
- National Agency for the Safety of Medicine and Health Products, Paris, France
| | | | - Gilles Vassal
- ACCELERATE, c/o BLSI, Clos Chapelle-aux-Champs 30, Bte 1.30.30 BE-1200 Brussels, Belgium; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|