1
|
Bredin P, Galvin Z, O'Kane GM. Role of immunotherapy in managing cancers prior to liver transplantation. Curr Opin Organ Transplant 2025; 30:3-11. [PMID: 39620576 DOI: 10.1097/mot.0000000000001187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape in advanced hepatocellular carcinoma and increasingly are being evaluated in earlier stage disease. Herein we explore the role of ICIs pre-liver transplant for liver cancers. RECENT FINDINGS Given the high response rates with combination approaches including locoregional treatments, more patients with liver confined disease, without vascular invasion, who have received ICIs are now being rendered eligible for potential liver transplant. This opportunity to expand the population who may benefit from liver transplant has also come with challenges recognizing the global shortage of organs. Post-liver transplant immunosuppression potentially competes with the immune-stimulating effects of ICIs and graft rejection has been a concern. ICIs may provide an opportunity to maintain patients on the waiting list but an understanding of who is likely to benefit is needed, to circumvent possible toxicities. In addition, ICIs are now considered standard of care, in combination with chemotherapy, for advanced cholangiocarcinoma, where the role of liver transplant is evolving. SUMMARY As the eligibility criteria globally for liver transplant in the setting of malignancy continues to expand, the integration of ICIs becomes increasingly important.
Collapse
Affiliation(s)
| | - Zita Galvin
- St Vincent's University Hospital, Elm Park
- University College Dublin, Ireland
| | - Grainne M O'Kane
- St Vincent's University Hospital, Elm Park
- University College Dublin, Ireland
| |
Collapse
|
2
|
Baek J, Choi G, Lee G, Lee H, Gong G, Park HS, Lim CL, Kim JY, Lee HJ. Characteristics of successful expansion of tumor-infiltrating lymphocytes from colorectal cancer liver metastasis. Sci Rep 2025; 15:1639. [PMID: 39794519 PMCID: PMC11724024 DOI: 10.1038/s41598-025-85892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
Adoptive cell therapy (ACT) utilizing tumor-infiltrating lymphocytes (TILs) has emerged as a successful treatment modality for various malignancies. However, TILs cultured from colorectal cancer (CRC) liver metastasis remain underexplored. Fifteen CRC liver metastasis tissues underwent initial expansion (IE) of TILs and rapid expansion (REP). Histologic examination including the level of stromal TILs and Klintrup-Mäkinen score, were assessed by pathologists and deep learning-derived spatial analysis. We performed correlation analysis between expanded TILs and histopathologic factors. All cases exhibited successful IE, with a mean IE TIL count per fragment and total IE TIL per case of 2.59 ± 2.79e5 cells and 167.79 ± 126.97e5 cells, respectively. Five cases underwent REP, with a median fold change of 3,610 (range, 1,136-4,925). The median CD4+/CD8 + ratio in IE TILs and REP TILs were 3.66 and 0.68, respectively. A significant correlation was observed between the mean number of expanded TILs per fragment and KM score (p = 0.022). Successful expansion of TILs from CRC liver metastasis was achieved. Assessment of KM score may serve as a predictive tool for the obtainable TILs before IE. These findings lay the groundwork for future studies to establish effective ACT in patients with metastatic CRC.
Collapse
Affiliation(s)
- Jina Baek
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Gyuheon Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - GunHee Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyun Lee
- Department of Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- NeogenTC Corp., Seoul, Republic of Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | | | | | - Joo Young Kim
- Department of Pathology, Chung-Ang University Hospital, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
- NeogenTC Corp., Seoul, Republic of Korea.
| |
Collapse
|
3
|
Kim JY, Kang W, Yang S, Park SH, Ha SY, Paik YH. NADPH oxidase 4 deficiency promotes hepatocellular carcinoma arising from hepatic fibrosis by inducing M2-macrophages in the tumor microenvironment. Sci Rep 2024; 14:22358. [PMID: 39333166 PMCID: PMC11437090 DOI: 10.1038/s41598-024-72721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) often arises in the cirrhotic livers, highlighting the intricate link between hepatic fibrosis and carcinogenesis. Reactive oxygen species produced by NADPH oxidase 4 (NOX4) contribute to liver injury leading to hepatic fibrosis. Paradoxically, NOX4 is known to inhibit HCC progression. This study aims to elucidate the role of NOX4 in hepatocarcinogenesis in the background of hepatic fibrosis. We established the mouse model of HCC arising from the fibrotic liver by administering diethylnitrosamine and carbon tetrachloride to wild-type (WT) or NOX4-/- mice. Hepatic fibrogenesis, tumorigenesis, and macrophage polarization were assessed by immunohistochemistry, PCR, and flow cytometry using in vivo and in vitro models. In NOX4-/- mice, hepatic fibrosis was attenuated, while the number of tumors and the proliferation of HCC cells were increased compared to WT mice. Notably, a significant increase in M2-polarized macrophages was observed in NOX4-/- mice through immunohistochemistry and PCR analysis. Subsequent experiments demonstrated that NOX4-silenced HCC cells promote macrophage polarization toward M2. In addition to attenuating hepatic fibrogenesis, NOX4 deficiency triggers macrophage polarization towards the M2 phenotype in the fibrotic liver, thereby promoting hepatocellular carcinogenesis. These findings provide novel insights into the mechanism of NOX4-mediated tumor suppression in HCC arising from fibrotic livers.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Wonseok Kang
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, Republic of Korea
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Sera Yang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Su Hyun Park
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Yong-Han Paik
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| |
Collapse
|
4
|
Zhao RD, Liu DJ, Li JW, Wang Y, Lin JH, Zhang YT, Li Y, Zhan MX, Yin ZN, Lu LG, Liu B. Landscape and prognostic values of lymphocytes in patients with hepatocellular carcinoma undergoing transarterial embolization. J Leukoc Biol 2024; 116:186-196. [PMID: 38648512 DOI: 10.1093/jleuko/qiae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Transarterial embolization, the first-line treatment for hepatocellular carcinoma, does not always lead to promising outcomes in all patients. A better understanding of how the immune lymphocyte changes after transarterial embolization might be the key to improve the efficacy of transarterial embolization. However, there are few studies evaluating immune lymphocytes in transarterial embolization patients. Therefore, we aimed to evaluate the short- and long-term effects of transarterial embolization on lymphocyte subsets in patients with hepatocellular carcinoma to identify those that predict transarterial embolization prognosis. Peripheral blood samples were collected from 44 patients with hepatocellular carcinoma at the following time points: 1 d before the initial transarterial embolization, 3 d after the initial transarterial embolization, and 1 mo after the initial transarterial embolization and subjected to peripheral blood mononuclear cell isolation and flow cytometry. Dynamic changes in 75 lymphocyte subsets were recorded, and their absolute counts were calculated. Tumor assessments were made every 4 to 6 wk via computed tomography or magnetic resonance imaging. Our results revealed that almost all lymphocyte subsets fluctuated 3 d after transarterial embolization, but only Tfh and B cells decreased 1 mo after transarterial embolization. Univariate and multivariate Cox regression showed that high levels of Th2 and conventional killer Vδ2 cells were associated with longer progressive-free survival after transarterial embolization. Longer overall survival after transarterial embolization was associated with high levels of Th17 and viral infection-specific Vδ1 cells and low levels of immature natural killer cells. In conclusion, transarterial embolization has a dynamic influence on the status of lymphocytes. Accordingly, several lymphocyte subsets can be used as prognostic markers for transarterial embolization.
Collapse
Affiliation(s)
- Rui-Dong Zhao
- Department of Interventional Medicine, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), 79 Kangning Road, Zhuhai, Guangdong 519000, P.R. China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Department of Interventional Medicine, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), 79 Kangning Road, Zhuhai, Guangdong 519000, P.R. China
| | - Ding-Jie Liu
- Department of Interventional Medicine, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), 79 Kangning Road, Zhuhai, Guangdong 519000, P.R. China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Department of Interventional Medicine, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), 79 Kangning Road, Zhuhai, Guangdong 519000, P.R. China
| | - Jia-Wei Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, 601 Huangpu Avenue, Guangzhou, Guangdong 510632, P.R. China
| | - Yong Wang
- Department of Interventional Medicine, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), 79 Kangning Road, Zhuhai, Guangdong 519000, P.R. China
| | - Jun-Hao Lin
- Department of Interventional Medicine, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), 79 Kangning Road, Zhuhai, Guangdong 519000, P.R. China
| | - Yi-Tian Zhang
- Department of Interventional Medicine, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), 79 Kangning Road, Zhuhai, Guangdong 519000, P.R. China
| | - Yong Li
- Department of Interventional Medicine, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), 79 Kangning Road, Zhuhai, Guangdong 519000, P.R. China
| | - Mei-Xiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Department of Interventional Medicine, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), 79 Kangning Road, Zhuhai, Guangdong 519000, P.R. China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, 601 Huangpu Avenue, Guangzhou, Guangdong 510632, P.R. China
| | - Zhi-Nan Yin
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, 601 Huangpu Avenue, Guangzhou, Guangdong 510632, P.R. China
- Guangzhou Purui Biotechnology Co., Ltd., North Tianhe Road 894, Guangzhou, Guangdong 510620, P.R. China
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 4 Yuanshan Road, Zhuhai, Guangdong 519000, P.R. China
| | - Li-Gong Lu
- Department of Interventional Medicine, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), 79 Kangning Road, Zhuhai, Guangdong 519000, P.R. China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Department of Interventional Medicine, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), 79 Kangning Road, Zhuhai, Guangdong 519000, P.R. China
| | - Bing Liu
- Department of Interventional Medicine, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), 79 Kangning Road, Zhuhai, Guangdong 519000, P.R. China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Department of Interventional Medicine, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), 79 Kangning Road, Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
5
|
Wang X, Yuan Z, Li Z, He X, Zhang Y, Wang X, Su J, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Shen J, Yi T, Xiao Z. Key oncogenic signaling pathways affecting tumor-infiltrating lymphocytes infiltration in hepatocellular carcinoma: basic principles and recent advances. Front Immunol 2024; 15:1354313. [PMID: 38426090 PMCID: PMC10902128 DOI: 10.3389/fimmu.2024.1354313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) ranks first among primary liver cancers, and its mortality rate exhibits a consistent annual increase. The treatment of HCC has witnessed a significant surge in recent years, with the emergence of targeted immune therapy as an adjunct to early surgical resection. Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) has shown promising results in other types of solid tumors. This article aims to provide a comprehensive overview of the intricate interactions between different types of TILs and their impact on HCC, elucidate strategies for targeting neoantigens through TILs, and address the challenges encountered in TIL therapies along with potential solutions. Furthermore, this article specifically examines the impact of oncogenic signaling pathways activation within the HCC tumor microenvironment on the infiltration dynamics of TILs. Additionally, a concise overview is provided regarding TIL preparation techniques and an update on clinical trials investigating TIL-based immunotherapy in solid tumors.
Collapse
Affiliation(s)
- Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhengbo Li
- Department of Laboratory Medicine, The Longmatan District People’s Hospital, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Chen J, Chan TTH, Zhou J. Lipid metabolism in the immune niche of tumor-prone liver microenvironment. J Leukoc Biol 2024; 115:68-84. [PMID: 37474318 DOI: 10.1093/jleuko/qiad081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
The liver is a common primary site not only for tumorigenesis, but also for cancer metastasis. Advanced cancer patients with liver metastases also show reduced response rates and survival benefits when treated with immune checkpoint inhibitors. Accumulating evidence has highlighted the importance of the liver immune microenvironment in determining tumorigenesis, metastasis-organotropism, and immunotherapy resistance. Various immune cells such as T cells, natural killer and natural killer T cells, macrophages and dendritic cells, and stromal cells including liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, and hepatocytes are implicated in contributing to the immune niche of tumor-prone liver microenvironment. In parallel, as the major organ for lipid metabolism, the increased abundance of lipids and their metabolites is linked to processes crucial for nonalcoholic fatty liver disease and related liver cancer development. Furthermore, the proliferation, differentiation, and functions of hepatic immune and stromal cells are also reported to be regulated by lipid metabolism. Therefore, targeting lipid metabolism may hold great potential to reprogram the immunosuppressive liver microenvironment and synergistically enhance the immunotherapy efficacy in the circumstance of liver metastasis. In this review, we describe how the hepatic microenvironment adapts to the lipid metabolic alterations in pathologic conditions like nonalcoholic fatty liver disease. We also illustrate how these immunometabolic alterations promote the development of liver cancers and immunotherapy resistance. Finally, we discuss the current therapeutic options and hypothetic combination immunotherapies for the treatment of advanced liver cancers.
Collapse
Affiliation(s)
- Jintian Chen
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Thomas T H Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| |
Collapse
|
7
|
Tavakoli Pirzaman A, Alishah A, Babajani B, Ebrahimi P, Sheikhi SA, Moosaei F, Salarfar A, Doostmohamadian S, Kazemi S. The Role of microRNAs in Hepatocellular Cancer: A Narrative Review Focused on Tumor Microenvironment and Drug Resistance. Technol Cancer Res Treat 2024; 23:15330338241239188. [PMID: 38634139 PMCID: PMC11025440 DOI: 10.1177/15330338241239188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 04/19/2024] Open
Abstract
Globally, hepatic cancer ranks fourth in terms of cancer-related mortality and is the sixth most frequent kind of cancer. Around 80% of liver cancers are hepatocellular carcinomas (HCC), which are the leading cause of cancer death. It is well known that HCC may develop resistance to the available chemotherapy treatments very fast. One of the biggest obstacles in providing cancer patients with appropriate care is drug resistance. According to reports, more than 90% of cancer-specific fatalities are caused by treatment resistance. By binding to the 3'-untranslated region of target messenger RNAs (mRNAs), microRNAs (miRNAs), a group of noncoding RNAs which are around 17 to 25 nucleotides long, regulate target gene expression. Moreover, they play role in the control of signaling pathways, cell proliferation, and cell death. As a result, miRNAs play an important role in the microenvironment of HCC by changing immune phenotypes, hypoxic conditions, and acidification, as well as angiogenesis and extracellular matrix components. Moreover, changes in miRNA levels in HCC can effectively resist cancer cells to chemotherapy by affecting various cellular processes such as autophagy, apoptosis, and membrane transporter activity. In the current work, we narratively reviewed the role of miRNAs in HCC, with a special focus on tumor microenvironment and drug resistance.
Collapse
Affiliation(s)
| | - Ali Alishah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Bahareh Babajani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Pouyan Ebrahimi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Ali Sheikhi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Farhad Moosaei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | | | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
8
|
Ju F, Wang D, Huang L, Jiang C, Gao C, Xiong C, Zhai G. Progress of PD-1/PD-L1 signaling in immune response to liver transplantation for hepatocellular carcinoma. Front Immunol 2023; 14:1227756. [PMID: 37545535 PMCID: PMC10399574 DOI: 10.3389/fimmu.2023.1227756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Primary liver cancer is one of the most common malignant tumors in China. The vast majority of primary liver cancer are hepatocellular carcinoma. Due to its high incidence and mortality from HCC, HCC has always been a feared type of cancer. Liver transplantation, as one of the important means to treat advanced liver cancer, has brought new hope to patients. However, as patients have been in a state of immunosuppression after liver transplantation, these patients face new problems of HCC recurrence and metastasis. A increasing number of studies have proved that blocking the PD-1/PD-L1 signaling pathway and restoring the immune killing inhibition of T cells can produce better therapeutic effects on tumors and chronic infectious diseases. As a promising treatment in the field of tumor immunotherapy, PD-1/PD-L1 inhibitors have achieved important results in liver cancer patients, but their application in liver transplantation patients is still highly controversial. This paper will introduce the mechanism of action of PD-1/PD-L1 signaling pathway and the current basic and clinical studies of PD-1/PD-L1 signaling pathway associated with immune response in HCC transplantation.
Collapse
Affiliation(s)
- Feng Ju
- Department of Laboratory Medicine, The Yangzhou University Jianhu Clinical College, Jianhu, China
| | - Dawei Wang
- Department of Infectious Diseases, The Second People’s Hospital of Yancheng City, Yancheng, China
| | - Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ce Gao
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Cunquan Xiong
- College of Pharmacy, Jiangsu Vocational College Medicine, Yancheng, Jiangsu, China
| | - Guanghua Zhai
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Zhu X, Li S. Nanomaterials in tumor immunotherapy: new strategies and challenges. Mol Cancer 2023; 22:94. [PMID: 37312116 DOI: 10.1186/s12943-023-01797-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Tumor immunotherapy exerts its anti-tumor effects by stimulating and enhancing immune responses of the body. It has become another important modality of anti-tumor therapy with significant clinical efficacy and advantages compared to chemotherapy, radiotherapy and targeted therapy. Although various kinds of tumor immunotherapeutic drugs have emerged, the challenges faced in the delivery of these drugs, such as poor tumor permeability and low tumor cell uptake rate, had prevented their widespread application. Recently, nanomaterials had emerged as a means for treatment of different diseases due to their targeting properties, biocompatibility and functionalities. Moreover, nanomaterials possess various characteristics that overcome the defects of traditional tumor immunotherapy, such as large drug loading capacity, precise tumor targeting and easy modification, thus leading to their wide application in tumor immunotherapy. There are two main classes of novel nanoparticles mentioned in this review: organic (polymeric nanomaterials, liposomes and lipid nanoparticles) and inorganic (non-metallic nanomaterials and metallic nanomaterials). Besides, the fabrication method for nanoparticles, Nanoemulsions, was also introduced. In summary, this review article mainly discussed the research progress of tumor immunotherapy based on nanomaterials in the past few years and offers a theoretical basis for exploring novel tumor immunotherapy strategies in the future.
Collapse
Affiliation(s)
- Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China.
| |
Collapse
|
10
|
Li J, Li Y, Li F, Xu L. NK cell marker gene-based model shows good predictive ability in prognosis and response to immunotherapies in hepatocellular carcinoma. Sci Rep 2023; 13:7294. [PMID: 37147523 PMCID: PMC10163253 DOI: 10.1038/s41598-023-34602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/04/2023] [Indexed: 05/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of malignancy worldwide, and its progression is influenced by the immune microenvironment. Natural killer (NK) cells are essential in the anti-tumor response and have been linked to immunotherapies for cancers. Therefore, it is important to unify and validate the role of NK cell-related gene signatures in HCC. In this study, we used RNA-seq analysis on HCC samples from public databases. We applied the ConsensusClusterPlus tool to construct the consensus matrix and cluster the samples based on their NK cell-related expression profile data. We employed the least absolute shrinkage and selection operator regression analysis to identify the hub genes. Additionally, we utilized the CIBERSORT and ESTIMATE web-based methods to perform immune-related evaluations. Our results showed that the NK cell-related gene-based classification divided HCC patients into three clusters. The C3 cluster was activated in immune activation signaling pathways and showed better prognosis and good clinical features. In contrast, the C1 cluster was remarkably enriched in cell cycle pathways. The stromal score, immune score, and ESTIMATE score in C3 were much higher than those in C2 and C1. Furthermore, we identified six hub genes: CDC20, HMOX1, S100A9, CFHR3, PCN1, and GZMA. The NK cell-related genes-based risk score subgroups demonstrated that a higher risk score subgroup showed poorer prognosis. In summary, our findings suggest that NK cell-related genes play an essential role in HCC prognosis prediction and have therapeutic potential in promoting NK cell antitumor immunity. The six identified hub genes may serve as useful biomarkers for novel therapeutic targets.
Collapse
Affiliation(s)
- Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China.
| | - Yi Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
| | - Fulei Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
| |
Collapse
|
11
|
Yan CY, Zhao ML, Wei YN, Zhao XH. Mechanisms of drug resistance in breast cancer liver metastases: Dilemmas and opportunities. Mol Ther Oncolytics 2023; 28:212-229. [PMID: 36860815 PMCID: PMC9969274 DOI: 10.1016/j.omto.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in females worldwide, and the liver is one of the most common sites of distant metastases in breast cancer patients. Patients with breast cancer liver metastases face limited treatment options, and drug resistance is highly prevalent, leading to a poor prognosis and a short survival. Liver metastases respond extremely poorly to immunotherapy and have shown resistance to treatments such as chemotherapy and targeted therapies. Therefore, to develop and to optimize treatment strategies as well as to explore potential therapeutic approaches, it is crucial to understand the mechanisms of drug resistance in breast cancer liver metastases patients. In this review, we summarize recent advances in the research of drug resistance mechanisms in breast cancer liver metastases and discuss their therapeutic potential for improving patient prognoses and outcomes.
Collapse
Affiliation(s)
- Chun-Yan Yan
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Meng-Lu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Ya-Nan Wei
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| |
Collapse
|
12
|
Revamping the innate or innate-like immune cell-based therapy for hepatocellular carcinoma: new mechanistic insights and advanced opportunities. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2023; 40:84. [PMID: 36680649 DOI: 10.1007/s12032-023-01948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023]
Abstract
A cancerous tumour termed hepatocellular carcinoma (HCC) is characterized by inflammation and subsequently followed by end-stage liver disease and necrosis of the liver. The liver's continuous exposure to microorganisms and toxic molecules affects the immune response because normal tissue requires some immune tolerance to be safeguarded from damage. Several innate immune cells are involved in this process of immune system activation which includes dendritic cells, macrophages, and natural killer cells. The liver is an immunologic organ with vast quantities of innate and innate-like immune cells subjected to several antigens (bacteria, fungal or viral) through the gut-liver axis. Tumour-induced immune system engagement may be encouraged or suppressed through innate immunological systems, which are recognized promoters of liver disease development in pre-HCC conditions such as fibrosis or cirrhosis, ultimately resulting in HCC. Immune-based treatments containing several classes of drugs have transformed the treatment of several types of cancers in recent times. The effectiveness of such immunotherapies relies on intricate interactions between lymphocytes, tumour cells, and neighbouring cells. Even though immunotherapy therapy has already reported to possess potential effect to treat HCC, a clear understanding of the crosstalk between innate and adaptive immune cell pathways still need to be clearly understood for better exploitation of the same. The identification of predictive biomarkers, understanding the progression of the disease, and the invention of more efficient combinational treatments are the major challenges in HCC immunotherapy. The functions and therapeutic significance of innate immune cells, which have been widely implicated in HCC, in addition to the interplay between innate and adaptive immune responses during the pathogenesis, have been explored in the current review.
Collapse
|
13
|
Li W, Chen M, Gong Y, Lin F, Sun C. Effects of dexmedetomidine on oxidative stress, programmed cell death, liver function, and expression of peripheral immune cells in patients with primary liver cancer undergoing hepatectomy. Front Physiol 2023; 14:1159746. [PMID: 37113696 PMCID: PMC10126774 DOI: 10.3389/fphys.2023.1159746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Study background: Primary liver cancer is a severe health issue that imposes a significant health burden on families. Oxidation and subsequent cell death impair liver function and provoke an immune response. The present article investigates the effect of Dexmedetomidine on oxidation, cell death, the expression of peripheral immune cells, and liver function. The clinical data will represent the facts and evidence of the effects of this intervention. Methods: We analyzed clinical data reporting various accounts of the effects of Dexmedetomidine on oxidation, cell death, the expression of peripheral immune cells, and liver function among patients who underwent hepatectomy. The surgical procedure reported the differences in cell death as procedural outcomes among pre- and post-treatment records were compared and contrasted. Results: We found decreased cell apoptosis in the treatment group: the number of incisions to remove dead cells was lower in the treatment group than in the pre-treatment group. Likewise, lower oxidation was reported in pre-treatment than in post-treatment records. The expression of peripheral immune cells was higher in the pre-treatment clinical data than in post-treatment, suggesting a reduction in oxidation following dexmedetomidine treatment. Liver function was a function of oxidation and cell death outcomes. In the pre-treatment clinical data, liver function was poor, whereas improved functions were reported in the post-treatment clinical data. Discussion: We found compelling evidence of Dexmedetomidine's effects on oxidative stress and programmed cell death. The intervention suppresses the production of reactive oxygen species and the consequential apoptosis. Additionally, liver functions improve due to the decrease in hepatocyte apoptosis. Since the peripheral immune cells are expressed against tumors, a decrease in the progression of primary liver cancer decreased the expression of the peripheral immune cells. Conclusion: Dexmedetomidine's positive effects stood out in the present research article. The intervention reduced oxidation by balancing the production of reactive oxygen species and the detoxification processes. Reduced oxidation induced reduced cell death through apoptosis, resulting in a low expression of peripheral immune cells and improved liver functions.
Collapse
|
14
|
Grottoli M, Carrega P, Zullo L, Dellepiane C, Rossi G, Parisi F, Barletta G, Zinoli L, Coco S, Alama A, Marconi S, Parodi M, Orecchia P, Bassi S, Vitale M, Mingari MC, Pfeffer U, Genova C, Pietra G. Immune Checkpoint Blockade: A Strategy to Unleash the Potential of Natural Killer Cells in the Anti-Cancer Therapy. Cancers (Basel) 2022; 14:cancers14205046. [PMID: 36291830 PMCID: PMC9599824 DOI: 10.3390/cancers14205046] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Immune checkpoint blockade (ICB) with antibodies targeting CTLA-4 (Cytotoxic Lymphocyte Antigen 4) and/or programmed death-1 protein (PD-1)/programmed death ligand-1 (PD-L1) has significantly modified the therapeutic landscape of a broad range of human tumor types, including advanced non-small-cell lung cancer (NSCLC). Despite great advances of checkpoint immunotherapies, a minority of NSCLC patients (<20%) respond and/or experience long-term clinical benefits from these treatments. Limited response rates of T cell–based checkpoint immunotherapies suggest the presence of other checkpoints able to inhibit effective anti-tumor immune responses. Natural Killer (NK) cells represent a promising target for tumor immunotherapies, particularly against tumors that escape T-cell-mediated control. Like T cell function, NK cell function is also regulated by inhibitory immune-checkpoint molecules. In this review, we will provide an overview of the rationale, mechanisms of action, and clinical efficacy of these NK cell-based checkpoint therapy approaches. Finally, the future directions and current enhancements planned will be discussed. Abstract Immune checkpoint inhibitors (ICIs) immunotherapy has represented a breakthrough in cancer treatment. Clinical use of ICIs has shown an acceptable safety profile and promising antitumor activity. Nevertheless, some patients do not obtain clinical benefits after ICIs therapy. In order to improve and cure an increasing number of patients, the field has moved toward the discovery of new ICIs expressed by cells of innate immunity with an elevated inherent antitumor activity, such as natural killer cells. This review will focus on the recent findings concerning the role of classical and non-classical immune checkpoint molecules and receptors that regulate natural killer cell function, as potential targets, and their future clinical application.
Collapse
Affiliation(s)
- Melania Grottoli
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, 98122 Messina, Italy
| | - Lodovica Zullo
- UO Oncologia Medica 2 IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Chiara Dellepiane
- UO Oncologia Medica 2 IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Giovanni Rossi
- UO Oncologia Medica 2 IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Francesca Parisi
- UO Oncologia Medica 2 IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Giulia Barletta
- UO Oncologia Medica 2 IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Linda Zinoli
- DiMI, Department of Internal Medicine and Medical Specialties, University of Genova, 16132 Genova, Italy
| | - Simona Coco
- UOS Tumori Polmonari IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Angela Alama
- UOS Tumori Polmonari IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Silvia Marconi
- UOS Tumori Polmonari IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Monica Parodi
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paola Orecchia
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sara Bassi
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Massimo Vitale
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Maria Cristina Mingari
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- DiMES, Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Ulrich Pfeffer
- Laboratory of Tumor Epigenetics IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Carlo Genova
- DiMI, Department of Internal Medicine and Medical Specialties, University of Genova, 16132 Genova, Italy
- UO Clinica di Oncologia Medica IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (C.G.); (G.P.)
| | - Gabriella Pietra
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- DiMES, Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
- Correspondence: (C.G.); (G.P.)
| |
Collapse
|