1
|
Omero F, Speranza D, Murdaca G, Cavaleri M, Marafioti M, Cianci V, Berretta M, Casciaro M, Gangemi S, Santarpia M. The Role of Eosinophils, Eosinophil-Related Cytokines and AI in Predicting Immunotherapy Efficacy in NSCLC Cancer. Biomolecules 2025; 15:491. [PMID: 40305195 DOI: 10.3390/biom15040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Immunotherapy and chemoimmunotherapy are standard treatments for non-oncogene-addicted advanced non-small cell lung cancer (NSCLC). Currently, a limited number of biomarkers, including programmed death-ligand 1 (PD-L1) expression, microsatellite instability (MSI), and tumor mutational burden (TMB), are used in clinical practice to predict benefits from immune checkpoint inhibitors (ICIs). It is therefore necessary to search for novel biomarkers that could be helpful to identify patients who respond to immunotherapy. In this context, research efforts are focusing on different cells and mechanisms involved in anti-tumor immune response. Herein, we provide un updated literature review on the role of eosinophils in cancer development and immune response, and the functions of some cytokines, including IL-31 and IL-33, in eosinophil activation. We discuss available data demonstrating a correlation between eosinophils and clinical outcomes of ICIs in lung cancer. In this context, we underscore the role of absolute eosinophil count (AEC) and tumor-associated tissue eosinophilia (TATE) as promising biomarkers able to predict the efficacy and toxicities from immunotherapy. The role of eosinophils and cytokines in NSCLC, treated with ICIs, is not yet fully understood, and further research may be crucial to determine their role as biomarkers of response. Artificial intelligence, through the analysis of big data, could be exploited in the future to elucidate the role of eosinophils and cytokines in lung cancer.
Collapse
Affiliation(s)
- Fausto Omero
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, 98125 Messina, Italy
| | - Desirèe Speranza
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Mariacarmela Cavaleri
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, 98125 Messina, Italy
| | - Mariapia Marafioti
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, 98125 Messina, Italy
| | - Vincenzo Cianci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Massimiliano Berretta
- Medical Oncology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, 98125 Messina, Italy
| |
Collapse
|
2
|
Romeo M, Dallio M, Di Nardo F, Napolitano C, Vaia P, Martinelli G, Federico P, Olivieri S, Iodice P, Federico A. The Role of the Gut-Biliary-Liver Axis in Primary Hepatobiliary Liver Cancers: From Molecular Insights to Clinical Applications. J Pers Med 2025; 15:124. [PMID: 40278303 PMCID: PMC12028696 DOI: 10.3390/jpm15040124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Hepatobiliary liver cancers (HBLCs) represent the sixth most common neoplasm in the world. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) constitute the main HBLC types, with alarming epidemiological projections. Methods: In recent decades, alterations in gut microbiota, with mutual implications on the gut-liver axis and gut-biliary axis permeability status, have been massively investigated and proposed as HBLC pathogenetic deus ex machina. Results: In the HCC setting, elevated intestinal levels of Escherichia coli and other Gram-negative bacteria have been demonstrated, resulting in a close association with increased lipopolysaccharide (LPS) serum levels and, consequently, chronic systemic inflammation. In contrast, the intestinal microbiota of HCC individuals feature reduced levels of Lactobacillus spp., Bifidobacterium spp., and Enterococcus spp. In the CC setting, evidence has revealed an increased expression of Lactobacillus spp., with enhanced levels of Actynomices spp. and Alloscardovia spp. Besides impaired strains/species representation, gut-derived metabolites, including bile acids (BAs), short-chain fatty acids (SCFAs), and oxidative-stress-derived products, configure a network severely impacting the progression of HBLC. Conclusions: In the era of Precision Medicine, the clarification of microbiota composition and functioning in HCC and CC settings can contribute to the identification of individual signatures, potentially providing novel diagnostic markers, therapeutic approaches, and prognostic/predictive tools.
Collapse
Affiliation(s)
- Mario Romeo
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Marcello Dallio
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Fiammetta Di Nardo
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Carmine Napolitano
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Paolo Vaia
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Giuseppina Martinelli
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Pierluigi Federico
- Pharmaceutical Department, ASL NA3 Sud, Torre del Greco, 80059 Naples, Italy;
| | - Simone Olivieri
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | | | - Alessandro Federico
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| |
Collapse
|
3
|
Speranza D, Santarpia M, Luppino F, Omero F, Maiorana E, Cavaleri M, Sapuppo E, Cianci V, Pugliese A, Racanelli V, Camerino GM, Rodolico C, Silvestris N. Immune checkpoint inhibitors and neurotoxicity: a focus on diagnosis and management for a multidisciplinary approach. Expert Opin Drug Saf 2024; 23:1405-1418. [PMID: 38819976 DOI: 10.1080/14740338.2024.2363471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
INTRODUCTION Although immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, the consequential over activation of the immune system is often complicated by adverse events that can affect several organs and systems, including the nervous system. The precise pathophysiology underlying neurological irAEs (n-irAEs) is not completely known. Around 3.8% of patients receiving anti-CTLA-4 agents, 6.1% of patients receiving anti-PD-1/PD-L1, and 12% of patients receiving combination therapies have n-irAEs. Most n-irAEs are low-grade, while severe toxicities have rarely been reported. in this article, we performed an updated literature search on immuno-related neurotoxicity on main medical research database, from February 2017 to December 2023. AREAS COVERED We have also compared the latest national and international guidelines on n-irAEs management with each other in order to better define patient management. EXPERT OPINION A multidisciplinary approach appears necessary in the management of oncological patients during immunotherapy. Therefore, in order to better manage these toxicities, we believe that it is essential to collaborate with neurologists specialized in the diagnosis and treatment of n-irAEs, and that a global neurological assessment, both central and peripheral, is necessary before starting immunotherapy, with regular reassessment during treatment.
Collapse
Affiliation(s)
- Desirèe Speranza
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Francesco Luppino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Fausto Omero
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Enrica Maiorana
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Mariacarmela Cavaleri
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Elena Sapuppo
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Vincenzo Cianci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Alessia Pugliese
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vito Racanelli
- Centre for Medical Sciences (CISMed), University of Trento and Internal Medicine Department, Trento, Italy
| | | | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| |
Collapse
|
4
|
Banerjee R, Wehrle CJ, Wang Z, Wilcox JD, Uppin V, Varadharajan V, Mrdjen M, Hershberger C, Reizes O, Yu JS, Lathia JD, Rotroff DM, Hazen SL, Tang WHW, Aucejo F, Brown JM. Circulating Gut Microbe-Derived Metabolites Are Associated with Hepatocellular Carcinoma. Biomedicines 2024; 12:1946. [PMID: 39335460 PMCID: PMC11428887 DOI: 10.3390/biomedicines12091946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. The gut microbiome has been implicated in outcomes for HCC, and gut microbe-derived products may serve as potential non-invasive indices for early HCC detection. This study evaluated differences in plasma concentrations of gut microbiota-derived metabolites. METHODS Forty-one patients with HCC and 96 healthy controls were enrolled from surgical clinics at the Cleveland Clinic from 2016 to 2020. Gut microbiota-derived circulating metabolites detectable in plasma were compared between patients with HCC and healthy controls. Hierarchical clustering was performed for generating heatmaps based on circulating metabolite concentrations using ClustVis, with Euclidean and Ward settings and significant differences between metabolite concentrations were tested using a binary logistic regression model. RESULTS In patients with HCC, 25 (61%) had histologically confirmed cirrhosis. Trimethylamine (TMA)-related metabolites were found at higher concentrations in those with HCC, including choline (p < 0.001), betaine (p < 0.001), carnitine (p = 0.007), TMA (p < 0.001) and trimethylamine N-oxide (TMAO, p < 0.001). Notably, concentrations of P-cresol glucuronide (p < 0.001), indole-lactic acid (p = 0.038), 5-hydroxyindoleacetic acid (p < 0.0001) and 4-hydroxyphenyllactic acid (p < 0.001) were also increased in those with HCC compared to healthy controls. Hierarchical clustering of the metabolite panel separated patients based on the presence of HCC (p < 0.001), but was not able to distinguish between patients with HCC based on the presence of cirrhosis (p = 0.42). CONCLUSIONS Gut microbiota-derived metabolites were differentially abundant in patients with HCC versus healthy controls. The observed perturbations of the TMAO pathway in HCC seem particularly promising as a target of future research and may have both diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Rakhee Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.B.); (V.U.); (V.V.); (M.M.); (J.S.Y.)
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; (Z.W.); (O.R.); (J.D.L.); (S.L.H.); (W.H.W.T.)
| | - Chase J. Wehrle
- Department of Hepato-Pancreato-Biliary and Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Zeneng Wang
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; (Z.W.); (O.R.); (J.D.L.); (S.L.H.); (W.H.W.T.)
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Jennifer D. Wilcox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Vinayak Uppin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.B.); (V.U.); (V.V.); (M.M.); (J.S.Y.)
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; (Z.W.); (O.R.); (J.D.L.); (S.L.H.); (W.H.W.T.)
| | - Venkateshwari Varadharajan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.B.); (V.U.); (V.V.); (M.M.); (J.S.Y.)
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; (Z.W.); (O.R.); (J.D.L.); (S.L.H.); (W.H.W.T.)
| | - Marko Mrdjen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.B.); (V.U.); (V.V.); (M.M.); (J.S.Y.)
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; (Z.W.); (O.R.); (J.D.L.); (S.L.H.); (W.H.W.T.)
| | - Courtney Hershberger
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.H.); (D.M.R.)
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ofer Reizes
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; (Z.W.); (O.R.); (J.D.L.); (S.L.H.); (W.H.W.T.)
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Jennifer S. Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.B.); (V.U.); (V.V.); (M.M.); (J.S.Y.)
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; (Z.W.); (O.R.); (J.D.L.); (S.L.H.); (W.H.W.T.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Justin D. Lathia
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; (Z.W.); (O.R.); (J.D.L.); (S.L.H.); (W.H.W.T.)
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.H.); (D.M.R.)
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH 44195, USA
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stanley L. Hazen
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; (Z.W.); (O.R.); (J.D.L.); (S.L.H.); (W.H.W.T.)
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Cleveland Clinic Foundation, Heart, Vascular and Thoracic Institute, Cleveland, OH 44195, USA
| | - W. H. Wilson Tang
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; (Z.W.); (O.R.); (J.D.L.); (S.L.H.); (W.H.W.T.)
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Cleveland Clinic Foundation, Heart, Vascular and Thoracic Institute, Cleveland, OH 44195, USA
| | - Federico Aucejo
- Department of Hepato-Pancreato-Biliary and Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44195, USA
| | - J. Mark Brown
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.B.); (V.U.); (V.V.); (M.M.); (J.S.Y.)
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; (Z.W.); (O.R.); (J.D.L.); (S.L.H.); (W.H.W.T.)
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
5
|
Liang J, Liao Y, Tu Z, Liu J. Revamping Hepatocellular Carcinoma Immunotherapy: The Advent of Microbial Neoantigen Vaccines. Vaccines (Basel) 2024; 12:930. [PMID: 39204053 PMCID: PMC11359864 DOI: 10.3390/vaccines12080930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Immunotherapy has revolutionized the treatment paradigm for hepatocellular carcinoma (HCC). However, its efficacy varies significantly with each patient's genetic composition and the complex interactions with their microbiome, both of which are pivotal in shaping anti-tumor immunity. The emergence of microbial neoantigens, a novel class of tumor vaccines, heralds a transformative shift in HCC therapy. This review explores the untapped potential of microbial neoantigens as innovative tumor vaccines, poised to redefine current HCC treatment modalities. For instance, neoantigens derived from the microbiome have demonstrated the capacity to enhance anti-tumor immunity in colorectal cancer, suggesting similar applications in HCC. By harnessing these unique neoantigens, we propose a framework for a personalized immunotherapeutic response, aiming to deliver a more precise and potent treatment strategy for HCC. Leveraging these neoantigens could significantly advance personalized medicine, potentially revolutionizing patient outcomes in HCC therapy.
Collapse
Affiliation(s)
| | | | | | - Jinping Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (J.L.); (Y.L.); (Z.T.)
| |
Collapse
|
6
|
Galasso L, Cerrito L, Maccauro V, Termite F, Ainora ME, Gasbarrini A, Zocco MA. Hepatocellular Carcinoma and the Multifaceted Relationship with Its Microenvironment: Attacking the Hepatocellular Carcinoma Defensive Fortress. Cancers (Basel) 2024; 16:1837. [PMID: 38791916 PMCID: PMC11119751 DOI: 10.3390/cancers16101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Hepatocellular carcinoma is a malignant tumor that originates from hepatocytes in an inflammatory substrate due to different degrees of liver fibrosis up to cirrhosis. In recent years, there has been growing interest in the role played by the complex interrelationship between hepatocellular carcinoma and its microenvironment, capable of influencing tumourigenesis, neoplastic growth, and its progression or even inhibition. The microenvironment is made up of an intricate network of mesenchymal cells, immune system cells, extracellular matrix, and growth factors, as well as proinflammatory cytokines and translocated bacterial products coming from the intestinal microenvironment via the enterohepatic circulation. The aim of this paper is to review the role of the HCC microenvironment and describe the possible implications in the choice of the most appropriate therapeutic scheme in the prediction of tumor response or resistance to currently applied treatments and in the possible development of future therapeutic perspectives, in order to circumvent resistance and break down the tumor's defensive fort.
Collapse
Affiliation(s)
- Linda Galasso
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
| | - Lucia Cerrito
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Valeria Maccauro
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
| | - Fabrizio Termite
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
| | - Maria Elena Ainora
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| |
Collapse
|
7
|
Werner W, Kuzminskaya M, Lurje I, Tacke F, Hammerich L. Overcoming Resistance to Immune Checkpoint Blockade in Liver Cancer with Combination Therapy: Stronger Together? Semin Liver Dis 2024; 44:159-179. [PMID: 38806159 PMCID: PMC11245330 DOI: 10.1055/a-2334-8311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Primary liver cancer, represented mainly by hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (CCA), is one of the most common and deadliest tumors worldwide. While surgical resection or liver transplantation are the best option in early disease stages, these tumors often present in advanced stages and systemic treatment is required to improve survival time. The emergence of immune checkpoint inhibitor (ICI) therapy has had a positive impact especially on the treatment of advanced cancers, thereby establishing immunotherapy as part of first-line treatment in HCC and CCA. Nevertheless, low response rates reflect on the usually cold or immunosuppressed tumor microenvironment of primary liver cancer. In this review, we aim to summarize mechanisms of resistance leading to tumor immune escape with a special focus on the composition of tumor microenvironment in both HCC and CCA, also reflecting on recent important developments in ICI combination therapy. Furthermore, we discuss how combination of ICIs with established primary liver cancer treatments (e.g. multikinase inhibitors and chemotherapy) as well as more complex combinations with state-of-the-art therapeutic concepts may reshape the tumor microenvironment, leading to higher response rates and long-lasting antitumor immunity for primary liver cancer patients.
Collapse
Affiliation(s)
- Wiebke Werner
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Maria Kuzminskaya
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Isabella Lurje
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Chen ZT, Ding CC, Chen KL, Gu YJ, Lu CC, Li QY. Causal roles of gut microbiota in cholangiocarcinoma etiology suggested by genetic study. World J Gastrointest Oncol 2024; 16:1319-1333. [PMID: 38660662 PMCID: PMC11037042 DOI: 10.4251/wjgo.v16.i4.1319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a highly malignant biliary tract cancer with poor prognosis. Previous studies have implicated the gut microbiota in CCA, but evidence for causal mechanisms is lacking. AIM To investigate the causal relationship between gut microbiota and CCA risk. METHODS We performed a two-sample mendelian randomization study to evaluate potential causal associations between gut microbiota and CCA risk using genome-wide association study summary statistics for 196 gut microbial taxa and CCA. Genetic variants were used as instrumental variables. Multiple sensitivity analyses assessed result robustness. RESULTS Fifteen gut microbial taxa showed significant causal associations with CCA risk. Higher genetically predicted abundance of genus Eubacteriumnodatum group, genus Ruminococcustorques group, genus Coprococcus, genus Dorea, and phylum Actinobacteria were associated with reduced risk of gallbladder cancer and extrahepatic CCA. Increased intrahepatic CCA risk was associated with higher abundance of family Veillonellaceae, genus Alistipes, order Enterobacteriales, and phylum Firmicutes. Protective effects against CCA were suggested for genus Collinsella, genus Eisenbergiella, genus Anaerostipes, genus Paraprevotella, genus Parasutterella, and phylum Verrucomicrobia. Sensitivity analyses indicated these findings were reliable without pleiotropy. CONCLUSION This pioneering study provides novel evidence that specific gut microbiota may play causal roles in CCA risk. Further experimental validation of these candidate microbes is warranted to consolidate causality and mechanisms.
Collapse
Affiliation(s)
- Zhi-Tao Chen
- Division of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310000, Zhejiang Province, China
| | - Chen-Chen Ding
- Pediatric Psychology, The Affiliated Mental Health Centre & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Kai-Lei Chen
- School of Medicine, Zhejiang Shuren University, Hangzhou 310000, Zhejiang Province, China
| | - Yang-Jun Gu
- Division of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310000, Zhejiang Province, China
| | - Chi-Cheng Lu
- School of Medicine, Zhejiang Chinese Medical University Zhejiang Shuren College, Hangzhou 310000, Zhejiang Province, China
| | - Qi-Yong Li
- Division of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|