1
|
Dehghani A, Bango C, Murphy EK, Halter RJ, Wager TD. Independent effects of transcranial direct current stimulation and social influence on pain. Pain 2024:00006396-990000000-00657. [PMID: 39167466 DOI: 10.1097/j.pain.0000000000003338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/28/2024] [Indexed: 08/23/2024]
Abstract
ABSTRACT Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulatory technique with the potential to provide pain relief. However, tDCS effects on pain are variable across existing studies, possibly related to differences in stimulation protocols and expectancy effects. We investigated the independent and joint effects of contralateral motor cortex tDCS (anodal vs cathodal) and socially induced expectations (analgesia vs hyperalgesia) about tDCS on thermal pain. We employed a double-blind, randomized 2 × 2 factorial cross-over design, with 5 sessions per participant on separate days. After calibration in Session 1, Sessions 2 to 5 crossed anodal or cathodal tDCS (20 minutes 2 mA) with socially induced analgesic or hyperalgesic expectations, with 6 to 7 days between the sessions. The social manipulation involved videos of previous "participants" (confederates) describing tDCS as inducing a low-pain state ("analgesic expectancy") or hypersensitivity to sensation ("hyperalgesic expectancy"). Anodal tDCS reduced pain compared with cathodal stimulation (F(1,19.9) = 19.53, P < 0.001, Cohen d = 0.86) and analgesic expectancy reduced pain compared with hyperalgesic expectancy (F(1,19.8) = 5.62, P = 0.027, Cohen d = 0.56). There was no significant interaction between tDCS and social expectations. Effects of social suggestions were related to expectations, whereas tDCS effects were unrelated to expectancies. The observed additive effects provide novel evidence that tDCS and socially induced expectations operate through independent processes. They extend clinical tDCS studies by showing tDCS effects on controlled nociceptive pain independent of expectancy effects. In addition, they show that social suggestions about neurostimulation effects can elicit potent placebo effects.
Collapse
Affiliation(s)
- Amin Dehghani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Carmen Bango
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Ethan K Murphy
- Thayer School of Engineering and Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Ryan J Halter
- Thayer School of Engineering and Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
2
|
Kim DJ, Nascimento TD, Lim M, Danciu T, Zubieta JK, Scott PJH, Koeppe R, Kaciroti N, DaSilva AF. Exploring HD-tDCS Effect on μ-opioid Receptor and Pain Sensitivity in Temporomandibular Disorder: A Pilot Randomized Clinical Trial Study. THE JOURNAL OF PAIN 2024; 25:1070-1081. [PMID: 37956741 DOI: 10.1016/j.jpain.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/05/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
This study explored the association between experimentally-induced pain sensitivity and µ-opioid receptor (μOR) availability in patients with temporomandibular disorder (TMD) and further investigated any changes in the pain and μOR availability following high-definition transcranial direct current stimulation (HD-tDCS) over the primary motor cortex (M1) with pilot randomized clinical trials. Seven patients with TMD completed either active (n = 3) or sham treatment (n = 4) for 10 daily sessions and underwent positron emission tomography (PET) scans with [11C]carfentanil, a selective μOR agonist, a week before and after treatment. PET imaging consisted of an early resting and late phase with the sustained masseteric pain challenge by computer-controlled injection of 5% hypertonic saline. We also included 12 patients with TMD, obtained from our previous study, for baseline PET analysis. We observed that patients with more sensitivity to pain, indicated by lower infusion rate, had less μOR availability in the right amygdala during the late phase. Moreover, active M1 HD-tDCS, compared to sham, increased μOR availability post-treatment in the thalamus during the early resting phase and the amygdala, hippocampus, and parahippocampal gyrus during the late pain challenge phase. Importantly, increased μOR availability post-treatment in limbic structures including the amygdala and hippocampus was associated with decreased pain sensitivity. The findings underscore the role of the μOR system in pain regulation and the therapeutic potential of HD-tDCS for TMD. Nonetheless, large-scale studies are necessary to establish the clinical significance of these results. TRIAL REGISTRATION: ClinicalTrial.gov (NCT03724032) PERSPECTIVE: This study links pain sensitivity and µ-opioid receptors in patients with TMD. HD-tDCS over M1 improved µOR availability, which was associated with reduced pain sensitivity. Implications for TMD pain management are promising, but larger clinical trials are essential for validation.
Collapse
Affiliation(s)
- Dajung J Kim
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| | - Thiago D Nascimento
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| | - Manyoel Lim
- Food Processing Research Group, Food Convergence Research Division, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| | - Theodora Danciu
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Jon-Kar Zubieta
- Department of Psychiatry, Mass General Brigham, Newton-Wellesley Hospital, Newton, Massachusetts
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Robert Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Niko Kaciroti
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Alexandre F DaSilva
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
3
|
Azarkolah A, Noorbala AA, Ansari S, Hallajian AH, Salehinejad MA. Efficacy of Transcranial Direct Current Stimulation on Pain Level and Disability of Patients with Fibromyalgia: A Systematic Review of Randomized Controlled Trials with Parallel-Group Design. Brain Sci 2023; 14:26. [PMID: 38248241 PMCID: PMC10813480 DOI: 10.3390/brainsci14010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has been increasingly applied in fibromyalgia (FM) to reduce pain and fatigue. While results are promising, observed effects are variable, and there are questions about optimal stimulation parameters such as target region (e.g., motor vs. prefrontal cortices). This systematic review aimed to provide the latest update on published randomized controlled trials with a parallel-group design to examine the specific effects of active tDCS in reducing pain and disability in FM patients. Using the PRISMA approach, a literature search identified 14 randomized controlled trials investigating the effects of tDCS on pain and fatigue in patients with FM. Assessment of biases shows an overall low-to-moderate risk of bias. tDCS was found effective in all included studies conducted in patients with FM, except one study, in which the improving effects of tDCS were due to placebo. We recommended tDCS over the motor and prefrontal cortices as "effective" and "probably effective" respectively, and also safe for reducing pain perception and fatigue in patients with FM, according to evidence-based guidelines. Stimulation polarity was anodal in all studies, and one single-session study also examined cathodal polarity. The stimulation intensity ranged from 1-mA (7.14% of studies) to 1.5-mA (7.14% of studies) and 2-mA (85.7% of studies). In all of the included studies, a significant improvement in at least one outcome variable (pain or fatigue reduction) was observed. Moreover, 92.8% (13 of 14) applied multi-session tDCS protocols in FM treatment and reported significant improvement in their outcome variables. While tDCS is therapeutically effective for FM, titration studies that systematically evaluate different stimulation intensities, durations, and electrode placement are needed.
Collapse
Affiliation(s)
- Anita Azarkolah
- Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran P.O. Box 1416634793, Iran
- Psychosomatic Medicine Research Center, Tehran University of Medical Sciences, Tehran P.O. Box 1416634793, Iran
| | - Ahmad Ali Noorbala
- Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran P.O. Box 1416634793, Iran
- Psychosomatic Medicine Research Center, Tehran University of Medical Sciences, Tehran P.O. Box 1416634793, Iran
| | - Sahar Ansari
- Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran P.O. Box 1416634793, Iran
- Psychosomatic Medicine Research Center, Tehran University of Medical Sciences, Tehran P.O. Box 1416634793, Iran
| | | | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz-Institut für Arbeitsforschung, 44139 Dortmund, Germany
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran P.O. Box 1956836613, Iran
| |
Collapse
|
4
|
Liu Z, Chen X, Chen P, Wang L. Transcranial Direct Current Stimulation Attenuates the Chronic Pain of Osteoarthritis in Rats via Reducing NMDAR2B Expressions in the Spinal Cord. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2023; 23:498-505. [PMID: 38037367 PMCID: PMC10696371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVES Osteoarthritis (OA) has been the common cause to lead to chronic pain. Transcranial direct current stimulation (tDCS) is effective in the treatment of chronic pain, but its analgesic mechanism is still unclear. This study observed the analgesic effects of tDCS in rats to explore the top-down analgesic modulation mechanism of tDCS. METHODS Monosodium iodoacetate (MIA) was used to establish OA chronic pain model. After 21 days, the rats received tDCS for 14 consecutive days (20 min/day). We assessed the pain-related behaviors of rats at different time points. Western blot and Immunohistochemistry were performed to observe the expression level of NMDAR2B in the spinal cord after tDCS treatment. RESULTS After MIA injection, rats developed apparent mechanical hyperalgesia and thermal hyperalgesia. However, the pain-related behaviors of rats were significantly improved after tDCS treatment. In addition, the expression of NMDAR2B and the proportion of positive stained cells of NMDAR2B were reversed by tDCS treatment. CONCLUSIONS The results demonstrated that tDCS can attenuate OA-induced chronic pain in rats via reducing NMDAR2B expressions in the spinal cord. We believe that this may be the result of tDCS participating in the top-down modulation of pain pathway in the endogenous analgesic system.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong Province, China
| | - Xia Chen
- Department of Pulmonary and Critial Care Medicine (PCCM), Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong Province, China
| | - Peng Chen
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong Province, China
| | - Lili Wang
- Department of Pulmonary and Critial Care Medicine (PCCM), Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong Province, China
| |
Collapse
|
5
|
Conti L, Marzorati C, Grasso R, Ferrucci R, Priori A, Mameli F, Ruggiero F, Pravettoni G. Home-Based Treatment for Chronic Pain Combining Neuromodulation, Computer-Assisted Training, and Telemonitoring in Patients With Breast Cancer: Protocol for a Rehabilitative Study. JMIR Res Protoc 2023; 12:e49508. [PMID: 37971805 PMCID: PMC10690524 DOI: 10.2196/49508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Chronic pain is a disabling symptom frequently reported in patients with breast cancer with a prevalence ranging from 25% to 60%, representing a major health issue. It has negative consequences on health status, causing psychological distress and affecting quality of life. Furthermore, the clinical management of chronic pain is often inadequate, and many patients do not benefit from the administration of pharmacological treatments. Alternative therapeutic options have been implemented to improve the psychophysical well-being of patients, including neuromodulation and complementary interventions. OBJECTIVE We aimed to investigate the effectiveness of a home care strategy combining computerized rehabilitation, transcranial direct current stimulation (tDCS), and remote telemonitoring via a web-based platform in patients with breast cancer suffering for chronic pain. METHODS A web-based structured survey aimed at monitoring chronic pain and its effect on psychological functions will be delivered to patients with breast cancer through social media and email. In total, 42 patients with breast cancer affected by chronic pain will be recruited during the medical screening visit. The patients will be randomly divided into 3 treatment groups that will carry out either tDCS only, exercise therapy only, or a combination of both over a 3-week period. All the treatments will be delivered at the patients' home through the use of a system including a tablet, wearable inertial sensors, and a tDCS programmable medical device. Using web-based questionnaires, the perception of pain (based on the pain self-efficacy questionnaire, visual analogue scale, pain catastrophizing scale, and brief pain inventory) and psychological variables (based on the hospital and anxiety depression scale and 12-item short form survey) will be assessed at the beginning of treatment, 1 week after the start of treatment, at the end of treatment, 1 month after the start of treatment, and 3 months after the start of treatment. The system's usability (based on the mobile app rating scale and system usability scale) and its involvement in the decision-making process (based on the 9-item shared decision-making questionnaire) will be also evaluated. Finally, at the end of the treatment, a digital focus group will be conducted with the 42 patients to explore their unexpressed needs and preferences concerning treatment. RESULTS The study project is scheduled to start in June 2023, and it is expected to be completed by August 2025. CONCLUSIONS We expect that the combination of tDCS and telemedicine programs will reduce pain perceived by patients with breast cancer and improve their mental well-being more effectively than single interventions. Furthermore, we assume that this home-based approach will also improve patients' participation in routine clinical care, reducing disparities in accessing health care processes. This integrated home care strategy could be useful for patients with breast cancer who cannot find relief from chronic pain with pharmacological treatments or for those who have limited access to care due to poor mobility or geographical barriers, thus increasing the patients' empowerment and reducing health care costs. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/49508.
Collapse
Affiliation(s)
- Lorenzo Conti
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Marzorati
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Grasso
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Roberta Ferrucci
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Neurophysiology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Priori
- ASST Santi Paolo e Carlo San Paolo University Hospital, Milan, Italy
- Aldo Ravelli' Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Milan, Italy
| | - Francesca Mameli
- Neurophysiology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabiana Ruggiero
- Neurophysiology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gabriella Pravettoni
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
6
|
DaSilva AF, Kim DJ, Lim M, Nascimento TD, Scott PJH, Smith YR, Koeppe RA, Zubieta JK, Kaciroti N. Effect of High-Definition Transcranial Direct Current Stimulation on Headache Severity and Central µ-Opioid Receptor Availability in Episodic Migraine. J Pain Res 2023; 16:2509-2523. [PMID: 37497372 PMCID: PMC10368121 DOI: 10.2147/jpr.s407738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
Objective The current understanding of utilizing HD-tDCS as a targeted approach to improve headache attacks and modulate endogenous opioid systems in episodic migraine is relatively limited. This study aimed to determine whether high-definition transcranial direct current stimulation (HD-tDCS) over the primary motor cortex (M1) can improve clinical outcomes and endogenous µ-opioid receptor (µOR) availability for episodic migraineurs. Methods In a randomized, double-blind, and sham-controlled trial, 25 patients completed 10-daily 20-min M1 HD-tDCS, repeated Positron Emission Tomography (PET) scans with a selective agonist for µOR. Twelve age- and sex-matched healthy controls participated in the baseline PET/MRI scan without neuromodulation. The primary endpoints were moderate-to-severe (M/S) headache days and responder rate (≥50% reduction on M/S headache days from baseline), and secondary endpoints included the presence of M/S headache intensity and the use of rescue medication over 1-month after treatment. Results In a one-month follow-up, at initial analysis, both the active and sham groups exhibited no significant differences in their primary outcomes (M/S headache days and responder rates). Similarly, secondary outcomes (M/S headache intensity and the usage of rescue medication) also revealed no significant differences between the two groups. However, subsequent analyses showed that active M1 HD-tDCS, compared to sham, resulted in a more beneficial response predominantly in higher-frequency individuals (>3 attacks/month), as demonstrated by the interaction between treatment indicator and baseline frequency of migraine attacks on the primary outcomes. These favorable outcomes were also confirmed for the secondary endpoints in higher-frequency patients. Active treatment also resulted in increased µOR concentration compared to sham in the limbic and descending pain modulatory pathway. Our exploratory mediation analysis suggests that the observed clinical efficacy of HD-tDCS in patients with higher-frequency conditions might be potentially mediated through an increase in µOR availability. Conclusion The 10-daily M1 HD-tDCS can improve clinical outcomes in episodic migraineurs with a higher baseline frequency of migraine attacks (>3 attacks/month). This improvement may be, in part, facilitated by the increase in the endogenous µOR availability. Clinical Trial Registration www.ClinicalTrials.gov, identifier - NCT02964741.
Collapse
Affiliation(s)
- Alexandre F DaSilva
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Dajung J Kim
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Manyoel Lim
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Thiago D Nascimento
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Yolanda R Smith
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jon-Kar Zubieta
- Department of Psychiatry, Mass General Brigham, Newton-Wellesley Hospital, Newton, MA, USA
| | - Niko Kaciroti
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|