1
|
Lenahan A, Mietzsch U, Wood TR, Callahan KP, Weiss EM, Miller DE, German K, Natarajan N, Puia-Dumitrescu M, Esposito V, Kolnik S, Law JB. Characteristics, Genetic Testing, and Diagnoses of Infants with Neonatal Encephalopathy Not Due to Hypoxic Ischemic Encephalopathy: A Cohort Study. J Pediatr 2023; 260:113533. [PMID: 37269901 DOI: 10.1016/j.jpeds.2023.113533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/29/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To characterize the presentation and evaluation of infants with neonatal encephalopathy (NE) not due to hypoxic-ischemic encephalopathy (non-HIE NE) and to describe the genetic abnormalities identified. STUDY DESIGN Retrospective cohort study of 193 non-HIE NE neonates admitted to a level IV NICU from 2015 through 2019. For changes in testing over time, Cochrane-Armitage test for trend was used with a Bonferroni-corrected P-value, and comparison between groups was performed using Fisher exact test. RESULT The most common symptom of non-HIE NE was abnormal tone in 47% (90/193). Ten percent (19/193) died prior to discharge, and 48% of survivors (83/174) required medical equipment at discharge. Forty percent (77/193) underwent genetic testing as an inpatient. Of 52 chromosomal studies, 54 targeted tests, and 16 exome sequences, 10%, 41%, and 69% were diagnostic, respectively, with no difference in diagnostic rates between infants with and without an associated congenital anomaly and/or dysmorphic feature. Twenty-eight genetic diagnoses were identified. CONCLUSIONS Neonates with non-HIE NE have high rates of morbidity and mortality and may benefit from early genetic testing, even in the absence of other exam findings. This study broadens our knowledge of genetic conditions underlying non-HIE NE, which may enable families and care teams to anticipate the needs of the individual, allow early initiation of targeted therapies, and facilitate decisions surrounding goals of care.
Collapse
Affiliation(s)
- Arthur Lenahan
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Ulrike Mietzsch
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Thomas R Wood
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Katharine Press Callahan
- Department of Pediatrics, Children's Hospital of Philadelphia, PA; Department of Medical Ethics and Health Policy, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Elliott M Weiss
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Danny E Miller
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Kendell German
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Niranjana Natarajan
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA; Division of Pediatric Neurology, Department of Neurology, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Mihai Puia-Dumitrescu
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Valentine Esposito
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Sarah Kolnik
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Janessa B Law
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA.
| |
Collapse
|
2
|
Ye J, Tang S, Miao P, Gong Z, Shu Q, Feng J, Li Y. Clinical analysis and functional characterization of KCNQ2-related developmental and epileptic encephalopathy. Front Mol Neurosci 2023; 16:1205265. [PMID: 37497102 PMCID: PMC10366601 DOI: 10.3389/fnmol.2023.1205265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Background Developmental and epileptic encephalopathy (DEE) is a condition characterized by severe seizures and a range of developmental impairments. Pathogenic variants in KCNQ2, encoding for potassium channel subunit, cause KCNQ2-related DEE. This study aimed to examine the relationships between genotype and phenotype in KCNQ2-related DEE. Methods In total, 12 patients were enrolled in this study for genetic testing, clinical analysis, and developmental evaluation. Pathogenic variants of KCNQ2 were characterized through a whole-cell electrophysiological recording expressed in Chinese hamster ovary (CHO) cells. The expression levels of the KCNQ2 subunit and its localization at the plasma membrane were determined using Western blot analysis. Results Seizures were detected in all patients. All DEE patients showed evidence of developmental delay. In total, 11 de novo KCNQ2 variants were identified, including 10 missense variants from DEE patients and one truncating variant from a patient with self-limited neonatal epilepsy (SeLNE). All variants were found to be loss of function through analysis of M-currents using patch-clamp recordings. The functional impact of variants on M-current in heteromericKCNQ2/3 channels may be associated with the severity of developmental disorders in DEE. The variants with dominant-negative effects in heteromeric channels may be responsible for the profound developmental phenotype. Conclusion The mechanism underlying KCNQ2-related DEE involves a reduction of the M-current through dominant-negative effects, and the severity of developmental disorders in DEE may be predicted by the impact of variants on the M-current of heteromericKCNQ2/3 channels.
Collapse
Affiliation(s)
- Jia Ye
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyang Tang
- Pediatric Department, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pu Miao
- Pediatric Department, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhefeng Gong
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Pediatric Department, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Feng
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuezhou Li
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Najm I, Lal D, Alonso Vanegas M, Cendes F, Lopes-Cendes I, Palmini A, Paglioli E, Sarnat HB, Walsh CA, Wiebe S, Aronica E, Baulac S, Coras R, Kobow K, Cross JH, Garbelli R, Holthausen H, Rössler K, Thom M, El-Osta A, Lee JH, Miyata H, Guerrini R, Piao YS, Zhou D, Blümcke I. The ILAE consensus classification of focal cortical dysplasia: An update proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia 2022; 63:1899-1919. [PMID: 35706131 PMCID: PMC9545778 DOI: 10.1111/epi.17301] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023]
Abstract
Ongoing challenges in diagnosing focal cortical dysplasia (FCD) mandate continuous research and consensus agreement to improve disease definition and classification. An International League Against Epilepsy (ILAE) Task Force (TF) reviewed the FCD classification of 2011 to identify existing gaps and provide a timely update. The following methodology was applied to achieve this goal: a survey of published literature indexed with ((Focal Cortical Dysplasia) AND (epilepsy)) between 01/01/2012 and 06/30/2021 (n = 1349) in PubMed identified the knowledge gained since 2012 and new developments in the field. An online survey consulted the ILAE community about the current use of the FCD classification scheme with 367 people answering. The TF performed an iterative clinico-pathological and genetic agreement study to objectively measure the diagnostic gap in blood/brain samples from 22 patients suspicious for FCD and submitted to epilepsy surgery. The literature confirmed new molecular-genetic characterizations involving the mechanistic Target Of Rapamycin (mTOR) pathway in FCD type II (FCDII), and SLC35A2 in mild malformations of cortical development (mMCDs) with oligodendroglial hyperplasia (MOGHE). The electro-clinical-imaging phenotypes and surgical outcomes were better defined and validated for FCDII. Little new information was acquired on clinical, histopathological, or genetic characteristics of FCD type I (FCDI) and FCD type III (FCDIII). The survey identified mMCDs, FCDI, and genetic characterization as fields for improvement in an updated classification. Our iterative clinico-pathological and genetic agreement study confirmed the importance of immunohistochemical staining, neuroimaging, and genetic tests to improve the diagnostic yield. The TF proposes to include mMCDs, MOGHE, and "no definite FCD on histopathology" as new categories in the updated FCD classification. The histopathological classification can be further augmented by advanced neuroimaging and genetic studies to comprehensively diagnose FCD subtypes; these different levels should then be integrated into a multi-layered diagnostic scheme. This update may help to foster multidisciplinary efforts toward a better understanding of FCD and the development of novel targeted treatment options.
Collapse
Affiliation(s)
- Imad Najm
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland, Ohio, USA
| | - Dennis Lal
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland, Ohio, USA.,Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Fernando Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil.,Department of Neurology, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Iscia Lopes-Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil.,Department of Translational Medicine, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Andre Palmini
- Department of Clinical Neurosciences, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Porto Alegre Epilepsy Surgery Program, Hospital São Lucas PUCRS, Porto Alegre, Brazil
| | - Eliseu Paglioli
- Department of Surgery, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Harvey B Sarnat
- Department of Paediatrics, Department of Pathology (Neuropathology) and Department of Clinical Neurosciences, University of Calgary Faculty of Medicine, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Christopher A Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel Wiebe
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Roland Coras
- Department of Neuropathology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katja Kobow
- Developmental Neurosciences Programme, UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - J Helen Cross
- Developmental Neurosciences Programme, UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Hans Holthausen
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen-Clinic, Vogtareuth, Germany
| | - Karl Rössler
- Department of Neurosurgery, Allgemeines Krankenhaus Wien, Vienna Medical University, Wien, Austria
| | - Maria Thom
- Department of Neuropathology, Institute of Neurology, University College London, UK
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, KAIST and SoVarGen, Daejeon, South Korea
| | - Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Anna Meyer- University of Florence, Florence, Italy
| | - Yue-Shan Piao
- National Center for Neurological Disorders, Department of Pathology, Xuanwu Hospital, Capital Medical University, and Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ingmar Blümcke
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland, Ohio, USA.,Department of Neuropathology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
4
|
Xiao T, Chen X, Xu Y, Chen H, Dong X, Yang L, Wu B, Chen L, Li L, Zhuang D, Chen D, Zhou Y, Wang H, Zhou W. Clinical Study of 30 Novel KCNQ2 Variants/Deletions in KCNQ2-Related Disorders. Front Mol Neurosci 2022; 15:809810. [PMID: 35557555 PMCID: PMC9088225 DOI: 10.3389/fnmol.2022.809810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/02/2022] [Indexed: 11/24/2022] Open
Abstract
Background KCNQ2-related disorder is typically characterized as neonatal onset seizure and epileptic encephalopathy. The relationship between its phenotype and genotype is still elusive. This study aims to provide clinical features, management, and prognosis of patients with novel candidate variants of the KCNQ2 gene. Methods We enrolled patients with novel variants in the KCNQ2 gene from the China Neonatal Genomes Project between January 2018 and January 2021. All patients underwent next-generation sequencing tests and genetic data were analyzed by an in-house pipeline. The pathogenicity of variants was classified according to the guideline of the American College of Medical Genetics. Each case was evaluated by two geneticists back to back. Patients' information was acquired from clinical records. Results A total of 30 unrelated patients with novel variants in the KCNQ2 gene were identified, including 19 patients with single-nucleotide variants (SNVs) and 11 patients with copy number variants (CNVs). For the 19 SNVs, 12 missense variants and 7 truncating variants were identified. Of them, 36.8% (7/19) of the KCNQ2 variants were located in C-terminal regions, 15.7% (3/19) in segment S2, and 15.7% (3/19) in segment S4. Among them, 18 of 19 patients experienced seizures in the early neonatal period. However, one patient presented neurodevelopmental delay (NDD) as initial phenotype when he was 2 months old, and he had severe NDD when he was 3 years old. This patient did not present seizure but had abnormal electrographic background activity and brain imaging. Moreover, for the 11 patients with CNVs, 20q13.3 deletions involving EEF1A2, KCNQ2, and CHRNA4 genes were detected. All of them presented neonatal-onset seizures, responded to antiepileptic drugs, and had normal neurological development. Conclusion In this study, patients with novel KCNQ2 variants have variable phenotypes, whereas patients with 20q13.3 deletion involving EEF1A2, KCNQ2, and CHRNA4 genes tend to have normal neurological development.
Collapse
Affiliation(s)
- Tiantian Xiao
- Department of Neonatology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiang Chen
- Department of Neonatology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yan Xu
- Division of Neurology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Huiyao Chen
- Center for Molecular Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Department of Endocrinology and Inherited Metabolic Diseases, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Liping Chen
- Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Long Li
- Department of Neonatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | | | - Dongmei Chen
- Quanzhou Women and Children's Hospital, Quanzhou, China
| | - Yuanfeng Zhou
- Division of Neurology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
- *Correspondence: Yuanfeng Zhou
| | - Huijun Wang
- Center for Molecular Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
- Huijun Wang
| | - Wenhao Zhou
- Department of Neonatology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
- Center for Molecular Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
5
|
Xu Y, Dou YL, Chen X, Dong XR, Wang XH, Wu BB, Cheng GQ, Zhou YF. Early initial video-electro-encephalography combined with variant location predict prognosis of KCNQ2-related disorder. BMC Pediatr 2021; 21:477. [PMID: 34711204 PMCID: PMC8555078 DOI: 10.1186/s12887-021-02946-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The clinical features of KCNQ2-related disorders range from benign familial neonatal seizures 1 to early infantile epileptic encephalopathy 7. The genotype-phenotypic association is difficult to establish. OBJECTIVE To explore potential factors in neonatal period that can predict the prognosis of neonates with KCNQ2-related disorder. METHODS Infants with KCNQ2-related disorder were retrospectively enrolled in our study in Children's Hospital of Fudan University in China from Jan 2015 to Mar 2020. All infants were older than age of 12 months at time of follow-up, and assessed by Bayley Scales of Infant and Toddler Development-Third Edition (BSID-III) or Wechsler preschool and primary scale of intelligence-fourth edition (WPPSI-IV), then divided into three groups based on scores of BSID-III or WPPSI-IV: normal group, mild impairment group, encephalopathy group. We collected demographic variables, clinical characteristics, neuroimaging data. Considered variables include gender, gestational age, birth weight, age of the initial seizures, early interictal VEEG, variant location, delivery type. Variables predicting prognosis were identified using multivariate ordinal logistic regression analysis. RESULTS A total of 52 infants were selected in this study. Early interictal video-electro-encephalography (VEEG) (β = 2.77, 1.20 to 4.34, P = 0.001), and variant location (β = 2.77, 0.03 to 5.5, P = 0.048) were independent risk factors for prognosis. The worse the early interictal VEEG, the worse the prognosis. Patients with variants located in the pore-lining domain or S4 segment are more likely to have a poor prognosis. CONCLUSIONS The integration of early initial VEEG and variant location can predict prognosis. An individual whose KCNQ2 variant located in voltage sensor, the pore domain, with worse early initial VEEG background, often had an adverse outcome.
Collapse
Affiliation(s)
- Yan Xu
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, NO.399 Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Ya-Lan Dou
- Department of clinical Epidemiology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiang Chen
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, NO.399 Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Xin-Ran Dong
- Molecular Medical Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xin-Hua Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, NO.399 Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Bing-Bing Wu
- The Molecular Genetic Diagnosis Center, Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Guo-Qiang Cheng
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, NO.399 Wanyuan Road, Minhang District, Shanghai, 201102, China.
| | - Yuan-Feng Zhou
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, NO.399 Wanyuan Road, Minhang District, Shanghai, 201102, China.
| |
Collapse
|
6
|
Phitsanuwong C. Genetic and Metabolic Neonatal Epilepsies. Pediatr Ann 2021; 50:e245-e253. [PMID: 34115564 DOI: 10.3928/19382359-20210518-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Seizures are a common neonatal neurological disorder with an incidence of 1 to 5 in 1,000 live births. Genetic and metabolic epilepsies account for 10% to 12% of all neonatal seizures. Correct identification and diagnosis are important factors, as they carry treatment and management implications. Clinical history, neurological examination, seizure types, epilepsy syndromes, and electroencephalogram findings can be used to guide the diagnosis of epilepsy. Genetic and metabolic epilepsies in neonates can be categorized practically into two groups: amenably treatable disorders, and the most common genetic epilepsies. The treatable disorders primarily consist of inborn errors of metabolism that have a specific therapy. The most common genetic epilepsies include monogenic disorders, which usually result from channelopathies, synaptic vesicle docking/release defect, or dysfunction of cell signaling. A step-wise diagnostic approach to genetic and metabolic epilepsies is proposed in this article to aid clinicians in providing care for newborns with seizures. [Pediatr Ann. 2020;50(6):e245-e253.].
Collapse
|
7
|
Allen NM, Weckhuysen S, Gorman K, King MD, Lerche H. Genetic potassium channel-associated epilepsies: Clinical review of the K v family. Eur J Paediatr Neurol 2020; 24:105-116. [PMID: 31932120 DOI: 10.1016/j.ejpn.2019.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/22/2022]
Abstract
Next-generation sequencing has enhanced discovery of many disease-associated genes in previously unexplained epilepsies, mainly in developmental and epileptic encephalopathies and familial epilepsies. We now classify these disorders according to the underlying molecular pathways, which encompass a diverse array of cellular and sub-cellular compartments/signalling processes including voltage-gated ion-channel defects. With the aim to develop and increase the use of precision medicine therapies, understanding the pathogenic mechanisms and consequences of disease-causing variants has gained major relevance in clinical care. The super-family of voltage-gated potassium channels is the largest and most diverse family among the ion channels, encompassing approximately 80 genes. Key potassium channelopathies include those affecting the KV, KCa and Kir families, a significant proportion of which have been implicated in neurological disease. As for other ion channel disorders, different pathogenic variants within any individual voltage-gated potassium channel gene tend to affect channel protein function differently, causing heterogeneous clinical phenotypes. The focus of this review is to summarise recent clinical developments regarding the key voltage-gated potassium (KV) family-related epilepsies, which now encompasses approximately 12 established disease-associated genes, from the KCNA-, KCNB-, KCNC-, KCND-, KCNV-, KCNQ- and KCNH-subfamilies.
Collapse
Affiliation(s)
- Nicholas M Allen
- Department of Paediatrics, National University of Ireland, Galway, Ireland; Department of Paediatrics (Neurology), Galway University Hospital, Ireland; Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| | - Sarah Weckhuysen
- Neurogenetics Group, Center for Molecular Neurology, VIB-University of Antwerp, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Kathleen Gorman
- Department of Paediatric Neurology & Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland; University College Dublin School of Medicine and Medical Science, University College, Dublin, Ireland
| | - Mary D King
- Department of Paediatric Neurology & Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland; University College Dublin School of Medicine and Medical Science, University College, Dublin, Ireland
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute of Clinical Brain Research, University of Tubingen, Germany
| |
Collapse
|
8
|
Jang SS, Kim SY, Kim H, Hwang H, Chae JH, Kim KJ, Kim JI, Lim BC. Diagnostic Yield of Epilepsy Panel Testing in Patients With Seizure Onset Within the First Year of Life. Front Neurol 2019; 10:988. [PMID: 31572294 PMCID: PMC6753218 DOI: 10.3389/fneur.2019.00988] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022] Open
Abstract
Purpose: We aimed to evaluate the diagnostic yield of epilepsy gene panel testing in epilepsy patients whose seizures began within the first year after birth. We included 112 patients with seizure onset before 12 months and no known etiology. Methods: Deep targeted sequencing with a custom-designed capture probe was performed to ensure the detection of germline or mosaic sequence variants and copy number variations (CNVs). Results: We identified pathogenic or likely pathogenic variants in 53 patients (47.3%, 53/112), including five with pathogenic CNVs. Two putative pathogenic mosaic variants in SCN8A and KCNQ2 were also detected and validated. Those with neonatal onset (61.5%, 16/26) or early infantile onset (50.0%, 29/58) showed higher diagnostic rates than those with late infantile onset (28.5%, 8/28). The diagnostic rate was similar between patients with a specific syndrome (51.9%, 27/52) and those with no recognizable syndrome (43.3%, 26/60). Conclusion: Epilepsy gene panel testing identified a genetic cause in nearly half of the infantile onset epilepsy patients. Since the phenotypic spectrum is expanding and characterizing it at seizure onset is difficult, this group should be prioritized for epilepsy gene panel testing.
Collapse
Affiliation(s)
- Se Song Jang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Hunmin Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Bundang-gu, South Korea
| | - Hee Hwang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Bundang-gu, South Korea
| | - Jong Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Ki Joong Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea.,Medical Research Center, Genomic Medicine Institute, Seoul National University, Seoul, South Korea
| | - Byung Chan Lim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| |
Collapse
|
9
|
Rubboli G, Plazzi G, Picard F, Nobili L, Hirsch E, Chelly J, Prayson RA, Boutonnat J, Bramerio M, Kahane P, Dibbens LM, Gardella E, Baulac S, Møller RS. Mild malformations of cortical development in sleep-related hypermotor epilepsy due to KCNT1 mutations. Ann Clin Transl Neurol 2018; 6:386-391. [PMID: 30847371 PMCID: PMC6389734 DOI: 10.1002/acn3.708] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/02/2018] [Accepted: 11/18/2018] [Indexed: 11/18/2022] Open
Abstract
Mutations in the sodium‐activated potassium channel gene KCNT1 have been associated with nonlesional sleep‐related hypermotor epilepsy (SHE). We report the co‐occurrence of mild malformation of cortical development (mMCD) and KCNT1 mutations in four patients with SHE. Focal cortical dysplasia type I was neuropathologically diagnosed after epilepsy surgery in three unrelated MRI‐negative patients, periventricular nodular heterotopia was detected in one patient by MRI. Our findings suggest that KCNT1 epileptogenicity may result not only from dysregulated excitability by controlling Na+K+ transport, but also from mMCD. Therefore, pathogenic variants in KCNT1 may encompass both lesional and nonlesional epilepsies.
Collapse
Affiliation(s)
- Guido Rubboli
- Danish Epilepsy Centre, Filadelfia Dianalund Denmark.,University of Copenhagen Copenhagen Denmark
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences University of Bologna Bologna Italy.,IRCCS Institute of Neurological Sciences Bologna Italy
| | - Fabienne Picard
- Department of Clinical Neurosciences University Hospitals and Medical School of Geneva Geneva Switzerland
| | - Lino Nobili
- Epilepsy Surgery Center Niguarda Hospital Milan Italy
| | - Edouard Hirsch
- INSERM Unité 964: Génétique et Physiopathologie des Maladies Neuro Dévelopmentales Epileptogènes Epilepsy Unit « Francis Rohmer » Hautepierre Hospital University Hospital Strasbourg France
| | - Jamel Chelly
- Service de Diagnostic Génétique Hôpital Civil de Strasbourg Hôpitaux Universitaires de Strasbourg Strasbourg France
| | | | - Jean Boutonnat
- Département d'Anatomie et de Cytologie Pathologiques Institut de Biologie et de Pathologie CHU de Grenoble Grenoble France
| | | | - Philippe Kahane
- Neurology Department Grenoble-Alpes University and Hospital Grenoble France
| | - Leanne M Dibbens
- Epilepsy Research Group School of Pharmacy and Medical Sciences University of South Australia and Sansom Institute for Health Research Adelaide Australia
| | - Elena Gardella
- Danish Epilepsy Centre, Filadelfia Dianalund Denmark.,Institute for Regional Health Services University of Southern Denmark Odense Denmark
| | - Stéphanie Baulac
- Institut du Cerveau et de la Moelle, ICM Inserm U1127 F-7501 Paris France.,CNRS UMR 7225 F-75013 Paris France.,Sorbonne Université F-75013 Paris France
| | - Rikke S Møller
- Danish Epilepsy Centre, Filadelfia Dianalund Denmark.,Institute for Regional Health Services University of Southern Denmark Odense Denmark
| |
Collapse
|
10
|
Saviola D, Chiari M, Battagliola E, Savi C, De Tanti A. Diagnostic work-up and rehabilitation of cerebral visual impairment in infancy: A case of epileptic perinatal encephalopathy due to KCNQ2-related channelopathy. J Pediatr Rehabil Med 2018; 11:133-137. [PMID: 28655139 DOI: 10.3233/prm-170440-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND There is evidence that channelopathies are the cause of many different neurological diseases. The epileptic perinatal encephalopathy due to mutation in the KCNQ2 gene is a rare disease involving severe tetraparesis and cerebral visual impairment. Diseases of this kind are associated with severe disability that involves multiple systems and requires accurate genetic diagnosis and early multidisciplinary care once clinical stability is reached. CASE REPORT We describe a case of a baby girl with KCNQ2 encephalopathy who came to our observation for rehabilitation at age 2 years and 6 months. CLINICAL REHABILITATION IMPACT We stress the importance of a correct clinical, pharmacological and visual diagnosis. Correct diagnosis made it possible to involve the baby girl and her care-giver in an early process of visual rehabilitation lasting 6 months, the effects of which proved to persist at follow-up after more than a year, making it possible to start a useful inter-professional rehabilitation plan.
Collapse
|
11
|
Pediatric Rehabilitation Medicine certification. J Pediatr Rehabil Med 2017; 10:155. [PMID: 30358566 DOI: 10.3233/prm-170440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
12
|
Mulkey SB, Ben-Zeev B, Nicolai J, Carroll JL, Grønborg S, Jiang YH, Joshi N, Kelly M, Koolen DA, Mikati MA, Park K, Pearl PL, Scheffer IE, Spillmann RC, Taglialatela M, Vieker S, Weckhuysen S, Cooper EC, Cilio MR. Neonatal nonepileptic myoclonus is a prominent clinical feature of KCNQ2 gain-of-function variants R201C and R201H. Epilepsia 2017; 58:436-445. [PMID: 28139826 DOI: 10.1111/epi.13676] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2016] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To analyze whether KCNQ2 R201C and R201H variants, which show atypical gain-of-function electrophysiologic properties in vitro, have a distinct clinical presentation and outcome. METHODS Ten children with heterozygous, de novo KCNQ2 R201C or R201H variants were identified worldwide, using an institutional review board (IRB)-approved KCNQ2 patient registry and database. We reviewed medical records and, where possible, interviewed parents and treating physicians using a structured, detailed phenotype inventory focusing on the neonatal presentation and subsequent course. RESULTS Nine patients had encephalopathy from birth and presented with prominent startle-like myoclonus, which could be triggered by sound or touch. In seven patients, electroencephalography (EEG) was performed in the neonatal period and showed a burst-suppression pattern. However, myoclonus did not have an EEG correlate. In many patients the paroxysmal movements were misdiagnosed as seizures. Seven patients developed epileptic spasms in infancy. In all patients, EEG showed a slow background and multifocal epileptiform discharges later in life. Other prominent features included respiratory dysfunction (perinatal respiratory failure and/or chronic hypoventilation), hypomyelination, reduced brain volume, and profound developmental delay. One patient had a later onset, and sequencing indicated that a low abundance (~20%) R201C variant had arisen by postzygotic mosaicism. SIGNIFICANCE Heterozygous KCNQ2 R201C and R201H gain-of-function variants present with profound neonatal encephalopathy in the absence of neonatal seizures. Neonates present with nonepileptic myoclonus that is often misdiagnosed and treated as seizures. Prognosis is poor. This clinical presentation is distinct from the phenotype associated with loss-of-function variants, supporting the value of in vitro functional screening. These findings suggest that gain-of-function and loss-of-function variants need different targeted therapeutic approaches.
Collapse
Affiliation(s)
- Sarah B Mulkey
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, U.S.A
| | - Bruria Ben-Zeev
- Department of Pediatrics, Sackler School of Medicine, Tel Hashomer, Israel
| | - Joost Nicolai
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - John L Carroll
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, U.S.A
| | - Sabine Grønborg
- Center for Rare Diseases, Department of Clinical Genetics, University Hospital Copenhagen, Copenhagen, Denmark
| | - Yong-Hui Jiang
- Departments of Pediatrics and Neurobiology, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Nishtha Joshi
- Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, U.S.A
| | - Megan Kelly
- Departments of Pediatrics and Neurobiology, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mohamad A Mikati
- Departments of Pediatrics and Neurobiology, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Kristen Park
- Department of Pediatrics, University of Colorado, Aurora, Colorado, U.S.A
| | - Phillip L Pearl
- Departments of Pediatrics and Neurology, Boston Children's Hospital, Boston, Massachusetts, U.S.A
| | | | - Rebecca C Spillmann
- Departments of Pediatrics and Neurobiology, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Maurizio Taglialatela
- Department of Neuroscience, University of Naples Federico II, Naples, Italy.,Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Sarah Weckhuysen
- Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Edward C Cooper
- Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, U.S.A
| | - Maria Roberta Cilio
- Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, California, U.S.A
| |
Collapse
|
13
|
Hortigüela M, Fernández-Marmiesse A, Cantarín V, Gouveia S, García-Peñas JJ, Fons C, Armstrong J, Barrios D, Díaz-Flores F, Tirado P, Couce ML, Gutiérrez-Solana LG. Clinical and genetic features of 13 Spanish patients with KCNQ2 mutations. J Hum Genet 2016; 62:185-189. [DOI: 10.1038/jhg.2016.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/09/2022]
|
14
|
Abidi A, Devaux JJ, Molinari F, Alcaraz G, Michon FX, Sutera-Sardo J, Becq H, Lacoste C, Altuzarra C, Afenjar A, Mignot C, Doummar D, Isidor B, Guyen SN, Colin E, De La Vaissière S, Haye D, Trauffler A, Badens C, Prieur F, Lesca G, Villard L, Milh M, Aniksztejn L. A recurrent KCNQ2 pore mutation causing early onset epileptic encephalopathy has a moderate effect on M current but alters subcellular localization of Kv7 channels. Neurobiol Dis 2015; 80:80-92. [PMID: 26007637 DOI: 10.1016/j.nbd.2015.04.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/28/2015] [Accepted: 04/15/2015] [Indexed: 01/28/2023] Open
Abstract
Mutations in the KCNQ2 gene encoding the voltage-dependent potassium M channel Kv7.2 subunit cause either benign epilepsy or early onset epileptic encephalopathy (EOEE). It has been proposed that the disease severity rests on the inhibitory impact of mutations on M current density. Here, we have analyzed the phenotype of 7 patients carrying the p.A294V mutation located on the S6 segment of the Kv7.2 pore domain (Kv7.2(A294V)). We investigated the functional and subcellular consequences of this mutation and compared it to another mutation (Kv7.2(A294G)) associated with a benign epilepsy and affecting the same residue. We report that all the patients carrying the p.A294V mutation presented the clinical and EEG characteristics of EOEE. In CHO cells, the total expression of Kv7.2(A294V) alone, assessed by western blotting, was only 20% compared to wild-type. No measurable current was recorded in CHO cells expressing Kv7.2(A294V) channel alone. Although the total Kv7.2(A294V) expression was rescued to wild-type levels in cells co-expressing the Kv7.3 subunit, the global current density was still reduced by 83% compared to wild-type heteromeric channel. In a configuration mimicking the patients' heterozygous genotype i.e., Kv7.2(A294V)/Kv7.2/Kv7.3, the global current density was reduced by 30%. In contrast to Kv7.2(A294V), the current density of homomeric Kv7.2(A294G) was not significantly changed compared to wild-type Kv7.2. However, the current density of Kv7.2(A294G)/Kv7.2/Kv7.3 and Kv7.2(A294G)/Kv7.3 channels were reduced by 30% and 50% respectively, compared to wild-type Kv7.2/Kv7.3. In neurons, the p.A294V mutation induced a mislocalization of heteromeric mutant channels to the somato-dendritic compartment, while the p.A294G mutation did not affect the localization of the heteromeric channels to the axon initial segment. We conclude that this position is a hotspot of mutation that can give rise to a severe or a benign epilepsy. The p.A294V mutation does not exert a dominant-negative effect on wild-type subunits but alters the preferential axonal targeting of heteromeric Kv7 channels. Our data suggest that the disease severity is not necessarily a consequence of a strong inhibition of M current and that additional mechanisms such as abnormal subcellular distribution of Kv7 channels could be determinant.
Collapse
Affiliation(s)
- Affef Abidi
- Aix-Marseille Université, GMGF, Marseille, France; INSERM, UMR_S 910, Marseille, France
| | - Jérôme J Devaux
- Aix-Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
| | - Florence Molinari
- Aix-Marseille Université, Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France; INSERM, UMR_S 901, Marseille, France
| | - Gisèle Alcaraz
- Aix-Marseille Université, GMGF, Marseille, France; INSERM, UMR_S 910, Marseille, France
| | - François-Xavier Michon
- Aix-Marseille Université, Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France; INSERM, UMR_S 901, Marseille, France
| | - Julie Sutera-Sardo
- Aix-Marseille Université, GMGF, Marseille, France; INSERM, UMR_S 910, Marseille, France; APHM, Hôpital d'Enfants de la Timone, Service de neurologie pédiatrique, Marseille, France
| | - Hélène Becq
- Aix-Marseille Université, Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France; INSERM, UMR_S 901, Marseille, France
| | - Caroline Lacoste
- Aix-Marseille Université, GMGF, Marseille, France; INSERM, UMR_S 910, Marseille, France; APHM, Hôpital d'enfants de la Timone, Département de génétique médicale et de biologie cellulaire, Marseille France
| | - Cécilia Altuzarra
- CHU Besançon, Service de génétique et neuropédiatrie, Besançon, France
| | - Alexandra Afenjar
- Université Pierre et Marie Curie, Groupe de Recherche Clinique « Déficiences Intellectuelles de Causes Rares », Paris, France; APHP, service de neurologie pédiatrique, Hôpital Trousseau, Paris, France
| | - Cyril Mignot
- APHP, Service de Génétique Médicale et Centre de Références « Déficiences Intellectuelles de Causes Rares », Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Université Pierre et Marie Curie, Groupe de Recherche Clinique « Déficiences Intellectuelles de Causes Rares », Paris, France
| | - Diane Doummar
- APHP, service de neurologie pédiatrique, Hôpital Trousseau, Paris, France
| | - Bertrand Isidor
- CHU de Nantes, Service de génétique médicale, Nantes, France
| | - Sylvie N Guyen
- CHU d'Angers, Service de neurologie pédiatrique, Angers, France
| | - Estelle Colin
- CHU d'Angers, Département de Biochimie et Génétique, Angers, France
| | | | - Damien Haye
- CHU de Tours, Service de génétique, Tours, France
| | | | - Catherine Badens
- Aix-Marseille Université, GMGF, Marseille, France; INSERM, UMR_S 910, Marseille, France; APHM, Hôpital d'enfants de la Timone, Département de génétique médicale et de biologie cellulaire, Marseille France
| | | | - Gaetan Lesca
- Hospices Civils de Lyon, Service de génétique, Lyon, France
| | - Laurent Villard
- Aix-Marseille Université, GMGF, Marseille, France; INSERM, UMR_S 910, Marseille, France
| | - Mathieu Milh
- Aix-Marseille Université, GMGF, Marseille, France; INSERM, UMR_S 910, Marseille, France; APHM, Hôpital d'Enfants de la Timone, Service de neurologie pédiatrique, Marseille, France.
| | - Laurent Aniksztejn
- Aix-Marseille Université, Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France; INSERM, UMR_S 901, Marseille, France.
| |
Collapse
|
15
|
Kang SK, Kadam SD. Neonatal Seizures: Impact on Neurodevelopmental Outcomes. Front Pediatr 2015; 3:101. [PMID: 26636052 PMCID: PMC4655485 DOI: 10.3389/fped.2015.00101] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/05/2015] [Indexed: 11/24/2022] Open
Abstract
Neonatal period is the most vulnerable time for the occurrence of seizures, and neonatal seizures often pose a clinical challenge both for their acute management and frequency of associated long-term co-morbidities. Etiologies of neonatal seizures are known to play a primary role in the anti-epileptic drug responsiveness and the long-term sequelae. Recent studies have suggested that burden of acute recurrent seizures in neonates may also impact chronic outcomes independent of the etiology. However, not many studies, either clinical or pre-clinical, have addressed the long-term outcomes of neonatal seizures in an etiology-specific manner. In this review, we briefly review the available clinical and pre-clinical research for long-term outcomes following neonatal seizures. As the most frequent cause of acquired neonatal seizures, we focus on the studies evaluating long-term effects of HIE-seizures with the goal to evaluate (1) what parameters evaluated during acute stages of neonatal seizures can reliably be used to predict long-term outcomes? and (2) what available clinical and pre-clinical data are available help determine importance of etiology vs. seizure burdens in long-term sequelae.
Collapse
Affiliation(s)
- Seok Kyu Kang
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger , Baltimore, MD , USA
| | - Shilpa D Kadam
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger , Baltimore, MD , USA ; Department of Neurology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|