1
|
Mekbib DB, Cai M, Wu D, Dai W, Liu X, Zhao L. Reproducibility and Sensitivity of Resting-State fMRI in Patients With Parkinson's Disease Using Cross Validation-Based Data Censoring. J Magn Reson Imaging 2024; 59:1630-1642. [PMID: 37584329 DOI: 10.1002/jmri.28958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Uncontrollable body movements are typical symptoms of Parkinson's disease (PD), which results in inconsistent findings regarding resting-state functional connectivity (rsFC) networks, especially for group difference clusters. Systematically identifying the motion-associated data was highly demanded. PURPOSE To determine data censoring criteria using a quantitative cross validation-based data censoring (CVDC) method and to improve the detection of rsFC deficits in PD. STUDY TYPE Prospective. SUBJECTS Forty-one PD patients (68.63 ± 9.17 years, 44% female) and 20 healthy controls (66.83 ± 12.94 years, 55% female). FIELD STRENGTH/SEQUENCE 3-T, T1-weighted gradient echo and EPI sequences. ASSESSMENT Clusters with significant differences between groups were found in three visual networks, default network, and right sensorimotor network. Five-fold cross-validation tests were performed using multiple motion exclusion criteria, and the selected criteria were determined based on cluster sizes, significance values, and Dice coefficients among the cross-validation tests. As a reference method, whole brain rsFC comparisons between groups were analyzed using a FMRIB Software Library (FSL) pipeline with default settings. STATISTICAL TESTS Group difference clusters were calculated using nonparametric permutation statistics of FSL-randomize. The family-wise error was corrected. Demographic information was evaluated using independent sample t-tests and Pearson's Chi-squared tests. The level of statistical significance was set at P < 0.05. RESULTS With the FSL processing pipeline, the mean Dice coefficient of the network clusters was 0.411, indicating a low reproducibility. With the proposed CVDC method, motion exclusion criteria were determined as frame-wise displacement >0.55 mm. Group-difference clusters showed a mean P-value of 0.01 and a 72% higher mean Dice coefficient compared to the FSL pipeline. Furthermore, the CVDC method was capable of detecting subtle rsFC deficits in the medial sensorimotor network and auditory network that were unobservable using the conventional pipeline. DATA CONCLUSION The CVDC method may provide superior sensitivity and improved reproducibility for detecting rsFC deficits in PD. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Destaw Bayabil Mekbib
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Department of Physics and Statistics, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Miao Cai
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, New York, USA
| | - Xiaoli Liu
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Nazari R, Salehi M. Early development of the functional brain network in newborns. Brain Struct Funct 2023; 228:1725-1739. [PMID: 37493690 DOI: 10.1007/s00429-023-02681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
During the prenatal period and the first postnatal years, the human brain undergoes rapid growth, which establishes a preliminary infrastructure for the subsequent development of cognition and behavior. To understand the underlying processes of brain functioning and identify potential sources of developmental disorders, it is essential to uncover the developmental rules that govern this critical period. In this study, graph theory modeling and network science analysis were employed to investigate the impact of age, gender, weight, and typical and atypical development on brain development. Local and global topologies of functional connectomes obtained from rs-fMRI data were collected from 421 neonates aged between 31 and 45 postmenstrual weeks who were in natural sleep without any sedation. The results showed that global efficiency, local efficiency, clustering coefficient, and small-worldness increased with age, while modularity and characteristic path length decreased with age. The normalized rich-club coefficient displayed a U-shaped pattern during development. The study also examined the global and local impacts of gender, weight, and group differences between typical and atypical cases. The findings presented some new insights into the maturation of functional brain networks and their relationship with cognitive development and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Reza Nazari
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mostafa Salehi
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
- School of Computer Science, Institute for Research in Fundamental Science (IPM), Tehran, P.O.Box 19395-5746, Iran.
| |
Collapse
|
3
|
Hendrix CL, Thomason ME. A survey of protocols from 54 infant and toddler neuroimaging research labs. Dev Cogn Neurosci 2022; 54:101060. [PMID: 35033971 PMCID: PMC8762357 DOI: 10.1016/j.dcn.2022.101060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/20/2021] [Accepted: 01/09/2022] [Indexed: 01/13/2023] Open
Abstract
Infant and toddler MRI enables unprecedented insight into the developing brain. However, consensus about optimal data collection practices is lacking, which slows growth of the field and impedes replication efforts. The goal of this study was to collect systematic data across a large number of infant/toddler research laboratories to better understand preferred practices. Survey data addressed MRI acquisition strategies, scan success rates, visit preparations, scanning protocols, accommodations for families, study design, and policies regarding incidental findings. Respondents had on average 8 years' experience in early life neuroimaging and represented more than fifty research laboratories. Areas of consensus across labs included higher success rates among newborns compared to older infants or toddlers, high rates of data loss across age groups, endorsement of multiple layers of hearing protection, and age-specific scan preparation and participant accommodation. Researchers remain divided on decisions in longitudinal study design and practices regarding incidental findings. This study summarizes practices honed over years of work by a large collection of scientists, which may serve as an important resource for those new to the field. The ability to reference data about best practices facilitates future harmonization, data sharing, and reproducibility, all of which advance this important frontier in developmental science.
Collapse
Affiliation(s)
- Cassandra L Hendrix
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA.
| | - Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA; Department of Population Health, New York University Medical Center, New York, NY, USA; Neuroscience Institute, New York University Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Boerwinkle VL, Sussman BL, Manjón I, Mirea L, Suleman S, Wyckoff SN, Bonnell A, Orgill A, Tom DJ. Association of network connectivity via resting state functional MRI with consciousness, mortality, and outcomes in neonatal acute brain injury. Neuroimage Clin 2022; 34:102962. [PMID: 35152054 PMCID: PMC8851268 DOI: 10.1016/j.nicl.2022.102962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND An accurate and comprehensive test of integrated brain network function is needed for neonates during the acute brain injury period to inform on morbidity. This retrospective cohort study assessed whether integrated brain network function acquired by resting state functional MRI during the acute period in neonates with brain injury, is associated with acute exam, neonatal mortality, and 6-month outcomes. METHODS Study subjects included 40 consecutive neonates with resting state functional MRI acquired within 31 days after suspected brain insult from March 2018 to July 2019 at Phoenix Children's Hospital. Acute-period exam and test results were assigned ordinal scores based on severity as documented by respective treating specialists. Analyses (Fisher exact, Wilcoxon-rank sum test, ordinal/multinomial logistic regression) examined association of resting state networks with demographics, presentation, neurological exam, electroencephalogram, anatomical MRI, magnetic resonance spectroscopy, passive task functional MRI, and outcomes of discharge condition, outpatient development, motor tone, seizure, and mortality. RESULTS Subjects had a mean (standard deviation) gestational age of 37.8 (2.6) weeks, a majority were male (63%), with a diagnosis of hypoxic ischemic encephalopathy (68%). Findings at birth included mild distress (48%), moderately abnormal neurological exam (33%), and consciousness characterized as awake but irritable (40%). Significant associations after multiple testing corrections were detected for resting state networks: basal ganglia with outpatient developmental delay (odds ratio [OR], 14.5; 99.4% confidence interval [CI], 2.00-105; P < .001) and motor tone/weakness (OR, 9.98; 99.4% CI, 1.72-57.9; P < .001); language/frontoparietal network with discharge condition (OR, 5.13; 99.4% CI, 1.22-21.5; P = .002) and outpatient developmental delay (OR, 4.77; 99.4% CI, 1.21-18.7; P=.002); default mode network with discharge condition (OR, 3.72; 99.4% CI, 1.01-13.78; P=.006) and neurological exam (P = .002 (FE); OR, 11.8; 99.4% CI, 0.73-191; P = .01 (OLR)); and seizure onset zone with motor tone/weakness (OR, 3.31; 99.4% CI, 1.08-10.1; P=.003). Resting state networks were not detected in three neonates, who died prior to discharge. CONCLUSIONS This study provides level 3 evidence (OCEBM Levels of Evidence Working Group) demonstrating that in neonatal acute brain injury, the degree of abnormality of resting state networks is associated with acute exam and outcomes. Total lack of brain network detection was only found in patients who did not survive.
Collapse
Affiliation(s)
- Varina L Boerwinkle
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA.
| | - Bethany L Sussman
- Department of Neuroscience Research, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| | - Iliana Manjón
- University of Arizona College of Medicine - Tucson, 1501 N. Campbell Ave, Tucson, AZ 85724, USA
| | - Lucia Mirea
- Department of Clinical Research, Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| | - Saher Suleman
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| | - Sarah N Wyckoff
- Department of Neuroscience Research, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| | - Alexandra Bonnell
- Department of Neuroscience Research, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| | - Andrew Orgill
- Department of Clinical Research, Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| | - Deborah J Tom
- Division of Neonatology, Phoenix Children's Hospital, 1919 E. Thomas Rd, Phoenix, AZ 85016, USA
| |
Collapse
|
5
|
Argyropoulou MI, Xydis VG, Drougia A, Giantsouli AS, Giapros V, Astrakas LG. Structural and functional brain connectivity in moderate-late preterm infants with low-grade intraventricular hemorrhage. Neuroradiology 2021; 64:197-204. [PMID: 34342681 DOI: 10.1007/s00234-021-02770-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Brain functional connectivity (FC) changes and microstructural abnormalities are reported in infants born moderate and late preterm (MLPT). We evaluated the effect of low-grade (grades I, II) intraventricular hemorrhage (IVH) in MLPT babies on brain structural connectivity (SC) and FC. METHODS Babies born MLPT between January 2014 and May 2017 underwent brain ultrasound (US) at 72 h and 7 days after birth, and MRI at around term equivalent. The MRI protocol comprised T1- and T2-weighted sequences, diffusion tensor imaging (DTI), and resting-state functional MRI (fMRI). SC and FC were assessed using graph analysis. RESULTS Of 350 MLPT neonates, 15 showed low-grade IVH on US at 72 h, for which brain MRI was available in 10. These 10 infants, with mean gestational age (GA) 34.0 ± 0.8 weeks, comprised the study group, and 10 MLPT infants of mean GA 33.9 ± 1.1 weeks, with no abnormalities on brain US and MRI, were control subjects. All study subjects presented modularity, small world topology, and rich club organization for both SC and FC. The patients with low-grade IVH had lower FC rich club coefficient and lower SC betweenness centrality in the left frontoparietal operculum, and lower SC rich club coefficient in the right superior orbitofrontal cortex than the control subjects. CONCLUSIONS Topological and functional properties of mature brain connectivity are present in MLPT infants. IVH in these infants was associated with structural and functional abnormalities in the left frontoparietal operculum and right orbitofrontal cortex, regions related to language and cognition.
Collapse
Affiliation(s)
- Maria I Argyropoulou
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, 45110, Ioannina, Greece.
| | - Vasileios G Xydis
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, 45110, Ioannina, Greece
| | - Aikaterini Drougia
- Neonatal Intensive Care Unit, Child Health Department, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Anastasia S Giantsouli
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, 45110, Ioannina, Greece
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, Child Health Department, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Loukas G Astrakas
- Department of Medical Physics, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
6
|
Phillips NL, Shatil AS, Go C, Robertson A, Widjaja E. Resting-State Functional MRI for Determining Language Lateralization in Children with Drug-Resistant Epilepsy. AJNR Am J Neuroradiol 2021; 42:1299-1304. [PMID: 33832955 DOI: 10.3174/ajnr.a7110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/16/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Task-based fMRI is a noninvasive method of determining language dominance; however, not all children can complete language tasks due to age, cognitive/intellectual, or language barriers. Task-free approaches such as resting-state fMRI offer an alternative method. This study evaluated resting-state fMRI for predicting language laterality in children with drug-resistant epilepsy. MATERIALS AND METHODS A retrospective review of 43 children with drug-resistant epilepsy who had undergone resting-state fMRI and task-based fMRI during presurgical evaluation was conducted. Independent component analysis of resting-state fMRI was used to identify language networks by comparing the independent components with a language network template. Concordance rates in language laterality between resting-state fMRI and each of the 4 task-based fMRI language paradigms (auditory description decision, auditory category, verbal fluency, and silent word generation tasks) were calculated. RESULTS Concordance ranged from 0.64 (95% CI, 0.48-0.65) to 0.73 (95% CI, 0.58-0.87), depending on the language paradigm, with the highest concordance found for the auditory description decision task. Most (78%-83%) patients identified as left-lateralized on task-based fMRI were correctly classified as left-lateralized on resting-state fMRI. No patients classified as right-lateralized or bilateral on task-based fMRI were correctly classified by resting-state fMRI. CONCLUSIONS While resting-state fMRI correctly classified most patients who had typical (left) language dominance, its ability to correctly classify patients with atypical (right or bilateral) language dominance was poor. Further study is required before resting-state fMRI can be used clinically for language mapping in the context of epilepsy surgery evaluation in children with drug-resistant epilepsy.
Collapse
Affiliation(s)
- N L Phillips
- From the Neurosciences and Mental Health Program (N.L.P., A.S.S., A.R., E.W.), The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Department of Psychology (N.L.P.)
| | - A S Shatil
- From the Neurosciences and Mental Health Program (N.L.P., A.S.S., A.R., E.W.), The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - C Go
- Division of Neurology (C.G., E.W.)
| | - A Robertson
- From the Neurosciences and Mental Health Program (N.L.P., A.S.S., A.R., E.W.), The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - E Widjaja
- From the Neurosciences and Mental Health Program (N.L.P., A.S.S., A.R., E.W.), The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Division of Neurology (C.G., E.W.)
- Department of Diagnostic Imaging (E.W.), The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Wang S, Chen B, Yu Y, Yang H, Cui W, Fan G, Li J. Altered resting-state functional network connectivity in profound sensorineural hearing loss infants within an early sensitive period: A group ICA study. Hum Brain Mapp 2021; 42:4314-4326. [PMID: 34060682 PMCID: PMC8356983 DOI: 10.1002/hbm.25548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 12/21/2022] Open
Abstract
Data from both animal models and deaf children provide evidence for that the maturation of auditory cortex has a sensitive period during the first 2-4 years of life. During this period, the auditory stimulation can affect the development of cortical function to the greatest extent. Thus far, little is known about the brain development trajectory after early auditory deprivation within this period. In this study, independent component analysis (ICA) technique was used to detect the characteristics of brain network development in children with bilateral profound sensorineural hearing loss (SNHL) before 3 years old. Seven resting-state networks (RSN) were identified in 50 SNHL and 36 healthy controls using ICA method, and further their intra-and inter-network functional connectivity (FC) were compared between two groups. Compared with the control group, SNHL group showed decreased FC within default mode network, while enhanced FC within auditory network (AUN) and salience network. No significant changes in FC were found in the visual network (VN) and sensorimotor network (SMN). Furthermore, the inter-network FC between SMN and AUN, frontal network and AUN, SMN and VN, frontal network and VN were significantly increased in SNHL group. The results implicate that the loss and the compensatory reorganization of brain network FC coexist in SNHL infants. It provides a network basis for understanding the brain development trajectory after hearing loss within early sensitive period.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Radiology, The First Hospital, China Medical University, Shenyang, Liaoning, China
| | - Boyu Chen
- Department of Radiology, The First Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yalian Yu
- Department of Otorhinolaryngology, The First Hospital, China Medical University, Shenyang, Liaoning, China
| | - Huaguang Yang
- Department of Radiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Wenzhuo Cui
- Department of Radiology, The First Hospital, China Medical University, Shenyang, Liaoning, China
| | - Guoguang Fan
- Department of Radiology, The First Hospital, China Medical University, Shenyang, Liaoning, China
| | - Jian Li
- Department of Radiology, The First Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Dubois J, Alison M, Counsell SJ, Hertz‐Pannier L, Hüppi PS, Benders MJ. MRI of the Neonatal Brain: A Review of Methodological Challenges and Neuroscientific Advances. J Magn Reson Imaging 2021; 53:1318-1343. [PMID: 32420684 PMCID: PMC8247362 DOI: 10.1002/jmri.27192] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 01/04/2023] Open
Abstract
In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft-tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age-specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large-scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long-term disabilities in children. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Jessica Dubois
- University of ParisNeuroDiderot, INSERM,ParisFrance
- UNIACT, NeuroSpin, CEA; Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Marianne Alison
- University of ParisNeuroDiderot, INSERM,ParisFrance
- Department of Pediatric RadiologyAPHP, Robert‐Debré HospitalParisFrance
| | - Serena J. Counsell
- Centre for the Developing BrainSchool of Biomedical Engineering & Imaging Sciences, King's College LondonLondonUK
| | - Lucie Hertz‐Pannier
- University of ParisNeuroDiderot, INSERM,ParisFrance
- UNIACT, NeuroSpin, CEA; Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Petra S. Hüppi
- Division of Development and Growth, Department of Woman, Child and AdolescentUniversity Hospitals of GenevaGenevaSwitzerland
| | - Manon J.N.L. Benders
- Department of NeonatologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
9
|
Haghighat H, Mirzarezaee M, Araabi BN, Khadem A. Functional Networks Abnormalities in Autism Spectrum Disorder: Age-Related Hypo and Hyper Connectivity. Brain Topogr 2021; 34:306-322. [PMID: 33905003 DOI: 10.1007/s10548-021-00831-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder characterized by defects in social interaction. The past functional connectivity studies using resting-state fMRI have found both patterns of hypo-connectivity and hyper-connectivity in ASD and proposed the age as an important factor on functional connectivity disorders. However, this influence is not clearly characterized yet. Previous studies have often examined the functional connectivity disorders in particular brain regions in an age group or a mixture of age groups. The present study compares whole-brain within-connectivity and between-connectivity between ASD individuals and typically developing (TD) controls in three age groups including children (< 11 years), adolescents (11-18 years), and adults (> 18 years), each comprising 21 ASD individuals and 21 TD controls. The age groups were matched for age, Full IQ, and gender. Independent component analysis and dual regression were used to investigate within-connectivity. The full and partial correlations between ICs were used to investigate between-connectivity. Examination of the within-connectivity showed hyper-connectivity, especially in cerebellum and brainstem in ASD children but both hyper/hypo connectivity in adolescents and ASD adults. In ASD children, difference in the between-connectivity among default mode network (DMN), salience-executive network and fronto-parietal network were observed. There was also a negative correlation between DMN and temporal network. Full correlation comparison between ASD adolescents and TD individuals showed significant differences between cerebellum and DMN. Our results supported just the hyper-connectivity in childhood, but both hypo and hyper-connectivity after childhood and hypothesized that abnormal resting connections in ASD exist in the regions of the brain known to be involved in social cognition.
Collapse
Affiliation(s)
- Hossein Haghighat
- Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mitra Mirzarezaee
- Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Babak Nadjar Araabi
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Ali Khadem
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
10
|
Turesky TK, Vanderauwera J, Gaab N. Imaging the rapidly developing brain: Current challenges for MRI studies in the first five years of life. Dev Cogn Neurosci 2021; 47:100893. [PMID: 33341534 PMCID: PMC7750693 DOI: 10.1016/j.dcn.2020.100893] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/21/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022] Open
Abstract
Rapid and widespread changes in brain anatomy and physiology in the first five years of life present substantial challenges for developmental structural, functional, and diffusion MRI studies. One persistent challenge is that methods best suited to earlier developmental stages are suboptimal for later stages, which engenders a trade-off between using different, but age-appropriate, methods for different developmental stages or identical methods across stages. Both options have potential benefits, but also biases, as pipelines for each developmental stage can be matched on methods or the age-appropriateness of methods, but not both. This review describes the data acquisition, processing, and analysis challenges that introduce these potential biases and attempts to elucidate decisions and make recommendations that would optimize developmental comparisons.
Collapse
Affiliation(s)
- Ted K Turesky
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Jolijn Vanderauwera
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Psychological Sciences Research Institute, Université Catholique De Louvain, Louvain-la-Neuve, Belgium; Institute of Neuroscience, Université Catholique De Louvain, Louvain-la-Neuve, Belgium
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Gnat R, Biały M, Dziewońska A. Experimentally induced low back pain influences brain networks activity. J Mot Behav 2020; 53:680-692. [PMID: 33161892 DOI: 10.1080/00222895.2020.1839376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Purpose of this study was to answer the question whether the recognized patterns of brain activity are likely to change under the influence of experimentally induced low back pain (LBP), and also to determine the functional networks of the brain engaged in this process. Twenty healthy subjects (8 women) participated. An experimental design was applied with repeated measurements of the blood oxygen level-dependent (BOLD) signal from the brain during two different voluntary contractions of the abdominal muscles without and with experimentally induced LBP. Brain areas showing significant differences in activity were identified and ascribed to the three functional neuronal brain networks: default mode network (DMN), pain matrix (PM), and sensorimotor (SM) areas. After implementation of the experimental painful stimulus the overall level of brain activity appears to be higher. No higher brain deactivations are seen in painful conditions and no higher activations in pain-free conditions. During isolated-type of muscular contraction a slight tendency to DMN deactivation may be observed.
Collapse
Affiliation(s)
- Rafał Gnat
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Maciej Biały
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland.,Functional Diagnosis Laboratory, Sport-Klinika, Endoscopy Surgery Clinic, Żory, Poland
| | - Agata Dziewońska
- PhD Studies, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
12
|
Breastfeeding improves dynamic reorganization of functional connectivity in preterm infants: a temporal brain network study. Med Biol Eng Comput 2020; 58:2805-2819. [PMID: 32945999 DOI: 10.1007/s11517-020-02244-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
Substantial evidences have shown the benefits of breastfeeding to infants in terms of better nutrition and neurodevelopmental outcome. However, the relationship between brain development and feeding in preterm infants, who are physiologically and developmentally immature at birth, is only beginning to be quantitatively assessed, coinciding with the recent advent of neuroimaging techniques. In the current work, we studied a sample of 50 preterm infants-born between 29 and 33 weeks (32.20 ± 0.89 weeks) of gestational age, where 30 of them were breastfed and the remaining 20 were formula-fed. Resting-state functional magnetic resonance imaging (fMRI) was recorded around term-equivalent age (40.00 ± 1.31 weeks, range 39-44 weeks) using a 1.5-T scanner under sedation condition. Temporal brain networks were estimated by the correlation of sliding time-window time courses among regions of a predefined atlas. Through our newly introduced temporal efficiency approach, we examined, for the first time, the 3D spatiotemporal architecture of the temporal brain network. We found prominent temporal small-world properties in both groups, suggesting the arrangement of dynamic functional connectivity permits effective coordination of various brain regions for efficient information transfer over time at both local and global levels. More importantly, we showed that breastfed preterm infants exhibited greater temporal global efficiency in comparison with formula-fed preterm infants. Specifically, we found localized elevation of temporal nodal properties in the right temporal gyrus and bilateral caudate. Taken together, these findings provide new evidence to support the notion that breast milk promotes early brain development and cognitive function, which may have neurobiological and public health implications for parents and pediatricians.Breastfeeding has long been recognized to have beneficial effect on early neurodevelopment in infants. However, the influence of breastfeeding on reorganization of functional connectivity in preterm infants are largely unknown. To this end, we utilized our recently developed temporal brain network analysis framework to investigate the dynamic reorganization of brain functional connectivity in preterm infants fed with breast milk. We found that beyond an optimal temporal small-world topology, breastfed preterm infants exhibited improved network efficiency at both global and regional levels in comparisons with those of formula-fed infants. Graphical abstract: Breastfeeding has long been recognized to have beneficial effect on early neurodevelopment in infants. However, the influence of breastfeeding on reorganization of brain functional connectivity in preterm infants are largely unknown. To this end, we utilized our recently developed temporal brain network analysis framework to investigate the dynamic reorganization of functional connectivity in preterm infants fed with breast milk. We found that beyond an optimal temporal small-world topology, breastfed preterm infants exhibited improved network efficiency at both global and regional levels in comparisons with those of formula-fed infants.
Collapse
|
13
|
Differences in Activity of the Brain Networks During Voluntary Motor Tasks Engaging the Local and Global Muscular Systems of the Lower Trunk. Motor Control 2020; 24:624-643. [PMID: 32932230 DOI: 10.1123/mc.2019-0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 11/18/2022]
Abstract
Low back pain constitutes a multidimensional problem of largely unknown origin. One of the recent theories explaining its frequent occurrence includes speculative statements on patterns of central nervous system activity associated with the control of so-called local and global muscles of the lower trunk. The objective of the study was to verify whether there is a difference in the activity of the brain during selective, voluntary contraction of the local and global abdominal muscles as assessed by functional MRI. Twenty healthy subjects participated. An experimental design was applied with repeated measurements of the blood-oxygen-level-dependent signal from the brain during voluntary contraction of the local and global abdominal muscles, performed in random order. Prior to registration, a 2-week training period was introduced, aiming to master the experimental motor tasks. The magnetic resonance imaging (MRI) data were processed using the FMRIB Software Library (Oxford, UK). Brain areas showing significant activations/deactivations were identified and averaged across all participants, and intercondition differential maps were computed. Areas of significant intercondition differences were linked to the corresponding anatomical structures and ascribed to the default mode functional brain network and to the sensorimotor network. Contraction of the local abdominal muscles elicited more pronounced activity of the brain cortex, basal ganglia, and cerebellum. This suggests that motor control of the abdominal musculature consists of two modes of brain activity and that control of the local muscles may be a more challenging task for the brain. Moreover, contraction of the local muscles elicited more distinct deactivation of the default mode network, which may have implications for diagnostics and therapy of low back pain.
Collapse
|
14
|
Fitzgibbon SP, Harrison SJ, Jenkinson M, Baxter L, Robinson EC, Bastiani M, Bozek J, Karolis V, Cordero Grande L, Price AN, Hughes E, Makropoulos A, Passerat-Palmbach J, Schuh A, Gao J, Farahibozorg SR, O'Muircheartaigh J, Ciarrusta J, O'Keeffe C, Brandon J, Arichi T, Rueckert D, Hajnal JV, Edwards AD, Smith SM, Duff E, Andersson J. The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants. Neuroimage 2020; 223:117303. [PMID: 32866666 PMCID: PMC7762845 DOI: 10.1016/j.neuroimage.2020.117303] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023] Open
Abstract
An automated and robust pipeline to minimally pre-process highly confounded neonatal fMRI data. Includes integrated dynamic distortion and slice-to-volume motion correction. A robust multimodal registration approach which includes custom neonatal templates. Incorporates an automated and self-reporting QC framework to quantify data quality and identify issues for further inspection. Data analysis of 538 infants imaged at 26–45 weeks post-menstrual age.
The developing Human Connectome Project (dHCP) aims to create a detailed 4-dimensional connectome of early life spanning 20–45 weeks post-menstrual age. This is being achieved through the acquisition of multi-modal MRI data from over 1000 in- and ex-utero subjects combined with the development of optimised pre-processing pipelines. In this paper we present an automated and robust pipeline to minimally pre-process highly confounded neonatal resting-state fMRI data, robustly, with low failure rates and high quality-assurance. The pipeline has been designed to specifically address the challenges that neonatal data presents including low and variable contrast and high levels of head motion. We provide a detailed description and evaluation of the pipeline which includes integrated slice-to-volume motion correction and dynamic susceptibility distortion correction, a robust multimodal registration approach, bespoke ICA-based denoising, and an automated QC framework. We assess these components on a large cohort of dHCP subjects and demonstrate that processing refinements integrated into the pipeline provide substantial reduction in movement related distortions, resulting in significant improvements in SNR, and detection of high quality RSNs from neonates.
Collapse
Affiliation(s)
- Sean P Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| | - Samuel J Harrison
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Translational Neuromodeling Unit, University of Zurich & ETH Zurich, Switzerland
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Luke Baxter
- Paediatric Neuroimaging Group, Department of Paediatrics, University of Oxford, UK
| | - Emma C Robinson
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Matteo Bastiani
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK; NIHR Biomedical Research Centre, University of Nottingham, UK
| | - Jelena Bozek
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Vyacheslav Karolis
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Lucilio Cordero Grande
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Anthony N Price
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Emer Hughes
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Antonios Makropoulos
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK
| | | | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK
| | - Jianliang Gao
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK
| | - Seyedeh-Rezvan Farahibozorg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK; Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Judit Ciarrusta
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Camilla O'Keeffe
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Jakki Brandon
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK; Department of Bioengineering, Imperial College London, UK; Children's Neurosciences, Evelina London Children's Hospital, King's Health Partners, London, UK
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Eugene Duff
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Jesper Andersson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
15
|
Fang X, Sun W, Jeon J, Azain M, Kinder H, Ahn J, Chung HC, Mote RS, Filipov NM, Zhao Q, Rayalam S, Park HJ. Perinatal Docosahexaenoic Acid Supplementation Improves Cognition and Alters Brain Functional Organization in Piglets. Nutrients 2020; 12:E2090. [PMID: 32679753 PMCID: PMC7400913 DOI: 10.3390/nu12072090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022] Open
Abstract
Epidemiologic studies associate maternal docosahexaenoic acid (DHA)/DHA-containing seafood intake with enhanced cognitive development; although, it should be noted that interventional trials show inconsistent findings. We examined perinatal DHA supplementation on cognitive performance, brain anatomical and functional organization, and the brain monoamine neurotransmitter status of offspring using a piglet model. Sows were fed a control (CON) or a diet containing DHA (DHA) from late gestation throughout lactation. Piglets underwent an open field test (OFT), an object recognition test (ORT), and magnetic resonance imaging (MRI) to acquire anatomical, diffusion tensor imaging (DTI), and resting-state functional MRI (rs-fMRI) at weaning. Piglets from DHA-fed sows spent 95% more time sniffing the walls than CON in OFT and exhibited an elevated interest in the novel object in ORT, while CON piglets demonstrated no preference. Maternal DHA supplementation increased fiber length and tended to increase fractional anisotropy in the hippocampus of offspring than CON. DHA piglets exhibited increased functional connectivity in the cerebellar, visual, and default mode network and decreased activity in executive control and sensorimotor network compared to CON. The brain monoamine neurotransmitter levels did not differ in healthy offspring. Perinatal DHA supplementation may increase exploratory behaviors, improve recognition memory, enhance fiber tract integrity, and alter brain functional organization in offspring at weaning.
Collapse
Affiliation(s)
- Xi Fang
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, USA; (X.F.); (J.J.)
| | - Wenwu Sun
- Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (W.S.); (Q.Z.)
| | - Julie Jeon
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, USA; (X.F.); (J.J.)
| | - Michael Azain
- Department of Animal and Dairy Science, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (M.A.); (H.K.)
| | - Holly Kinder
- Department of Animal and Dairy Science, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (M.A.); (H.K.)
| | - Jeongyoun Ahn
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (J.A.); (H.C.C.)
| | - Hee Cheol Chung
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (J.A.); (H.C.C.)
| | - Ryan S. Mote
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (R.S.M.); (N.M.F.)
| | - Nikolay M. Filipov
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (R.S.M.); (N.M.F.)
| | - Qun Zhao
- Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (W.S.); (Q.Z.)
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, USA
| | - Hea Jin Park
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, USA; (X.F.); (J.J.)
| |
Collapse
|
16
|
Boerwinkle VL, Mirea L, Gaillard WD, Sussman BL, Larocque D, Bonnell A, Ronecker JS, Troester MM, Kerrigan JF, Foldes ST, Appavu B, Jarrar R, Williams K, Wilfong AA, Adelson PD. Resting-state functional MRI connectivity impact on epilepsy surgery plan and surgical candidacy: prospective clinical work. J Neurosurg Pediatr 2020; 25:574-581. [PMID: 32197251 DOI: 10.3171/2020.1.peds19695] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/10/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors' goal was to prospectively quantify the impact of resting-state functional MRI (rs-fMRI) on pediatric epilepsy surgery planning. METHODS Fifty-one consecutive patients (3 months to 20 years old) with intractable epilepsy underwent rs-fMRI for presurgical evaluation. The team reviewed the following available diagnostic data: video-electroencephalography (n = 51), structural MRI (n = 51), FDG-PET (n = 42), magnetoencephalography (n = 5), and neuropsychological testing (n = 51) results to formulate an initial surgery plan blinded to the rs-fMRI findings. Subsequent to this discussion, the connectivity results were revealed and final recommendations were established. Changes between pre- and post-rs-fMRI treatment plans were determined, and changes in surgery recommendation were compared using McNemar's test. RESULTS Resting-state fMRI was successfully performed in 50 (98%) of 51 cases and changed the seizure onset zone localization in 44 (88%) of 50 patients. The connectivity results prompted 6 additional studies, eliminated the ordering of 11 further diagnostic studies, and changed the intracranial monitoring plan in 10 cases. The connectivity results significantly altered surgery planning with the addition of 13 surgeries, but it did not eliminate planned surgeries (p = 0.003). Among the 38 epilepsy surgeries performed, the final surgical approach changed due to rs-fMRI findings in 22 cases (58%), including 8 (28%) of 29 in which extraoperative direct electrical stimulation mapping was averted. CONCLUSIONS This study demonstrates the impact of rs-fMRI connectivity results on the decision-making for pediatric epilepsy surgery by providing new information about the location of eloquent cortex and the seizure onset zone. Additionally, connectivity results may increase the proportion of patients considered eligible for surgery while optimizing the need for further testing.
Collapse
Affiliation(s)
| | | | - William D Gaillard
- 3Department of Neurology, Children's National Medical Center, Washington, DC
| | | | | | | | - Jennifer S Ronecker
- 5Division of Pediatric Neurosurgery, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona; and
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rotem-Kohavi N, Williams LJ, Muller AM, Abdi H, Virji-Babul N, Bjornson BH, Brain U, Werker JF, Grunau RE, Miller SP, Oberlander TF. Hub distribution of the brain functional networks of newborns prenatally exposed to maternal depression and SSRI antidepressants. Depress Anxiety 2019; 36:753-765. [PMID: 31066992 DOI: 10.1002/da.22906] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Prenatal maternal depression (PMD) and selective serotonin reuptake inhibitor (SSRI) antidepressants are associated with increased developmental risk in infants. Reports suggest that PMD is associated with hyperconnectivity of the insula and the amygdala, while SSRI exposure is associated with hyperconnectivity of the auditory network in the infant brain. However, associations between functional brain organization and PMD and/or SSRI exposure are not well understood. METHODS We examined the relation between PMD or SSRI exposure and neonatal brain functional organization. Infants of control (n = 17), depressed SSRI-treated (n = 20) and depressed-only (HAM-D ≥ 8) (n = 16) women, underwent resting-state functional magnetic resonance imaging at postnatal Day 6. At 6 months, temperament was assessed using Infant Behavioral Questionnaire (IBQ). We applied GTA and partial least square regression (PLSR) to the resting-state time series to assess group differences in modularity, and connector and provincial hubs. RESULTS Modularity was similar across all groups. The depressed-only group showed higher connector hub values in the left anterior cingulate, insula, and caudate as well as higher provincial hub values in the amygdala compared to the control group. The SSRI group showed higher provincial hub values in Heschl's gyrus relative to the depressed-only group. PLSR showed that newborns' hub values predicted 10% of the variability in infant temperament at 6 months, suggesting different developmental patterns between groups. CONCLUSIONS Prenatal exposures to maternal depression and SSRIs have differential impacts on neonatal functional brain organization. Hub values at 6 days predict variance in temperament between infant groups at 6 months of age.
Collapse
Affiliation(s)
- Naama Rotem-Kohavi
- Graduate Program in Neuroscience, School of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lynne J Williams
- BC Children Hospital MRI Research Facility, Vancouver, BC, Canada
| | - Angela M Muller
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
| | - Hervé Abdi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas
| | - Naznin Virji-Babul
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
| | - Bruce H Bjornson
- Brain Mapping, Neuroinformatics and Neurotechnology Laboratory, Division of Neurology, British Columbia Children's Hospital, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada.,BC Children Hospital MRI Research Facility, Vancouver, BC, Canada
| | - Ursula Brain
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Janet F Werker
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Ruth E Grunau
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Steven P Miller
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Canada
| | - Tim F Oberlander
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada.,School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Hodkinson DJ, Mongerson CRL, Jennings RW, Bajic D. Neonatal functional brain maturation in the context of perioperative critical care and pain management: A case report. Heliyon 2019; 5:e02350. [PMID: 31485532 PMCID: PMC6716350 DOI: 10.1016/j.heliyon.2019.e02350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 06/03/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Remarkable plasticity during the first year of life imparts heighted vulnerability of the developing infant brain. Application of resting-state functional magnetic resonance imaging (rs-fMRI) in infants may contribute to our understanding of neuroplastic changes associated with therapeutic interventions and/or brain insults. In addition to showing clinically relevant incidental brain MRI findings, the objective of our pilot study was to test feasibility of rs-fMRI methods at this early age in the context of pediatric perioperative critical care. METHODS We report the case of a former 33-week premature infant born with long-gap esophageal atresia that underwent complex perioperative critical care (Foker process) requiring prolonged post-operative sedation and whom presented with incidental subdural hematoma. Rs-fMRI data was acquired before (at 1-month corrected age) and after (at 2.25-months corrected age) complex perioperative care. We evaluated resting-state functional connectivity (RSFC) using graph theory to explore the complex structure of brain networks. RESULTS A transient increase in head circumference coincided temporally with lifting of sedation and initiation of sedation drugs weaning, and qualified for hydrocephalus (93%) but not macrocephaly (>95%). RSFC analysis identified networks spatially consistent with those previously described in the literature, with notable pre-post-treatment qualitative differences in correlated and anticorrelated spontaneous brain activity. DISCUSSION Current definitions of macrocephaly may require lower threshold criteria for monitoring of critically ill infants. Although we demonstrate that available rs-fMRI could be effectively applied in a critically ill infant in the setting of brain pathology, future group-level studies should investigate RSFC to evaluate maintenance of network homeostasis during development of both healthy and critically ill infants.
Collapse
Affiliation(s)
- Duncan Jack Hodkinson
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Bader 3, Boston, MA
- Harvard Medical School, 25 Shattuck St., Boston, MA
| | - Chandler Rebecca Lee Mongerson
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Bader 3, Boston, MA
| | - Russell William Jennings
- Harvard Medical School, 25 Shattuck St., Boston, MA
- Esophageal and Airway Treatment Center, Department of Surgery, Boston Children's Hospital, 300 Longwood Ave., Boston, MA
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Bader 3, Boston, MA
- Harvard Medical School, 25 Shattuck St., Boston, MA
| |
Collapse
|
19
|
Boerwinkle VL, Cediel EG, Mirea L, Williams K, Kerrigan JF, Lam S, Raskin JS, Desai VR, Wilfong AA, Adelson PD, Curry DJ. Network-targeted approach and postoperative resting-state functional magnetic resonance imaging are associated with seizure outcome. Ann Neurol 2019; 86:344-356. [PMID: 31294865 DOI: 10.1002/ana.25547] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Postoperative resting-state functional magnetic resonance imaging (MRI) in children with intractable epilepsy has not been quantified in relation to seizure outcome. Therefore, its value as a biomarker for epileptogenic pathology is not well understood. METHODS In a sample of children with intractable epilepsy who underwent prospective resting-state seizure onset zone (SOZ)-targeted epilepsy surgery, postoperative resting-state functional MRI (rs-fMRI) was performed 6 to 12 months later. Graded normalization of the postoperative resting-state SOZ was compared to seizure outcomes, patient, surgery, and anatomical MRI characteristics. RESULTS A total of 64 cases were evaluated. Network-targeted surgery, followed by postoperative rs-fMRI normalization was significantly (p < 0.001) correlated with seizure reduction, with a Spearman rank correlation coefficient of 0.83. Of 39 cases with postoperative rs-fMRI SOZ normalization, 38 (97%) became completely seizure free. In contrast, of the 25 cases without complete rs-fMRI SOZ normalization, only 3 (5%) became seizure free. The accuracy of rs-fMRI as a biomarker predicting seizure freedom is 94%, with 96% sensitivity and 93% specificity. INTERPRETATION Among seizure localization techniques in pediatric epilepsy, network-targeted surgery, followed by postoperative rs-fMRI normalization, has high correlation with seizure freedom. This study shows that rs-fMRI SOZ can be used as a biomarker of the epileptogenic zone, and postoperative rs-fMRI normalization is a biomarker for SOZ quiescence. ANN NEUROL 2019;86:344-356.
Collapse
Affiliation(s)
- Varina L Boerwinkle
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ
| | - Emilio G Cediel
- Division of Pediatric Neurosurgery, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ
| | - Lucia Mirea
- Department of Research, Phoenix Children's Hospital, Phoenix, AZ
| | - Korwyn Williams
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ
| | - John F Kerrigan
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ
| | - Sandi Lam
- Section of Pediatric Neurosurgery, Riley Hospital for Children, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Jeffrey S Raskin
- Section of Pediatric Neurosurgery, Riley Hospital for Children, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Virendra R Desai
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX
| | - Angus A Wilfong
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ
| | - P David Adelson
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ.,Division of Pediatric Neurosurgery, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ
| | - Daniel J Curry
- Department of Pediatric Neurosurgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| |
Collapse
|
20
|
Mouka V, Drougia A, Xydis VG, Astrakas LG, Zikou AK, Kosta P, Andronikou S, Argyropoulou MI. Functional and structural connectivity of the brain in very preterm babies: relationship with gestational age and body and brain growth. Pediatr Radiol 2019; 49:1078-1084. [PMID: 31053875 DOI: 10.1007/s00247-019-04412-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/20/2019] [Accepted: 04/12/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Structural and functional changes of the brain have been reported in premature babies. OBJECTIVE To evaluate the relationship of functional and structural connectivity with gestational age, body growth and brain maturation in very preterm babies. MATERIALS AND METHODS We studied 18 very preterm babies (gestational age: mean ± standard deviation, 29.7±1.7 weeks). We examined functional connectivity by multivariate pattern analysis of resting-state functional MRI data. We assessed structural connectivity by analysis of diffusion tensor imaging data and probabilistic tractography. RESULTS The average functional connectivity of the medial orbitofrontal cortex with the rest of the brain was positively associated with gestational age (P<0.001). Fractional anisotropy of the right inferior fronto-occipital fasciculus was positively associated with head circumference at term-equivalent age. Structural connectivity of the inferior fronto-occipital fasciculus with the medial orbitofrontal cortex was positively associated with head circumference at term-equivalent age. Body weight at term-equivalent age was the only independent predictor of average structural connectivity of the medial orbitofrontal cortex with the rest of the brain (P=0.020). CONCLUSION Structural and functional connectivity of the medial orbitofrontal cortex with the rest of the brain depend on body growth and degree of prematurity, respectively.
Collapse
Affiliation(s)
- Vassiliki Mouka
- Medical School, University Hospital of Ioannina, P.O. Box 1186, 45110, Ioannina, Greece
| | - Aikaterini Drougia
- Neonatology Unit, Medical School, University of Ioannina, Ioannina, Greece
| | - Vasileios G Xydis
- Medical School, University Hospital of Ioannina, P.O. Box 1186, 45110, Ioannina, Greece
| | - Loukas G Astrakas
- Medical Physics, Medical School, University of Ioannina, Ioannina, Greece
| | - Anastasia K Zikou
- Medical School, University Hospital of Ioannina, P.O. Box 1186, 45110, Ioannina, Greece
| | - Paraskevi Kosta
- Medical School, University Hospital of Ioannina, P.O. Box 1186, 45110, Ioannina, Greece
| | | | - Maria I Argyropoulou
- Medical School, University Hospital of Ioannina, P.O. Box 1186, 45110, Ioannina, Greece.
| |
Collapse
|
21
|
Baxter L, Fitzgibbon S, Moultrie F, Goksan S, Jenkinson M, Smith S, Andersson J, Duff E, Slater R. Optimising neonatal fMRI data analysis: Design and validation of an extended dHCP preprocessing pipeline to characterise noxious-evoked brain activity in infants. Neuroimage 2019; 186:286-300. [PMID: 30414984 PMCID: PMC6347570 DOI: 10.1016/j.neuroimage.2018.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/16/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022] Open
Abstract
The infant brain is unlike the adult brain, with considerable differences in morphological, neurodynamic, and haemodynamic features. As the majority of current MRI analysis tools were designed for use in adults, a primary objective of the Developing Human Connectome Project (dHCP) is to develop optimised methodological pipelines for the analysis of neonatal structural, resting state, and diffusion MRI data. Here, in an independent neonatal dataset we have extended and optimised the dHCP fMRI preprocessing pipeline for the analysis of stimulus-response fMRI data. We describe and validate this extended dHCP fMRI preprocessing pipeline to analyse changes in brain activity evoked following an acute noxious stimulus applied to the infant's foot. We compare the results obtained from this extended dHCP pipeline to results obtained from a typical FSL FEAT-based analysis pipeline, evaluating the pipelines' outputs using a wide range of tests. We demonstrate that a substantial increase in spatial specificity and sensitivity to signal can be attained with a bespoke neonatal preprocessing pipeline through optimised motion and distortion correction, ICA-based denoising, and haemodynamic modelling. The improved sensitivity and specificity, made possible with this extended dHCP pipeline, will be paramount in making further progress in our understanding of the development of sensory processing in the infant brain.
Collapse
Affiliation(s)
- Luke Baxter
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Sean Fitzgibbon
- FMRIB, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Fiona Moultrie
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Sezgi Goksan
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Mark Jenkinson
- FMRIB, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Stephen Smith
- FMRIB, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Jesper Andersson
- FMRIB, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Eugene Duff
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
22
|
Zhang H, Shen D, Lin W. Resting-state functional MRI studies on infant brains: A decade of gap-filling efforts. Neuroimage 2019; 185:664-684. [PMID: 29990581 PMCID: PMC6289773 DOI: 10.1016/j.neuroimage.2018.07.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/19/2018] [Accepted: 07/02/2018] [Indexed: 12/16/2022] Open
Abstract
Resting-state functional MRI (rs-fMRI) is one of the most prevalent brain functional imaging modalities. Previous rs-fMRI studies have mainly focused on adults and elderly subjects. Recently, infant rs-fMRI studies have become an area of active research. After a decade of gap filling studies, many facets of the brain functional development from early infancy to toddler has been uncovered. However, infant rs-fMRI is still in its infancy. The image analysis tools for neonates and young infants can be quite different from those for adults. From data analysis to result interpretation, more questions and issues have been raised, and new hypotheses have been formed. With the anticipated availability of unprecedented high-resolution rs-fMRI and dedicated analysis pipelines from the Baby Connectome Project (BCP), it is important now to revisit previous findings and hypotheses, discuss and comment existing issues and problems, and make a "to-do-list" for the future studies. This review article aims to comprehensively review a decade of the findings, unveiling hidden jewels of the fields of developmental neuroscience and neuroimage computing. Emphases will be given to early infancy, particularly the first few years of life. In this review, an end-to-end summary, from infant rs-fMRI experimental design to data processing, and from the development of individual functional systems to large-scale brain functional networks, is provided. A comprehensive summary of the rs-fMRI findings in developmental patterns is highlighted. Furthermore, an extensive summary of the neurodevelopmental disorders and the effects of other hazardous factors is provided. Finally, future research trends focusing on emerging dynamic functional connectivity and state-of-the-art functional connectome analysis are summarized. In next decade, early infant rs-fMRI and developmental connectome study could be one of the shining research topics.
Collapse
Affiliation(s)
- Han Zhang
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, NC, 27599, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, NC, 27599, USA.
| |
Collapse
|
23
|
Gabard-Durnam LJ, O'Muircheartaigh J, Dirks H, Dean DC, Tottenham N, Deoni S. Human amygdala functional network development: A cross-sectional study from 3 months to 5 years of age. Dev Cogn Neurosci 2018; 34:63-74. [PMID: 30075348 PMCID: PMC6252269 DOI: 10.1016/j.dcn.2018.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/10/2023] Open
Abstract
Although the amygdala's role in shaping social behavior is especially important during early post-natal development, very little is known of amygdala functional development before childhood. To address this gap, this study uses resting-state fMRI to examine early amygdalar functional network development in a cross-sectional sample of 80 children from 3-months to 5-years of age. Whole brain functional connectivity with the amygdala, and its laterobasal and superficial sub-regions, were largely similar to those seen in older children and adults. Functional distinctions between sub-region networks were already established. These patterns suggest many amygdala functional circuits are intact from infancy, especially those that are part of motor, visual, auditory and subcortical networks. Developmental changes in connectivity were observed between the laterobasal nucleus and bilateral ventral temporal and motor cortex as well as between the superficial nuclei and medial thalamus, occipital cortex and a different region of motor cortex. These results show amygdala-subcortical and sensory-cortex connectivity begins refinement prior to childhood, though connectivity changes with associative and frontal cortical areas, seen after early childhood, were not evident in this age range. These findings represent early steps in understanding amygdala network dynamics across infancy through early childhood, an important period of emotional and cognitive development.
Collapse
Affiliation(s)
- L J Gabard-Durnam
- Division of Developmental Medicine, Boston Children's Hospital, Harvard University, Boston, MA, 02115, USA
| | - J O'Muircheartaigh
- Department of Forensic and Neurodevelopmental Sciences & Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
| | - H Dirks
- Advanced Baby Imaging Lab, Brown University School of Engineering, Providence, USA
| | - D C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53702, USA; Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, 53702, USA
| | - N Tottenham
- Department of Psychology, Columbia University, New York, NY, 10027, USA
| | - S Deoni
- Department of Pediatrics, Warren Alpert Medical School, Brown University, Providence, USA
| |
Collapse
|
24
|
Alterations in Resting-State Networks Following In Utero Selective Serotonin Reuptake Inhibitor Exposure in the Neonatal Brain. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:39-49. [PMID: 30292808 DOI: 10.1016/j.bpsc.2018.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are commonly used to treat depression during pregnancy. SSRIs cross the placenta, inhibit serotonin reuptake, and thereby are thought to alter central fetal serotonin signaling. Both prenatal maternal mood disturbances and in utero SSRI exposure have been associated with altered fetal and infant behavior. Resting-state functional magnetic resonance imaging has identified resting-state networks (RSNs) in newborns, reflecting functional capacity of auditory and visual networks and providing opportunities to examine early experiences effects on neurodevelopment. We sought to examine the effect of in utero SSRI exposure on neonatal RSN functional organization. We hypothesized that prenatal SSRI exposure would be associated with alterations in neonatal RSNs compared with healthy control infants and infants exposed to mothers with depression. METHODS Clinician-rated Hamilton Depression Rating Scale and self-reported Pregnancy Experiences Scale were completed during the third trimester. Control (n = 17), maternal depression-exposed (Hamilton Depression Rating Scale ≥8 without SSRI exposure, n = 16), and SSRI-exposed (n = 20) 6-day-old neonates underwent resting-state functional magnetic resonance imaging. Independent component analysis was used as a data-driven approach to extract 22 RSNs. RESULTS SSRI-exposed neonates had higher connectivity in a putative auditory RSN compared with depressed-only (p = .01) and control (p = .02) infants (corrected for multiple comparisons), controlling for sex, age at the magnetic resonance imaging, and Pregnancy Experiences Scale score. CONCLUSIONS Hyperconnectivity in auditory RSN in neonates with in utero SSRI exposure relative to neonates of depressed but not pharmacologically treated mothers and control infants may offer an insight into the functional organization origins of shifts in language perception and altered language development, previously reported in infants and children with prenatal SSRI exposure.
Collapse
|
25
|
Hadders-Algra M. Early human brain development: Starring the subplate. Neurosci Biobehav Rev 2018; 92:276-290. [PMID: 29935204 DOI: 10.1016/j.neubiorev.2018.06.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
This review summarizes early human brain development on the basis of neuroanatomical data and functional connectomics. It indicates that the most significant changes in the brain occur during the second half of gestation and the first three months post-term, in particular in the cortical subplate and cerebellum. As the transient subplate pairs a high rate of intricate developmental changes and interactions with clear functional activity, two phases of development are distinguished: a) the transient cortical subplate phase, ending at 3 months post-term when the permanent circuitries in the primary motor, somatosensory and visual cortices have replaced the subplate; and subsequently, b) the phase in which the permanent circuitries dominate. In the association areas the subplate dissolves in the remainder of the first postnatal year. During both phases developmental changes are paralleled by continuous reconfigurations in network activity. The reviewed literature also suggests that disruption of subplate development may play a pivotal role in developmental disorders, such as cerebral palsy, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia.
Collapse
Affiliation(s)
- Mijna Hadders-Algra
- University of Groningen, University Medical Center Groningen, Dept. Pediatrics - Section Developmental Neurology, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|