1
|
Vrselja A, Pillow JJ, Bensley JG, Ahmadi‐Noorbakhsh S, Noble PB, Black MJ. Dose-related cardiac outcomes in response to postnatal dexamethasone treatment in premature lambs. Anat Rec (Hoboken) 2025; 308:1214-1228. [PMID: 36924351 PMCID: PMC11889478 DOI: 10.1002/ar.25202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Postnatal corticosteroids are used in the critical care of preterm infants for the prevention and treatment of bronchopulmonary dysplasia. We aimed to investigate the effects of early postnatal dexamethasone therapy and dose on cardiac maturation and morphology in preterm lambs. METHODS Lambs were delivered prematurely at ~128 days of gestational age and managed postnatally according to best clinical practice. Preterm lambs were administered dexamethasone daily at either a low-dose (n = 9) or a high-dose (n = 7), or were naïve to steroid treatment and administered saline (n = 9), over a 7-day time-course. Hearts were studied at postnatal Day 7 for gene expression and assessment of myocardial structure. RESULTS High-dose dexamethasone treatment in the early postnatal period led to marked differences in cardiac gene expression, altered cardiomyocyte maturation and reduced cardiomyocyte endowment in the right ventricle, as well as increased inflammatory infiltrates into the left ventricle. Low-dose exposure had minimal effects on the preterm heart. CONCLUSION Neonatal dexamethasone treatment led to adverse effects in the preterm heart in a dose-dependent manner within the first week of life. The observed cardiac changes associated with high-dose postnatal dexamethasone treatment may influence postnatal growth and remodeling of the preterm heart and subsequent long-term cardiac function.
Collapse
Affiliation(s)
- Amanda Vrselja
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Jennifer Jane Pillow
- School of Human SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Jonathan G. Bensley
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | | | - Peter B. Noble
- School of Human SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Mary Jane Black
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
2
|
Bautista GM, Cera AJ, Schoenauer RJ, Persiani M, Lakshminrusimha S, Chandrasekharan P, Gugino SF, Underwood MA, McElroy SJ. Paneth cell ontogeny in term and preterm ovine models. Front Vet Sci 2024; 11:1275293. [PMID: 38318150 PMCID: PMC10839032 DOI: 10.3389/fvets.2024.1275293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Paneth cells are critically important to intestinal health, including protecting intestinal stem cells, shaping the intestinal microbiome, and regulating host immunity. Understanding Paneth cell biology in the immature intestine is often modeled in rodents with little information in larger mammals such as sheep. Previous studies have only established the distribution pattern of Paneth cells in healthy adult sheep. Our study aimed to examine the ontogeny, quantification, and localization of Paneth cells in fetal and newborn lambs at different gestational ages and with perinatal transient asphyxia. We hypothesized that ovine Paneth cell distribution at birth resembles the pattern seen in humans (highest concentrations in the ileum) and that ovine Paneth cell density is gestation-dependent. Methods Intestinal samples were obtained from 126-127 (preterm, with and without perinatal transient asphyxia) and 140-141 (term) days gestation sheep. Samples were quantified per crypt in at least 100 crypts per animal and confirmed as Paneth cells through in immunohistochemistry. Results Paneth cells had significantly higher density in the ileum compared to the jejunum and were absent in the colon. Discussion Exposure to perinatal transient asphyxia acutely decreased Paneth cell numbers. These novel data support the possibility of utilizing ovine models for understanding Paneth cell biology in the fetus and neonate.
Collapse
Affiliation(s)
- Geoanna M. Bautista
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | - Anjali J. Cera
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | - Rebecca J. Schoenauer
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Michele Persiani
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | - Satyan Lakshminrusimha
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | | | - Sylvia F Gugino
- Department of Pediatrics, University of Buffalo, Buffalo, NY, United States
| | - Mark A. Underwood
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | - Steven J. McElroy
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
3
|
Young R, Lewandowska D, Long E, Wooding FBP, De Blasio MJ, Davies KL, Camm EJ, Sangild PT, Fowden AL, Forhead AJ. Hypothyroidism impairs development of the gastrointestinal tract in the ovine fetus. Front Physiol 2023; 14:1124938. [PMID: 36935746 PMCID: PMC10020222 DOI: 10.3389/fphys.2023.1124938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Growth and maturation of the fetal gastrointestinal tract near term prepares the offspring for the onset of enteral nutrition at birth. Structural and functional changes are regulated by the prepartum rise in cortisol in the fetal circulation, although the role of the coincident rise in plasma tri-iodothyronine (T3) is unknown. This study examined the effect of hypothyroidism on the structural development of the gastrointestinal tract and the activity of brush-border digestive enzymes in the ovine fetus near term. In intact fetuses studied between 100 and 144 days of gestation (dGA; term ∼145 days), plasma concentrations of T3, cortisol and gastrin; the mucosal thickness in the abomasum, duodenum, jejunum and ileum; and intestinal villus height and crypt depth increased with gestational age. Removal of the fetal thyroid gland at 105-110 dGA suppressed plasma thyroxine (T4) and T3 concentrations to the limit of assay detection in fetuses studied at 130 and 144 dGA, and decreased plasma cortisol and gastrin near term, compared to age-matched intact fetuses. Hypothyroidism was associated with reductions in the relative weights of the stomach compartments and small intestines, the outer perimeter of the intestines, the thickness of the gastric and intestinal mucosa, villus height and width, and crypt depth. The thickness of the mucosal epithelial cell layer and muscularis propria in the small intestines were not affected by gestational age or treatment. Activities of the brush border enzymes varied with gestational age in a manner that depended on the enzyme and region of the small intestines studied. In the ileum, maltase and dipeptidyl peptidase IV (DPPIV) activities were lower, and aminopeptidase N (ApN) were higher, in the hypothyroid compared to intact fetuses near term. These findings highlight the importance of thyroid hormones in the structural and functional development of the gastrointestinal tract near term, and indicate how hypothyroidism in utero may impair the transition to enteral nutrition and increase the risk of gastrointestinal disorders in the neonate.
Collapse
Affiliation(s)
- Rhian Young
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Dominika Lewandowska
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Emily Long
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - F. B. Peter Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Miles J. De Blasio
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Katie L. Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Emily J. Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Per T. Sangild
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neonatology, Rigshospitalet, Copenhagen, Denmark
- Department of Pediatrics, Odense University Hospital, Odense, Denmark
| | - Abigail L. Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alison J. Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
4
|
The Sheep as a Large Animal Model for the Investigation and Treatment of Human Disorders. BIOLOGY 2022; 11:biology11091251. [PMID: 36138730 PMCID: PMC9495394 DOI: 10.3390/biology11091251] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary We review the value of large animal models for improving the translation of biomedical research for human application, focusing primarily on sheep. Abstract An essential aim of biomedical research is to translate basic science information obtained from preclinical research using small and large animal models into clinical practice for the benefit of humans. Research on rodent models has enhanced our understanding of complex pathophysiology, thus providing potential translational pathways. However, the success of translating drugs from pre-clinical to clinical therapy has been poor, partly due to the choice of experimental model. The sheep model, in particular, is being increasingly applied to the field of biomedical research and is arguably one of the most influential models of human organ systems. It has provided essential tools and insights into cardiovascular disorder, orthopaedic examination, reproduction, gene therapy, and new insights into neurodegenerative research. Unlike the widely adopted rodent model, the use of the sheep model has an advantage over improving neuroscientific translation, in particular due to its large body size, gyrencephalic brain, long lifespan, more extended gestation period, and similarities in neuroanatomical structures to humans. This review aims to summarise the current status of sheep to model various human diseases and enable researchers to make informed decisions when considering sheep as a human biomedical model.
Collapse
|
5
|
Intrauterine inflammation exacerbates maladaptive remodeling of the immature myocardium after preterm birth in lambs. Pediatr Res 2022; 92:1555-1565. [PMID: 35277596 PMCID: PMC9771797 DOI: 10.1038/s41390-022-01955-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Antenatal conditions that are linked with preterm birth, such as intrauterine inflammation, can influence fetal cardiac development thereby rendering the heart more vulnerable to the effects of prematurity. We aimed to investigate the effect of intrauterine inflammation, consequent to lipopolysaccharide exposure, on postnatal cardiac growth and maturation in preterm lambs. METHODS Preterm lambs (~129 days gestational age) exposed antenatally to lipopolysaccharide or saline were managed according to contemporary neonatal care and studied at postnatal day 7. Age-matched fetal controls were studied at ~136 days gestational age. Cardiac tissue was sampled for molecular analyses and assessment of cardiac structure and cardiomyocyte maturation. RESULTS Lambs delivered preterm showed distinct ventricular differences in cardiomyocyte growth and maturation trajectories as well as remodeling of the left ventricular myocardium compared to fetal controls. Antenatal exposure to lipopolysaccharide resulted in further collagen deposition in the left ventricle and a greater presence of immune cells in the preterm heart. CONCLUSIONS Adverse impacts of preterm birth on cardiac structure and cardiomyocyte growth kinetics within the first week of postnatal life are exacerbated by intrauterine inflammation. The maladaptive remodeling of the cardiac structure and perturbed cardiomyocyte growth likely contribute to the increased vulnerability to cardiac dysfunction following preterm birth. IMPACT Preterm birth induces maladaptive cardiac remodeling and adversely impacts cardiomyocyte growth kinetics within the first week of life in sheep. These effects of prematurity on the heart are exacerbated when preterm birth is preceded by exposure to intrauterine inflammation, a common antecedent of preterm birth. Inflammatory injury to the fetal heart coupled with preterm birth consequently alters neonatal cardiac growth and maturation and thus, may potentially influence long-term cardiac function and health.
Collapse
|
6
|
The microbial biogeography of the gastrointestinal tract of preterm and term lambs. Sci Rep 2020; 10:9113. [PMID: 32499592 PMCID: PMC7272652 DOI: 10.1038/s41598-020-66056-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
Nutritional supplementation is a common clinical intervention to support the growth of preterm infants. There is little information on how nutritional supplementation interacts with the developing microbiome of the small intestine, the major site for nutrient metabolism and absorption. We investigated the effect of preterm birth and nutritional supplementation on the mucosal and luminal microbiota along the gastrointestinal tract (GIT) of preterm lambs. Preterm lambs (n = 24) were enterally supplemented with branched-chain amino acids (BCAAs), carbohydrate (maltodextrin), or water for two weeks from birth. Term lambs (n = 7) received water. Mucosal scrapings and luminal samples were collected from the duodenum, jejunum, ileum (small intestine) and colon at six weeks post-term age and analysed by 16S rRNA amplicon sequencing. Anatomical site explained 54% (q = 0.0004) of the variance and differences between the term and preterm groups explained 5.7% (q = 0.024) of the variance in microbial beta-diversities. The colon was enriched with Tenericutes and Verrucomicrobia compared to the small intestine, while Actinobacteria, and superphylum Patescibacteria were present in higher abundance in the small intestine compared to the colon. Our findings highlight that early-life short-term nutritional supplementation in preterm lambs does not alter the microbial community residing in the small intestine and colon.
Collapse
|