1
|
Li X, Xu X, Zhang J, Wang X, Zhao C, Liu Q, Fan K. Review of the therapeutic effects of traditional Chinese medicine in sepsis-associated encephalopathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118588. [PMID: 39029543 DOI: 10.1016/j.jep.2024.118588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sepsis-associated encephalopathy (SAE) is a common and serious complication during the acute phase of and after recovery from sepsis that seriously affects the quality of life of patients. Traditional Chinese medicine (TCM) has been widely used in modern medicine for neurological anomalies and has become a therapeutic tool for the treatment of SAE due to its multitargeting effects and low toxicity and side effects. AIMS OF THE STUDY This review provides insights into the pathogenesis and treatments of SAE, focusing on the clinical and experimental impacts of TCM formulations and their single components. METHODS Several known databases such as PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI), and others were extensively explored with keywords and phrases such as "sepsis-associated encephalopathy", "traditional Chinese medicine", "herbs", "SAE", "sepsis", "cerebral" or other relevant terms to obtain literature between 2018 and 2024. RESULTS Extensive evidence indicated that TCM could decrease mortality and normalize neurological function in patients with sepsis; these effects might be associated with factors such as reduced oxidative stress and downregulated expression of inflammatory factors. CONCLUSIONS TCM shows notable efficacy in treating SAE, warranting deeper mechanistic studies to optimize its clinical application.
Collapse
Affiliation(s)
- Xingyao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Jun Zhang
- Intensive Care Unit, Wuhan Hospital of Traditional Chinese Medicine, Wu Han, 430014, China.
| | - Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Chunming Zhao
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Kai Fan
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Kasim AH, Mohammad SA, Habib LA, Saleh GA, Salah SH. Utility of doppler ultrasound in early-onset neonatal sepsis: A case-control study. J Neonatal Perinatal Med 2024:NPM240028. [PMID: 39365328 DOI: 10.3233/npm-240028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
BACKGROUND Early-onset sepsis is one of the leading causes of neonatal morbidity and mortality worldwide and timely diagnosis is, therefore, of paramount importance. As there is a lack of literature regarding early alteration of the cerebral blood flow (CBF) in neonatal sepsis, our study aimed to appraise changes in the CBF velocities and Doppler indices in neonates with early-onset neonatal sepsis (EONS) and to assess its diagnostic accuracy. METHODS A total of 99 neonates were recruited in the study; 56 neonates with EONS, and the age-matched 43 neonates without any manifestations of sepsis. A Transcranial Doppler examination and cerebral hemodynamics were assessed in neonates during the first seventy-two hours of life. Doppler indices and CBFV were measured in the anterior cerebral artery (ACA), and middle cerebral artery (MCA), of either side. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy were calculated. RESULTS A significantly lower resistance in Resistivity (RI) and Pulsatility (PI) indices, a significant high end-diastolic velocity (EDV), and relatively higher peak systolic velocity (PSV) in both ACA and MCA have been documented within 72 hours of birth in neonates with EONS compared to the control group of neonates without sepsis. CONCLUSION Our Study revealed that assessment of CBF at early hours of birth by Transcranial Doppler examination showed alteration in cerebral hemodynamics in neonates with EONS with an increase in the CBF and a decrease in the resistance. It can be adopted as a bedside, noninvasive tool with immediate diagnostic value.
Collapse
Affiliation(s)
- A H Kasim
- Radiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Radiology Department Mansheyet El Bakry Hospital, Heliopolis, Cairo, Egypt
| | - S A Mohammad
- Radiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - L A Habib
- Radiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - G A Saleh
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - S H Salah
- Radiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Peng H, Liang Z, Zhang S, Yang Y. Optimal target mean arterial pressure for patients with sepsis-associated encephalopathy: a retrospective cohort study. BMC Infect Dis 2024; 24:902. [PMID: 39223467 PMCID: PMC11367872 DOI: 10.1186/s12879-024-09789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) patients often experience changes in intracranial pressure and impaired cerebral autoregulation. Mean arterial pressure (MAP) plays a crucial role in cerebral perfusion pressure, but its relationship with mortality in SAE patients remains unclear. This study aims to investigate the relationship between MAP and the risk of 28-day and in-hospital mortality in SAE patients, providing clinicians with the optimal MAP target. METHODS We retrospectively collected clinical data of patients diagnosed with SAE on the first day of ICU admission from the MIMIC-IV (v2.2) database. Patients were divided into four groups based on MAP quartiles. Kruskal-Wallis H test and Chi-square test were used to compare clinical characteristics among the groups. Restricted cubic spline and segmented Cox regression models, both unadjusted and adjusted for multiple variables, were employed to elucidate the relationship between MAP and the risk of 28-day and in-hospital mortality in SAE patients and to identify the optimal MAP. Subgroup analyses were conducted to assess the stability of the results. RESULTS A total of 3,816 SAE patients were included. The Q1 group had higher rates of acute kidney injury and vasoactive drug use on the first day of ICU admission compared to other groups (P < 0.01). The Q1 and Q4 groups had longer ICU and hospital stays (P < 0.01). The 28-day and in-hospital mortality rates were highest in the Q1 group and lowest in the Q3 group. Multivariable adjustment restricted cubic spline curves indicated a nonlinear relationship between MAP and mortality risk (P for nonlinearity < 0.05). The MAP ranges associated with HRs below 1 for 28-day and in-hospital mortality were 74.6-90.2 mmHg and 74.6-89.3 mmHg, respectively.The inflection point for mortality risk, determined by the minimum hazard ratio (HR), was identified at a MAP of 81.5 mmHg. The multivariable adjusted segmented Cox regression models showed that for MAP < 81.5 mmHg, an increase in MAP was associated with a decreased risk of 28-day and in-hospital mortality (P < 0.05). In Model 4, each 5 mmHg increase in MAP was associated with a 15% decrease in 28-day mortality risk (HR: 0.85, 95% CI: 0.79-0.91, p < 0.05) and a 14% decrease in in-hospital mortality risk (HR: 0.86, 95% CI: 0.80-0.93, p < 0.05). However, for MAP ≥ 81.5 mmHg, there was no significant association between MAP and mortality risk (P > 0.05). Subgroup analyses based on age, congestive heart failure, use of vasoactive drugs, and acute kidney injury showed consistent results across different subgroups.Subsequent analysis of SAE patients with septic shock also showed results similar to those of the original cohort.However, for comatose SAE patients (GCS ≤ 8), there was a negative correlation between MAP and the risk of 28-day and in-hospital mortality when MAP was < 81.5 mmHg, but a positive correlation when MAP was ≥ 81.5 mmHg in adjusted models 2 and 4. CONCLUSION There is a nonlinear relationship between MAP and the risk of 28-day and in-hospital mortality in SAE patients. The optimal MAP target for SAE patients in clinical practice appears to be 81.5 mmHg.
Collapse
Affiliation(s)
- Hongyan Peng
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renmin Middle Road, Yuexiu District, Guangzhou, 510120, China
- Department of Intensive Care Medicine, Liuzhou Affiliated Guangzhou Women and Children's Medical Center, No. 50 Boyuan Avenue, Liudong New District, Yufeng District, Liuzhou, 545005, China
| | - Zhuoxin Liang
- Department of Intensive Care Medicine, Liuzhou Affiliated Guangzhou Women and Children's Medical Center, No. 50 Boyuan Avenue, Liudong New District, Yufeng District, Liuzhou, 545005, China
| | - Senxiong Zhang
- Department of Intensive Care Medicine, Liuzhou Affiliated Guangzhou Women and Children's Medical Center, No. 50 Boyuan Avenue, Liudong New District, Yufeng District, Liuzhou, 545005, China
| | - Yiyu Yang
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renmin Middle Road, Yuexiu District, Guangzhou, 510120, China.
| |
Collapse
|
4
|
Totapally A, Fretz EA, Wolf MS. A narrative review of neuromonitoring modalities in critically ill children. Minerva Pediatr (Torino) 2024; 76:556-565. [PMID: 37462589 DOI: 10.23736/s2724-5276.23.07291-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Acute neurologic injury is common in critically ill children. Some conditions - such as traumatic brain injury, meningitis, and hypoxic-ischemic injury following cardiac arrest - require careful consideration of cerebral physiology. Specialized neuromonitoring techniques provide insight regarding patient-specific and disease-specific insight that can improve diagnostic accuracy, aid in targeting therapeutic interventions, and provide prognostic information. In this review, we will discuss recent innovations in invasive (e.g., intracranial pressure monitoring and related computed indices) and noninvasive (e.g., transcranial doppler, near-infrared spectroscopy) neuromonitoring techniques used in traumatic brain injury, central nervous system infections, and after cardiac arrest. We will discuss the pertinent physiological mechanisms interrogated by each technique and discuss available evidence for potential clinical application. We will also discuss the use of innovative neuromonitoring techniques to detect and manage neurologic complications in critically ill children with systemic illness, focusing on sepsis and cardiorespiratory failure requiring extracorporeal membrane oxygenation.
Collapse
Affiliation(s)
- Abhinav Totapally
- Division of Critical Care Medicine, Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, USA
| | - Emily A Fretz
- Division of Critical Care Medicine, Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, USA
| | - Michael S Wolf
- Division of Critical Care Medicine, Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, USA -
| |
Collapse
|
5
|
Dias FA, Zotin MCZ, Alessio-Alves FF, Martins Filho RKDV, Barreira CMA, Vincenzi OC, Venturelli PM, Boulouis G, Goldstein JN, Pontes-Neto OM. Dilated optic nerve sheath by ultrasound predicts mortality among patients with acute intracerebral hemorrhage. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:861-867. [PMID: 37939718 PMCID: PMC10631847 DOI: 10.1055/s-0043-1775885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/30/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a deadly disease and increased intracranial pressure (ICP) is associated with worse outcomes in this context. OBJECTIVE We evaluated whether dilated optic nerve sheath diameter (ONSD) depicted by optic nerve ultrasound (ONUS) at hospital admission has prognostic value as a predictor of mortality at 90 days. METHODS Prospective multicenter study of acute supratentorial primary ICH patients consecutively recruited from two tertiary stroke centers. Optic nerve ultrasound and cranial computed tomography (CT) scans were performed at hospital admission and blindly reviewed. The primary outcome was mortality at 90-days. Multivariate logistic regression, ROC curve, and C-statistics were used to identify independent predictors of mortality. RESULTS Between July 2014 and July 2016, 57 patients were evaluated. Among those, 13 were excluded and 44 were recruited into the trial. Their mean age was 62.3 ± 13.1 years and 12 (27.3%) were female. On univariate analysis, ICH volume on cranial CT scan, ICH ipsilateral ONSD, Glasgow coma scale, National Institute of Health Stroke Scale (NIHSS) and glucose on admission, and also diabetes mellitus and current nonsmoking were predictors of mortality. After multivariate analysis, ipsilateral ONSD (odds ratio [OR]: 6.24; 95% confidence interval [CI]: 1.18-33.01; p = 0.03) was an independent predictor of mortality, even after adjustment for other relevant prognostic factors. The best ipsilateral ONSD cutoff was 5.6mm (sensitivity 72% and specificity 83%) with an AUC of 0.71 (p = 0.02) for predicting mortality at 90 days. CONCLUSION Optic nerve ultrasound is a noninvasive, bedside, low-cost technique that can be used to identify increased ICP in acute supratentorial primary ICH patients. Among these patients, dilated ONSD is an independent predictor of mortality at 90 days.
Collapse
Affiliation(s)
- Francisco Antunes Dias
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hospital das Clínicas, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil.
| | - Maria Clara Zanon Zotin
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hospital das Clínicas, Departamento de Medicina Interna, Divisão de Radiologia, Ribeirão Preto SP, Brazil.
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States.
| | - Frederico Fernandes Alessio-Alves
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hospital das Clínicas, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil.
| | - Rui Kleber do Vale Martins Filho
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hospital das Clínicas, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil.
| | - Clara Monteiro Antunes Barreira
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hospital das Clínicas, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil.
| | - Otavio Costa Vincenzi
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hospital das Clínicas, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil.
| | - Paula Muñoz Venturelli
- Universidad del Desarrollo, Facultad de Medicina Clínica Alemana, Instituto de Ciencias e Innovación en Medicina, Centro de Estudios Clínicos, Santiago, Chile.
| | - Gregoire Boulouis
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States.
| | | | - Octavio Marques Pontes-Neto
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hospital das Clínicas, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil.
| |
Collapse
|
6
|
Cheung C, Kernan KF, Berg RA, Zuppa AF, Notterman DA, Pollack MM, Wessel D, Meert KL, Hall MW, Newth C, Lin JC, Doctor A, Shanley T, Cornell T, Harrison RE, Banks RK, Reeder RW, Holubkov R, Carcillo JA, Fink EL. Acute Disorders of Consciousness in Pediatric Severe Sepsis and Organ Failure: Secondary Analysis of the Multicenter Phenotyping Sepsis-Induced Multiple Organ Failure Study. Pediatr Crit Care Med 2023; 24:840-848. [PMID: 37314247 PMCID: PMC10719421 DOI: 10.1097/pcc.0000000000003300] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Acute disorders of consciousness (DoC) in pediatric severe sepsis are associated with increased risk of morbidity and mortality. We sought to examine the frequency of and factors associated with DoC in children with sepsis-induced organ failure. DESIGN Secondary analysis of the multicenter Phenotyping Sepsis-Induced Multiple Organ Failure Study (PHENOMS). SETTING Nine tertiary care PICUs in the United States. PATIENTS Children less than 18 years old admitted to a PICU with severe sepsis and at least one organ failure during a PICU stay. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The primary outcome was frequency of DoC, defined as Glasgow Coma Scale (GCS) less than 12 in the absence of sedatives during an ICU stay, among children with severe sepsis and the following: single organ failure, nonphenotypeable multiple organ failure (MOF), MOF with one of the PHENOMS phenotypes (immunoparalysis-associated MOF [IPMOF], sequential liver failure-associated MOF, thrombocytopenia-associated MOF), or MOF with multiple phenotypes. A multivariable logistic regression analysis was performed to evaluate the association between clinical variables and organ failure groups with DoC. Of 401 children studied, 71 (18%) presented with DoC. Children presenting with DoC were older (median 8 vs 5 yr; p = 0.023), had increased hospital mortality (21% vs 10%; p = 0.011), and more frequently presented with both any MOF (93% vs 71%; p < 0.001) and macrophage activation syndrome (14% vs 4%; p = 0.004). Among children with any MOF, those presenting with DoC most frequently had nonphenotypeable MOF and IPMOF (52% and 34%, respectively). In the multivariable analysis, older age (odds ratio, 1.07; 95% CI, 1.01-1.12) and any MOF (3.22 [1.19-8.70]) were associated with DoC. CONCLUSIONS One of every five children with severe sepsis and organ failure experienced acute DoC during their PICU stay. Preliminary findings suggest the need for prospective evaluation of DoC in children with sepsis and MOF.
Collapse
Affiliation(s)
| | - Kate F. Kernan
- Division of Pediatric Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Robert A. Berg
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Athena F. Zuppa
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Murray M. Pollack
- Department of Pediatrics, Children’s National Hospital, Washington, DC, USA
| | - David Wessel
- Department of Pediatrics, Children’s National Hospital, Washington, DC, USA
| | - Kathleen L. Meert
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI, USA
| | - Mark W. Hall
- Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Christopher Newth
- Division of Pediatric Critical Care Medicine, Department of Anesthesiology and Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - John C. Lin
- Division of Critical Care Medicine, Department of Pediatrics, St. Louis Children’s Hospital, St. Louis, MO, USA
| | - Allan Doctor
- Division of Critical Care Medicine, Department of Pediatrics, St. Louis Children’s Hospital, St. Louis, MO, USA
| | - Tom Shanley
- Division of Critical Care Medicine, Department of Pediatrics, C. S. Mott Children’s Hospital, Ann Arbor, MI, USA
| | - Tim Cornell
- Division of Critical Care Medicine, Department of Pediatrics, C. S. Mott Children’s Hospital, Ann Arbor, MI, USA
| | - Rick E. Harrison
- Department of Pediatrics, Mattel Children's Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | - Joseph A. Carcillo
- Division of Pediatric Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Ericka L. Fink
- Division of Pediatric Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
7
|
Reddy AR, Stinson HR, Alcamo AM, Pinto NP, Fitzgerald JC. Pediatric Sepsis Requiring Intensive Care Admission: Potential Structured Follow-Up Protocols to Identify and Manage New or Exacerbated Medical Conditions. Risk Manag Healthc Policy 2023; 16:1881-1891. [PMID: 37736598 PMCID: PMC10511018 DOI: 10.2147/rmhp.s394458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
Pediatric sepsis is a leading cause of morbidity and mortality in children globally. Children who require the pediatric intensive care unit (PICU) are at high risk for new or worsening co-morbidities, as well as readmission. This review describes the current state of protocolized follow-up after pediatric sepsis requiring PICU admission. We searched Medline and EMBASE databases for studies published in English from 2005 to date. Duplicates, review articles, abstracts and poster presentations were excluded; neonatal intensive care unit (NICU) patients were also excluded since neonatal sepsis is variably defined and differs from the pediatric consensus definition. The search yielded 418 studies of which 55 were duplicates; the subsequent 363 studies were screened for inclusion criteria, yielding 31 studies for which full article screening was completed. Subsequently, 23 studies were excluded due to wrong population (9), wrong publication type (10), duplicate data (3) or wrong outcome (1). In total, nine studies were included for which we described study design, setting, population, sample size, outcomes, PICU core outcome domain, and results. There were 4 retrospective cohort studies, 4 prospective cohort studies, 1 retrospective case series and no prospective trials. These studies show the varying trajectories of recovery after discharge, with the common finding that new or worsening morbidities are worse within months of discharge, but may persist. Sepsis survivors may have distinct needs and a different post-PICU trajectory compared to other critically ill children, particularly in quality of life and neurocognitive outcomes. Future research should focus on developing screening protocols and studying protocolized follow-up trials to reduce morbidity after pediatric sepsis.
Collapse
Affiliation(s)
- Anireddy R Reddy
- Division of Critical Care, Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, USA
- Pediatric Sepsis Program, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hannah R Stinson
- Division of Critical Care, Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Pediatric Sepsis Program, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alicia M Alcamo
- Division of Critical Care, Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Pediatric Sepsis Program, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Neethi P Pinto
- Division of Critical Care, Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Pediatric Sepsis Program, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julie C Fitzgerald
- Division of Critical Care, Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Pediatric Sepsis Program, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Schütze S, Drevets DA, Tauber SC, Nau R. Septic encephalopathy in the elderly - biomarkers of potential clinical utility. Front Cell Neurosci 2023; 17:1238149. [PMID: 37744876 PMCID: PMC10512712 DOI: 10.3389/fncel.2023.1238149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Next to acute sickness behavior, septic encephalopathy is the most frequent involvement of the brain during infection. It is characterized by a cross-talk of pro-inflammatory cells across the blood-brain barrier, by microglial activation and leukocyte migration, but not by the entry of infecting organisms into the brain tissue. Septic encephalopathy is very frequent in older persons because of their limited cognitive reserve. The predominant clinical manifestation is delirium, whereas focal neurological signs and symptoms are absent. Electroencephalography is a very sensitive method to detect functional abnormalities, but these abnormalities are not specific for septic encephalopathy and of limited prognostic value. Routine cerebral imaging by computer tomography usually fails to visualize the subtle abnormalities produced by septic involvement of the brain. Magnetic resonance imaging is by far more sensitive to detect vasogenic edema, diffuse axonal injury or small ischemic lesions. Routine laboratory parameters most suitable to monitor sepsis, but not specific for septic encephalopathy, are C-reactive protein and procalcitonin. The additional measurement of interleukin (IL)-6, IL-8, IL-10 and tumor necrosis factor-α increases the accuracy to predict delirium and an unfavorable outcome. The most promising laboratory parameters to quantify neuronal and axonal injury caused by septic encephalopathy are neurofilament light chains (NfL) and S100B protein. Neuron-specific enolase (NSE) plasma concentrations are strongly influenced by hemolysis. We propose to determine NSE only in non-hemolytic plasma or serum samples for the estimation of outcome in septic encephalopathy.
Collapse
Affiliation(s)
- Sandra Schütze
- Department of Neuropathology, University Medicine Göttingen, Georg-August University Göttingen, Göttingen, Germany
- Department of Geriatrics, AGAPLESION Markus Krankenhaus, Frankfurt, Germany
| | - Douglas A. Drevets
- Infectious Diseases, Department of Internal Medicine, University of Oklahoma HSC, Oklahoma City, OK, United States
| | - Simone C. Tauber
- Department of Neurology, University Medicine Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Roland Nau
- Department of Neuropathology, University Medicine Göttingen, Georg-August University Göttingen, Göttingen, Germany
- Department of Geriatrics Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| |
Collapse
|
9
|
Dumbuya JS, Li S, Liang L, Zeng Q. Paediatric sepsis-associated encephalopathy (SAE): a comprehensive review. Mol Med 2023; 29:27. [PMID: 36823611 PMCID: PMC9951490 DOI: 10.1186/s10020-023-00621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is one of the most common types of organ dysfunction without overt central nervous system (CNS) infection. It is associated with higher mortality, low quality of life, and long-term neurological sequelae, its mortality in patients diagnosed with sepsis, progressing to SAE, is 9% to 76%. The pathophysiology of SAE is still unknown, but its mechanisms are well elaborated, including oxidative stress, increased cytokines and proinflammatory factors levels, disturbances in the cerebral circulation, changes in blood-brain barrier permeability, injury to the brain's vascular endothelium, altered levels of neurotransmitters, changes in amino acid levels, dysfunction of cerebral microvascular cells, mitochondria dysfunction, activation of microglia and astrocytes, and neuronal death. The diagnosis of SAE involves excluding direct CNS infection or other types of encephalopathies, which might hinder its early detection and appropriate implementation of management protocols, especially in paediatric patients where only a few cases have been reported in the literature. The most commonly applied diagnostic tools include electroencephalography, neurological imaging, and biomarker detection. SAE treatment mainly focuses on managing underlying conditions and using antibiotics and supportive therapy. In contrast, sedative medication is used judiciously to treat those showing features such as agitation. The most widely used medication is dexmedetomidine which is neuroprotective by inhibiting neuronal apoptosis and reducing a sepsis-associated inflammatory response, resulting in improved short-term mortality and shorter time on a ventilator. Other agents, such as dexamethasone, melatonin, and magnesium, are also being explored in vivo and ex vivo with encouraging results. Managing modifiable factors associated with SAE is crucial in improving generalised neurological outcomes. From those mentioned above, there are still only a few experimentation models of paediatric SAE and its treatment strategies. Extrapolation of adult SAE models is challenging because of the evolving brain and technical complexity of the model being investigated. Here, we reviewed the current understanding of paediatric SAE, its pathophysiological mechanisms, diagnostic methods, therapeutic interventions, and potential emerging neuroprotective agents.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Siqi Li
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lili Liang
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Qiyi Zeng
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
10
|
Clinical features, electroencephalogram, and biomarkers in pediatric sepsis-associated encephalopathy. Sci Rep 2022; 12:10673. [PMID: 35739230 PMCID: PMC9225983 DOI: 10.1038/s41598-022-14853-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
To date, no specific diagnostic criteria for sepsis-associated encephalopathy (SAE) have been established. We studied 33 pediatric patients with sepsis prospectively and evaluated the level of consciousness, the presence of delirium, electroencephalographic (EEG) findings, and plasma levels of neuron-specific enolase and S100-calcium-binding protein-B. A presumptive diagnosis of SAE was primarily considered in the presence of a decreased level of consciousness and/or delirium (clinical criteria), but specific EEG abnormalities were also considered (EEG criteria). The time course of the biomarkers was compared between groups with and without clinical or EEG criteria. The Functional Status Scale (FSS) was assessed at admission, discharge, and 3–6 months post-discharge. Clinical criteria were identified in 75.8% of patients, EEG criteria in 26.9%, both in 23.1%, and none in 23.1%. Biomarkers did not differ between groups. Three patients had an abnormal FSS at discharge, but no one on follow-up. A definitive diagnostic pattern for SAE remained unclear. Clinical criteria should be the basis for diagnosis, but sedation may be a significant confounder, also affecting EEG interpretation. The role of biomarkers requires a better definition. The diagnosis of SAE in pediatric patients remains a major challenge. New consensual diagnostic definitions and mainly prognostic studies are needed.
Collapse
|
11
|
Transcranial Doppler Ultrasound, a Review for the Pediatric Intensivist. CHILDREN 2022; 9:children9050727. [PMID: 35626904 PMCID: PMC9171581 DOI: 10.3390/children9050727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022]
Abstract
The use of transcranial Doppler ultrasound (TCD) is increasing in frequency in the pediatric intensive care unit. This review highlights some of the pertinent TCD applications for the pediatric intensivist, including evaluation of cerebral hemodynamics, autoregulation, non-invasive cerebral perfusion pressure/intracranial pressure estimation, vasospasm screening, and cerebral emboli detection.
Collapse
|
12
|
Laws JC, Jordan LC, Pagano LM, Wellons JC, Wolf MS. Multimodal Neurologic Monitoring in Children With Acute Brain Injury. Pediatr Neurol 2022; 129:62-71. [PMID: 35240364 PMCID: PMC8940706 DOI: 10.1016/j.pediatrneurol.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 01/04/2022] [Accepted: 01/25/2022] [Indexed: 12/26/2022]
Abstract
Children with acute neurologic illness are at high risk of mortality and long-term neurologic disability. Severe traumatic brain injury, cardiac arrest, stroke, and central nervous system infection are often complicated by cerebral hypoxia, hypoperfusion, and edema, leading to secondary neurologic injury and worse outcome. Owing to the paucity of targeted neuroprotective therapies for these conditions, management emphasizes close physiologic monitoring and supportive care. In this review, we will discuss advanced neurologic monitoring strategies in pediatric acute neurologic illness, emphasizing the physiologic concepts underlying each tool. We will also highlight recent innovations including novel monitoring modalities, and the application of neurologic monitoring in critically ill patients at risk of developing neurologic sequelae.
Collapse
Affiliation(s)
- Jennifer C Laws
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lori C Jordan
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lindsay M Pagano
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John C Wellons
- Division of Pediatric Neurological Surgery, Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael S Wolf
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|