1
|
Daunov M, Schlosser A, Malay S, Adams J, Clark R, Ferrerosa L, Pateva I. A Description of IVIG Use in Term Neonates with ABO Incompatibility. Am J Perinatol 2024; 41:1761-1766. [PMID: 38286423 DOI: 10.1055/a-2255-8772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
OBJECTIVE This study aimed to determine if treatment with IVIG of neonates with ABO incompatibility (without Rh incompatibility) results in decreased number of packed red blood cell (pRBC) transfusions and phototherapy use. STUDY DESIGN An Institutional Review Board (IRB)-approved, single-institution retrospective study was conducted. Neonates ≥38 weeks' gestational age born between January 1, 2007, and December 31, 2016, with ABO incompatibility were included. The comparison among groups was performed using chi-square and Fisher's exact tests for categorical variables; continuous variables were assessed by Kruskal-Wallis test. RESULTS Six hundred and sixty-eight neonates with ABO incompatibility met inclusion criteria, 579 were included in the analyses. From these, 431 (74%) neonates had positive Direct Antiglobulin Test (DAT); 98 (17%) received IVIG and 352 (61%) received phototherapy. Thirty-six (6%) neonates received pRBC and 6 (1%) required exchange transfusions. Only 3 (0.5%) infants received pRBC transfusions postdischarge, by 3 months of age. Neonates requiring IVIG had lower initial hemoglobin (13.6 vs. 16.0 g/dL, p ≤ 0.0001) and higher bilirubin at start of phototherapy (9.1 vs. 8.1 mg/dL, p = 0.0064). From the 42 (7%) neonates who received simple and exchange transfusions, IVIG use was not associated with decreased use or number of transfusions (p = 0.5148 and 0.3333, respectively). Newborns with A+ and B+ blood types had comparable initial hemoglobin, DAT positivity, APGAR, and bilirubin. However, infants with B+ blood group were more likely (than A + ) to require phototherapy (p < 0.001), receive IVIG (p = 0.003), and need phototherapy for a longer duration (p = 0.001). CONCLUSION The results of this large retrospective study reveal that giving IVIG to neonates with ABO incompatibility was associated with increased simple or exchange transfusions. Newborns with B+ blood type required more phototherapy and IVIG. Further studies are needed to better stratify neonates who would benefit from IVIG use in order to optimize treatment strategies and avoid unnecessary risks and adverse events. KEY POINTS · IVIG use not associated with decreased use of pRBC or exchanges.. · Phototherapy duration associated with increased IVIG and pRBC use.. · Newborns with B+ blood type had worse hemolytic anemia..
Collapse
Affiliation(s)
- Michael Daunov
- Rainbow Babies and Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, Ohio
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Andrea Schlosser
- Wexner Medical Center, Nationwide Children's Hospital, Ohio State University, Columbus, Ohio
| | - Sindhoosha Malay
- Rainbow Babies and Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, Ohio
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jaclyn Adams
- Doernbecher Children's Hospital, Oregon Health and Science University, Portland, Oregon
| | | | | | - Irina Pateva
- Rainbow Babies and Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, Ohio
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
2
|
Consoli V, Sorrenti V, Gulisano M, Spampinato M, Vanella L. Navigating heme pathways: the breach of heme oxygenase and hemin in breast cancer. Mol Cell Biochem 2024:10.1007/s11010-024-05119-5. [PMID: 39287890 DOI: 10.1007/s11010-024-05119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Breast cancer remains a significant global health challenge, with diverse subtypes and complex molecular mechanisms underlying its development and progression. This review comprehensively examines recent advances in breast cancer research, with a focus on classification, molecular pathways, and the role of heme oxygenases (HO), heme metabolism implications, and therapeutic innovations. The classification of breast cancer subtypes based on molecular profiling has significantly improved diagnosis and treatment strategies, allowing for tailored approaches to patient care. Molecular studies have elucidated key signaling pathways and biomarkers implicated in breast cancer pathogenesis, shedding light on potential targets for therapeutic intervention. Notably, emerging evidence suggests a critical role for heme oxygenases, particularly HO-1, in breast cancer progression and therapeutic resistance, highlighting the importance of understanding heme metabolism in cancer biology. Furthermore, this review highlights recent advances in breast cancer therapy, including targeted therapies, immunotherapy, and novel drug delivery systems. Understanding the complex interplay between breast cancer subtypes, molecular pathways, and innovative therapeutic approaches is essential for improving patient outcomes and developing more effective treatment strategies in the fight against breast cancer.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Maria Gulisano
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Mariarita Spampinato
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy.
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy.
| |
Collapse
|
3
|
Stevenson DK, Wells GS, Wong RJ. Is it time for a precision health approach to the management of newborn hyperbilirubinemia? J Perinatol 2024; 44:920-923. [PMID: 38514741 DOI: 10.1038/s41372-024-01941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Newborn hyperbilirubinemia during the first two weeks of life is one of most common problems requiring management decisions by a pediatrician. However, high bilirubin levels in the circulation have been associated with neurologic injury under a variety of conditions encountered in the newborn infant, such as hemolysis. The risk for developing dangerous hyperbilirubinemia is multifactorial and is determined by a complex set of factors related to a newborn infant's genetic capacities as well as intra- and extrauterine exposures. To this end, a precision health approach based on the integration of prenatal genetic and postnatal diagnostic measures might improve the management of neonatal hyperbilirubinemia.
Collapse
Affiliation(s)
- David K Stevenson
- Department of Pediatrics, Division of Neonatal & Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Grant S Wells
- Stanford Maternal & Child Health Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald J Wong
- Department of Pediatrics, Division of Neonatal & Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Lianos EA, Phung GN, Foster M, Zhou J, Sharma M. Metalloporphyrins Reduce Proteinuria in Podocyte Immune Injury: The Role of Metal and Porphyrin Moieties. Int J Mol Sci 2023; 24:12777. [PMID: 37628958 PMCID: PMC10454924 DOI: 10.3390/ijms241612777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Depending on their central metal atom, metalloporphyrins (MPs) can attenuate or exacerbate the severity of immune-mediated kidney injury, and this has been attributed to the induction or inhibition of heme oxygenase (HO) activity, particularly the inducible isoform (HO-1) of this enzyme. The role of central metal or porphyrin moieties in determining the efficacy of MPs to attenuate injury, as well as mechanisms underlying this effect, have not been assessed. Using an antibody-mediated complement-dependent model of injury directed against rat visceral glomerular epithelial cells (podocytes) and two MPs (FePPIX, CoPPIX) that induce both HO-1 expression and HO enzymatic activity in vivo but differ in their chelated metal, we assessed their efficacy in reducing albuminuria. Podocyte injury was induced using rabbit immune serum raised against the rat podocyte antigen, Fx1A, and containing an anti-Fx1A antibody that activates complement at sites of binding. FePPIX or CoPPIX were injected intraperitoneally (5 mg/kg) 24 h before administration of the anti-Fx1A serum and on days 1, 3, 6, and 10 thereafter. Upon completion of urine collection on day 14, the kidney cortex was obtained for histopathology and isolation of glomeruli, from which total protein extracts were obtained. Target proteins were analyzed by capillary-based separation and immunodetection (Western blot analysis). Both MPs had comparable efficacy in reducing albuminuria in males, but the efficacy of CoPPIX was superior in female rats. The metal-free protoporphyrin, PPIX, had minimal or no effect on urine albumin excretion. CoPPIX was also the most potent MP in inducing glomerular HO-1, reducing complement deposition, and preserving the expression of the complement regulatory protein (CRP) CD55 but not that of CD59, the expression of which was reduced by both MPs. These observations demonstrate that the metal moiety of HO-1-inducing MPs plays an important role in reducing proteinuria via mechanisms involving reduced complement deposition and independently of an effect on CRPs.
Collapse
Affiliation(s)
- Elias A. Lianos
- Salem Veterans Affairs Health Care System, Salem, VA 24153, USA; (G.N.P.); (M.F.)
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Gia Nghi Phung
- Salem Veterans Affairs Health Care System, Salem, VA 24153, USA; (G.N.P.); (M.F.)
| | - Michelle Foster
- Salem Veterans Affairs Health Care System, Salem, VA 24153, USA; (G.N.P.); (M.F.)
| | - Jianping Zhou
- Kansas City VA Medical Center, Kansas City, MO 64128, USA; (J.Z.); (M.S.)
| | - Mukut Sharma
- Kansas City VA Medical Center, Kansas City, MO 64128, USA; (J.Z.); (M.S.)
| |
Collapse
|
5
|
Gao P, Zhuang J, Chen H, Fang Z, Zheng J, Zhu D, Hou J. 5-Aminolevulinic acid combined with ferrous iron ameliorates scrotal heat stress-induced spermatogenic damage by enhancing HO-1 expression. Mol Biol Rep 2023; 50:4999-5011. [PMID: 37086299 DOI: 10.1007/s11033-023-08462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVE To explore whether 5-Aminolevulinic acid combined with ferrous iron (5-ALA/Fe2+) could protect testicular tissues damage of mice subjected to heat stress (HS) and provide its underlying mechanisms. METHODS 5-ALA/Fe2+ was administered intragastrically to mice for 10 days, then exposed to a scrotal heat stress at 43°C for 20 min on third day. Testes were harvested for morphologic and histopathological examination, oxidative stress, apoptosis, heme oxygenase-1 (HO-1) and inflammation detection. The mitogen-activated protein kinases (MAPK) signaling pathway in testis and CD4+FoxP3+regulatory T (Treg) cells in spleen were also investigated. RESULTS Compared to control group, the testis weight decreased and histological damage severed in HS group. Besides, HS also increased the oxidative stress, apoptosis and inflammation in testis. However, these indicators were ameliorated after 5-ALA/Fe2+ treatment but deteriorated after receiving ZnPPIX. The expression of HO-1 was increased both in HS group and 5-ALA/Fe2+ group. The protein expression levels of MAPK proteins were activated by HS and inhibited by 5-ALA/Fe2+. The CD4+FoxP3+ Treg generation was reduced by HS and increased by 5-ALA/Fe2+. CONCLUSION In this study, we have demonstrated that 5-ALA/Fe2+ ameliorated the spermatogenic damage induced by scrotal heat stress via up-regulating the expression of HO-1 and inhibiting MAPK mediated oxidative stress and apoptosis and inducing CD4+Foxp3+ Tregs to inhibit the inflammation induced by HS in mice.
Collapse
Affiliation(s)
- Peng Gao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jingming Zhuang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Haoran Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zujun Fang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jie Zheng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Daqian Zhu
- National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jiangang Hou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
6
|
Lianos EA, Detsika MG. Metalloporphyrins as Tools for Deciphering the Role of Heme Oxygenase in Renal Immune Injury. Int J Mol Sci 2023; 24:6815. [PMID: 37047787 PMCID: PMC10095062 DOI: 10.3390/ijms24076815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Renal immune injury is a frequent cause of end-stage renal disease, and, despite the progress made in understanding underlying pathogenetic mechanisms, current treatments to preserve renal function continue to be based mainly on systemic immunosuppression. Small molecules, naturally occurring biologic agents, show considerable promise in acting as disease modifiers and may provide novel therapeutic leads. Certain naturally occurring or synthetic Metalloporphyrins (Mps) can act as disease modifiers by increasing heme oxygenase (HO) enzymatic activity and/or synthesis of the inducible HO isoform (HO-1). Depending on the metal moiety of the Mp employed, these effects may occur in tandem or can be discordant (increased HO-1 synthesis but inhibition of enzyme activity). This review discusses effects of Mps, with varying redox-active transitional metals and cyclic porphyrin cores, on mechanisms underlying pathogenesis and outcomes of renal immune injury.
Collapse
Affiliation(s)
- Elias A. Lianos
- Veterans Affairs Medical Center and Virginia Tech, Carilion School of Medicine, Salem, VA 24153, USA
| | - Maria G. Detsika
- GP Livanos and M Simou Laboratories, Evangelismos Hospital, 1st Department of Critical Care Medicine & Pulmonary Services, National and Kapodistrian University of Athens, 10675 Athens, Greece
| |
Collapse
|
7
|
Molecular Mechanisms of Nemorosone-Induced Ferroptosis in Cancer Cells. Cells 2023; 12:cells12050735. [PMID: 36899871 PMCID: PMC10000521 DOI: 10.3390/cells12050735] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Ferroptosis is an iron-dependent cell death-driven by excessive peroxidation of polyunsaturated fatty acids (PUFAs) of membranes. A growing body of evidence suggests the induction of ferroptosis as a cutting-edge strategy in cancer treatment research. Despite the essential role of mitochondria in cellular metabolism, bioenergetics, and cell death, their function in ferroptosis is still poorly understood. Recently, mitochondria were elucidated as an important component in cysteine-deprivation-induced (CDI) ferroptosis, which provides novel targets in the search for new ferroptosis-inducing compounds (FINs). Here, we identified the natural mitochondrial uncoupler nemorosone as a ferroptosis inducer in cancer cells. Interestingly, nemorosone triggers ferroptosis by a double-edged mechanism. In addition to decreasing the glutathione (GSH) levels by blocking the System xc cystine/glutamate antiporter (SLC7A11), nemorosone increases the intracellular labile Fe2+ pool via heme oxygenase-1 (HMOX1) induction. Interestingly, a structural variant of nemorosone (O-methylated nemorosone), having lost the capacity to uncouple mitochondrial respiration, does not trigger cell death anymore, suggesting that the mitochondrial bioenergetic disruption via mitochondrial uncoupling is necessary for nemorosone-induced ferroptosis. Our results open novel opportunities for cancer cell killing by mitochondrial uncoupling-induced ferroptosis.
Collapse
|
8
|
Peng Y, Nanduri J, Wang N, Khan SA, Pamenter M, Prabhakar NR. Carotid body responses to O 2 and CO 2 in hypoxia-tolerant naked mole rats. Acta Physiol (Oxf) 2022; 236:e13851. [PMID: 35757963 PMCID: PMC9787741 DOI: 10.1111/apha.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/02/2023]
Abstract
AIM Naked mole rats (NMRs) exhibit blunted hypoxic (HVR) and hypercapnic ventilatory responses (HCVR). The mechanism(s) underlying these responses are largely unknown. We hypothesized that attenuated carotid body (CB) sensitivity to hypoxia and hypercapnia contributes to the near absence of ventilatory responses to hypoxia and CO2 in NMRs. METHODS We measured ex vivo CB sensory nerve activity, phrenic nerve activity (an estimation of ventilation), and blood gases in urethane-anesthetized NMRs and C57BL/6 mice breathing normoxic, hypoxic, or hypercapnic gases. CB morphology, carbon monoxide, and H2 S levels were also determined. RESULTS Relative to mice, NMRs had blunted CB and HVR. Morphologically, NMRs have larger CBs, which contained more glomus cells than in mice. Furthermore, NMR glomus cells form a dispersed pattern compared to a clustered pattern in mice. Hemeoxygenase (HO)-1 mRNA was elevated in NMR CBs, and an HO inhibitor increased CB sensitivity to hypoxia in NMRs. This increase was blocked by an H2 S synthesis inhibitor, suggesting that interrupted gas messenger signaling contributes to the blunted CB responses and HVR in NMRs. Regarding hypercapnia, CB and ventilatory responses to CO2 in NMRs were larger than in mice. Carbonic anhydrase (CA)-2 mRNA is elevated in NMR CBs, and a CA inhibitor blocked the augmented CB response to CO2 in NMRs, indicating CA activity regulates augmented CB response to CO2 . CONCLUSIONS Consistent with our hypothesis, impaired CB responses to hypoxia contribute in part to the blunted HVR in NMRs. Conversely, the HCVR and CB are more sensitive to CO2 in NMRs.
Collapse
Affiliation(s)
- Ying‐Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| | - Ning Wang
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| | - Shakil A. Khan
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| | - Matthew E. Pamenter
- Department of BiologyUniversity of OttawaOttawaOntarioCanada,University of Ottawa Brain and Mind Research InstituteOttawaOntarioCanada
| | - Nanduri R. Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
9
|
Pranty AI, Shumka S, Adjaye J. Bilirubin-Induced Neurological Damage: Current and Emerging iPSC-Derived Brain Organoid Models. Cells 2022; 11:2647. [PMID: 36078055 PMCID: PMC9454749 DOI: 10.3390/cells11172647] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Bilirubin-induced neurological damage (BIND) has been a subject of studies for decades, yet the molecular mechanisms at the core of this damage remain largely unknown. Throughout the years, many in vivo chronic bilirubin encephalopathy models, such as the Gunn rat and transgenic mice, have further elucidated the molecular basis of bilirubin neurotoxicity as well as the correlations between high levels of unconjugated bilirubin (UCB) and brain damage. Regardless of being invaluable, these models cannot accurately recapitulate the human brain and liver system; therefore, establishing a physiologically recapitulating in vitro model has become a prerequisite to unveil the breadth of complexities that accompany the detrimental effects of UCB on the liver and developing human brain. Stem-cell-derived 3D brain organoid models offer a promising platform as they bear more resemblance to the human brain system compared to existing models. This review provides an explicit picture of the current state of the art, advancements, and challenges faced by the various models as well as the possibilities of using stem-cell-derived 3D organoids as an efficient tool to be included in research, drug screening, and therapeutic strategies for future clinical applications.
Collapse
Affiliation(s)
| | | | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Faculty of Medicine, Heinrich-Heine University, Moorenstrasse 5, 40225 Dusseldorf, Germany
| |
Collapse
|
10
|
Fernández-Acosta R, Iriarte-Mesa C, Alvarez-Alminaque D, Hassannia B, Wiernicki B, Díaz-García AM, Vandenabeele P, Vanden Berghe T, Pardo Andreu GL. Novel Iron Oxide Nanoparticles Induce Ferroptosis in a Panel of Cancer Cell Lines. Molecules 2022; 27:molecules27133970. [PMID: 35807217 PMCID: PMC9268471 DOI: 10.3390/molecules27133970] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 12/19/2022] Open
Abstract
The use of nanomaterials rationally engineered to treat cancer is a burgeoning field that has reported great medical achievements. Iron-based polymeric nano-formulations with precisely tuned physicochemical properties are an expanding and versatile therapeutic strategy for tumor treatment. Recently, a peculiar type of regulated necrosis named ferroptosis has gained increased attention as a target for cancer therapy. Here, we show for the first time that novel iron oxide nanoparticles coated with gallic acid and polyacrylic acid (IONP–GA/PAA) possess intrinsic cytotoxic activity on various cancer cell lines. Indeed, IONP–GA/PAA treatment efficiently induces ferroptosis in glioblastoma, neuroblastoma, and fibrosarcoma cells. IONP–GA/PAA-induced ferroptosis was blocked by the canonical ferroptosis inhibitors, including deferoxamine and ciclopirox olamine (iron chelators), and ferrostatin-1, the lipophilic radical trap. These ferroptosis inhibitors also prevented the lipid hydroperoxide generation promoted by the nanoparticles. Altogether, we report on novel ferroptosis-inducing iron encapsulated nanoparticles with potent anti-cancer properties, which has promising potential for further in vivo validation.
Collapse
Affiliation(s)
- Roberto Fernández-Acosta
- Department of Pharmacy, Institute of Pharmaceutical and Food Sciences, University of Havana, 222 Street # 2317, La Coronela, La Lisa, Havana 13600, Cuba;
| | - Claudia Iriarte-Mesa
- Laboratory of Bioinorganic (LBI), Department of Inorganic and General Chemistry, Faculty of Chemistry, University of Havana, Zapata y G, Vedado, Plaza de la Revolución, Havana 10400, Cuba; (C.I.-M.); (A.M.D.-G.)
- Institute of Inorganic Chemistry—Functional Materials, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Daniel Alvarez-Alminaque
- Center for Research and Biological Evaluations, Institute of Pharmaceutical and Food Sciences, University of Havana, 222 Street # 2317, La Coronela, La Lisa, Havana 13600, Cuba;
| | - Behrouz Hassannia
- VIB Center for Inflammation Research (IRC), 9052 Ghent, Belgium; (B.H.); (B.W.); (P.V.); (T.V.B.)
- Department of Biomedical Molecular Biology (DBMB), Ghent University, 9052 Ghent, Belgium
| | - Bartosz Wiernicki
- VIB Center for Inflammation Research (IRC), 9052 Ghent, Belgium; (B.H.); (B.W.); (P.V.); (T.V.B.)
- Department of Biomedical Molecular Biology (DBMB), Ghent University, 9052 Ghent, Belgium
| | - Alicia M. Díaz-García
- Laboratory of Bioinorganic (LBI), Department of Inorganic and General Chemistry, Faculty of Chemistry, University of Havana, Zapata y G, Vedado, Plaza de la Revolución, Havana 10400, Cuba; (C.I.-M.); (A.M.D.-G.)
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), 9052 Ghent, Belgium; (B.H.); (B.W.); (P.V.); (T.V.B.)
- Department of Biomedical Molecular Biology (DBMB), Ghent University, 9052 Ghent, Belgium
- Methusalem Program, Ghent University, 9052 Ghent, Belgium
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), 9052 Ghent, Belgium; (B.H.); (B.W.); (P.V.); (T.V.B.)
- Department of Biomedical Molecular Biology (DBMB), Ghent University, 9052 Ghent, Belgium
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
- Ferroptosis and Inflammation Research (FAIR), VIB Research Center, Ghent University, 9052 Ghent, Belgium
- Ferroptosis and Inflammation Research (FAIR), University of Antwerp, 2000 Antwerp, Belgium
| | - Gilberto L. Pardo Andreu
- Center for Research and Biological Evaluations, Institute of Pharmaceutical and Food Sciences, University of Havana, 222 Street # 2317, La Coronela, La Lisa, Havana 13600, Cuba;
- Correspondence:
| |
Collapse
|
11
|
Bortolussi G, Shi X, ten Bloemendaal L, Banerjee B, De Waart DR, Baj G, Chen W, Oude Elferink RP, Beuers U, Paulusma CC, Stocker R, Muro AF, Bosma PJ. Long-Term Effects of Biliverdin Reductase a Deficiency in Ugt1-/- Mice: Impact on Redox Status and Metabolism. Antioxidants (Basel) 2021; 10:antiox10122029. [PMID: 34943131 PMCID: PMC8698966 DOI: 10.3390/antiox10122029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of neurotoxic bilirubin due to a transient neonatal or persistent inherited deficiency of bilirubin glucuronidation activity can cause irreversible brain damage and death. Strategies to inhibit bilirubin production and prevent neurotoxicity in neonatal and adult settings seem promising. We evaluated the impact of Bvra deficiency in neonatal and aged mice, in a background of unconjugated hyperbilirubinemia, by abolishing bilirubin production. We also investigated the disposal of biliverdin during fetal development. In Ugt1−/− mice, Bvra deficiency appeared sufficient to prevent lethality and to normalize bilirubin level in adults. Although biliverdin accumulated in Bvra-deficient fetuses, both Bvra−/− and Bvra−/−Ugt1−/− pups were healthy and reached adulthood having normal liver, brain, and spleen histology, albeit with increased iron levels in the latter. During aging, both Bvra−/− and Bvra−/−Ugt1−/− mice presented normal levels of relevant hematological and metabolic parameters. Interestingly, the oxidative status in erythrocytes from 9-months-old Bvra−/− and Bvra−/−Ugt1−/− mice was significantly reduced. In addition, triglycerides levels in these 9-months-old Bvra−/− mice were significantly higher than WT controls, while Bvra−/−Ugt1−/− tested normal. The normal parameters observed in Bvra−/−Ugt1−/− mice fed chow diet indicate that Bvra inhibition to treat unconjugated hyperbilirubinemia seems safe and effective.
Collapse
Affiliation(s)
- Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (G.B.); (B.B.)
| | - Xiaoxia Shi
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
- Key Laboratory of Protein Modification and Disease, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lysbeth ten Bloemendaal
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Bhaswati Banerjee
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (G.B.); (B.B.)
| | - Dirk R. De Waart
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Gabriele Baj
- Light Microscopy Imaging Center, Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Weiyu Chen
- Heart Research Institute, Sydney, NSW 2042, Australia; (W.C.); (R.S.)
| | - Ronald P. Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Roland Stocker
- Heart Research Institute, Sydney, NSW 2042, Australia; (W.C.); (R.S.)
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (G.B.); (B.B.)
- Correspondence: (A.F.M.); (P.J.B.); Tel.: +39-040-3757369 (A.F.M.); +31-20-566-8850 (P.J.B.)
| | - Piter J. Bosma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
- Correspondence: (A.F.M.); (P.J.B.); Tel.: +39-040-3757369 (A.F.M.); +31-20-566-8850 (P.J.B.)
| |
Collapse
|
12
|
Heme-Oxygenase-1 Attenuates Oxidative Functions of Antigen Presenting Cells and Promotes Regulatory T Cell Differentiation during Fasciola hepatica Infection. Antioxidants (Basel) 2021; 10:antiox10121938. [PMID: 34943041 PMCID: PMC8750899 DOI: 10.3390/antiox10121938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Fasciola hepatica is a fluke that infects livestock and humans causing fasciolosis, a zoonotic disease of increasing importance due to its worldwide distribution and high economic losses. The parasite regulates the host immune system by inducing a strong Th2 and regulatory T (Treg) cell immune response through mechanisms that might involve the expression or activity of heme-oxygenase-1 (HO-1), the rate-limiting enzyme in the catabolism of free heme that also has immunoregulatory and antioxidant properties. In this paper, we show that F. hepatica-infected mice upregulate HO-1 on peritoneal antigen-presenting cells (APC), which produce decreased levels of both reactive oxygen and nitrogen species (ROS/RNS). The presence of these cells was associated with increased levels of regulatory T cells (Tregs). Blocking the IL-10 receptor (IL-10R) during parasite infection demonstrated that the presence of splenic Tregs and peritoneal APC expressing HO-1 were both dependent on IL-10 activity. Furthermore, IL-10R neutralization as well as pharmacological treatment with the HO-1 inhibitor SnPP protected mice from parasite infection and allowed peritoneal APC to produce significantly higher ROS/RNS levels than those detected in cells from infected control mice. Finally, parasite infection carried out in gp91phox knockout mice with inactive NADPH oxidase was associated with decreased levels of peritoneal HO-1+ cells and splenic Tregs, and partially protected mice from the hepatic damage induced by the parasite, revealing the complexity of the molecular mechanisms involving ROS production that participate in the complex pathology induced by this helminth. Altogether, these results contribute to the elucidation of the immunoregulatory and antioxidant role of HO-1 induced by F. hepatica in the host, providing alternative checkpoints that might control fasciolosis.
Collapse
|
13
|
Synthesis and characterization of axially modified Zn(II) porphyrin complexes for methylene blue dye oxidative degradation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Campbell NK, Fitzgerald HK, Dunne A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat Rev Immunol 2021; 21:411-425. [PMID: 33514947 DOI: 10.1038/s41577-020-00491-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 01/30/2023]
Abstract
Haem oxygenase 1 (HO-1), an inducible enzyme responsible for the breakdown of haem, is primarily considered an antioxidant, and has long been overlooked by immunologists. However, research over the past two decades in particular has demonstrated that HO-1 also exhibits numerous anti-inflammatory properties. These emerging immunomodulatory functions have made HO-1 an appealing target for treatment of diseases characterized by high levels of chronic inflammation. In this Review, we present an introduction to HO-1 for immunologists, including an overview of its roles in iron metabolism and antioxidant defence, and the factors which regulate its expression. We discuss the impact of HO-1 induction in specific immune cell populations and provide new insights into the immunomodulation that accompanies haem catabolism, including its relationship to immunometabolism. Furthermore, we highlight the therapeutic potential of HO-1 induction to treat chronic inflammatory and autoimmune diseases, and the issues faced when trying to translate such therapies to the clinic. Finally, we examine a number of alternative, safer strategies that are under investigation to harness the therapeutic potential of HO-1, including the use of phytochemicals, novel HO-1 inducers and carbon monoxide-based therapies.
Collapse
Affiliation(s)
- Nicole K Campbell
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland. .,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia. .,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia.
| | - Hannah K Fitzgerald
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Nawaz H, Aslam M, Rehman T. Neonatal hyperbilirubinemia: Background and recent literature updates on the diagnosis and treatment. Physiol Int 2021; 108:151-171. [PMID: 34166220 DOI: 10.1556/2060.2021.00018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
Hyperbilirubinemia or jaundice has been studied by many researchers because of its diverse causes and potential for toxicity especially in the neonate but to a lesser extent beyond the neonate as well. Several studies have been performed on the normal metabolism and metabolic disorders of bilirubin in last decades of the 20th century. The recent advancement in research and technology facilitated for the researchers to investigate new horizons of the causes and treatment of neonatal hyperbilirubinemia. This review gives a brief introduction to hyperbilirubinemia and jaundice and the recent advancement in the treatment of neonatal hyperbilirubinemia. It reports modifications in the previously used methods and findings of some newly developed ones. At present, ample literature is available discussing the issues regarding hyperbilirubinemia and jaundice, but still more research needs to be done.
Collapse
Affiliation(s)
- H Nawaz
- 1Department of Biochemistry, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - M Aslam
- 1Department of Biochemistry, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - T Rehman
- 2Department of Chemistry, The Women University Multan, 60000, Multan, Pakistan
| |
Collapse
|
16
|
Nitti M, Ivaldo C, Traverso N, Furfaro AL. Clinical Significance of Heme Oxygenase 1 in Tumor Progression. Antioxidants (Basel) 2021; 10:antiox10050789. [PMID: 34067625 PMCID: PMC8155918 DOI: 10.3390/antiox10050789] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase 1 (HO-1) plays a key role in cell adaptation to stressors through the antioxidant, antiapoptotic, and anti-inflammatory properties of its metabolic products. For these reasons, in cancer cells, HO-1 can favor aggressiveness and resistance to therapies, leading to poor prognosis/outcome. Genetic polymorphisms of HO-1 promoter have been associated with an increased risk of cancer progression and a high degree of therapy failure. Moreover, evidence from cancer biopsies highlights the possible correlation between HO-1 expression, pathological features, and clinical outcome. Indeed, high levels of HO-1 in tumor specimens often correlate with reduced survival rates. Furthermore, HO-1 modulation has been proposed in order to improve the efficacy of antitumor therapies. However, contrasting evidence on the role of HO-1 in tumor biology has been reported. This review focuses on the role of HO-1 as a promising biomarker of cancer progression; understanding the correlation between HO-1 and clinical data might guide the therapeutic choice and improve the outcome of patients in terms of prognosis and life quality.
Collapse
|
17
|
He X, Yao Q, Fan D, Duan L, You Y, Liang W, Zhou Z, Teng S, Liang Z, Hall DD, Song LS, Chen B. Cephalosporin antibiotics specifically and selectively target nasopharyngeal carcinoma through HMOX1-induced ferroptosis. Life Sci 2021; 277:119457. [PMID: 33831425 DOI: 10.1016/j.lfs.2021.119457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/21/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
AIMS Many antibiotics derived from mold metabolites have been found to possess anticarcinogenic properties. We aimed to investigate whether they may elicit anticancer activity, especially against nasopharyngeal carcinoma. MAIN METHODS The response of nasopharyngeal and other carcinoma cell lines to cephalosporin antibiotics was evaluated in vitro and in vivo. MTT and clonogenic colony formation assays assessed the viability and proliferation of cultured cells. Flow cytometry was used to assess cell cycle parameters and apoptotic markers. Tumor growth was determined using a xenograft model in vivo. Microarray and RT-qPCR expression analyses investigate differential gene expression. Mechanistic assessment of HMOX1 in cefotaxime-mediated ferroptosis was tested with Protoporphyrin IX zinc. KEY FINDINGS Cephalosporin antibiotics showed highly specific and selective anticancer activity on nasopharyngeal carcinoma CNE2 cells both in vitro and vivo with minimal toxicity. Cefotaxime sodium significantly regulated 11 anticancer relevant genes in CNE2 cells in a concentration-dependent manner. Pathway analyses indicate apoptotic and the ErbB-MAPK-p53 signaling pathways are significantly enriched. HMOX1 represents the top one ranked upregulated gene by COS and overlaps with 16 of 42 enriched apoptotic signaling pathways. Inhibition of HMOX1 significantly reduced the anticancer efficacy of cefotaxime in CNE2 cells. SIGNIFICANCE Our discovery is the first to highlight the off-label potential of cephalosporin antibiotics as a specific and selective anticancer drug for nasopharyngeal carcinoma. We mechanistically show that induction of ferroptosis through HMOX1 induction mediates cefotaxime anticancer activity. Our findings provide an alternative treatment for nasopharyngeal carcinoma by showing that existing cephalosporin antibiotics are specific and selective anticancer drugs.
Collapse
Affiliation(s)
- Xiaoqiong He
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China.
| | - Qian Yao
- Institute of Yunnan Cancer, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dan Fan
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Ling Duan
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yutong You
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Wenjing Liang
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Zhangping Zhou
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Song Teng
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Zhuoxuan Liang
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Duane D Hall
- Department of Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Long-Sheng Song
- Department of Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Biyi Chen
- Department of Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
18
|
Kaur P. Study of geometric, electronic structures and vibrations of 4, 4′, 4′′, 4′′′-(porphine-5,10,15,20 tetrayl) tetrakis (benzene sulfonic acid) compound by computational and experimental techniques. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The optimized geometry and vibrational frequencies of a substituted compound of tetraphenylporphine namely 4, 4[Formula: see text], 4[Formula: see text], 4[Formula: see text]-(porphine-5,10,15,20 tetrayl) tetrakis (benzene sulfonic acid) have been investigated using density functional theory. The vibrational spectra of tetraphenylporphine and its substituted complex were simulated to study the substitution effects of sulfonic acid group at the peripheral sites of tetraphenylporphine. Experimentally, vibrational properties of these molecules have been studied using infrared absorption spectroscopic technique. The vibrational frequencies obtained from the theoretical studies generally agree with the experimental values. For substituted molecules, due to a change in charge distribution, ring vibrations accompanied by the S–O motions also appear at the higher wavenumbers. In the lower region, C–H bending vibrations diminish and SO3 group vibrations arise. The electronic absorption spectra of the substituted tetraphenylporphine in different solvents have been studied using UV-vis spectroscopy. In addition to dipole-dipole and electrostatic interactions, hydrogen bonding plays a key role in molecular-solvent interactions. The energy gap between the highest occupied and lowest unoccupied molecular orbitals and natural bonding orbital analysis show the intermolecular charge transfer interactions. The molecular electrostatic potential and solvent accessible surface area analysis were made in order to study the interaction sites of the molecules. The current-voltage characteristics for the substituted molecule were also plotted. It was found that substituted tetraphenylporphine show good photoconductivity.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Physics, Panjab University, Chandigarh-160014, Chandigarh, India
| |
Collapse
|
19
|
Costa DL, Amaral EP, Namasivayam S, Mittereder LR, Fisher L, Bonfim CC, Sardinha-Silva A, Thompson RW, Hieny SE, Andrade BB, Sher A. Heme oxygenase-1 inhibition promotes IFNγ- and NOS2-mediated control of Mycobacterium tuberculosis infection. Mucosal Immunol 2021; 14:253-266. [PMID: 32862202 PMCID: PMC7796944 DOI: 10.1038/s41385-020-00342-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/17/2020] [Accepted: 08/12/2020] [Indexed: 02/04/2023]
Abstract
Mycobacterium tuberculosis (Mtb) infection induces pulmonary expression of the heme-degrading enzyme heme oxygenase-1 (HO-1). We have previously shown that pharmacological inhibition of HO-1 activity in experimental tuberculosis results in decreased bacterial loads and unexpectedly that this outcome depends on the presence of T lymphocytes. Here, we extend these findings by demonstrating that IFNγ production by T lymphocytes and NOS2 expression underlie this T-cell requirement and that HO-1 inhibition potentiates IFNγ-induced NOS2-dependent control of Mtb by macrophages in vitro. Among the products of heme degradation by HO-1 (biliverdin, carbon monoxide, and iron), only iron supplementation reverted the HO-1 inhibition-induced enhancement of bacterial control and this reversal was associated with decreased NOS2 expression and NO production. In addition, we found that HO-1 inhibition results in decreased labile iron levels in Mtb-infected macrophages in vitro and diminished iron accumulation in Mtb-infected lungs in vivo. Together these results suggest that the T-lymphocyte dependence of the therapeutic outcome of HO-1 inhibition on Mtb infection reflects the role of the enzyme in generating iron that suppresses T-cell-mediated IFNγ/NOS2-dependent bacterial control. In broader terms, our findings highlight the importance of the crosstalk between iron metabolism and adaptive immunity in determining the outcome of infection.
Collapse
Affiliation(s)
- Diego L Costa
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA,* Diego L Costa current affiliation: Departmento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lara R Mittereder
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Logan Fisher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Caio C Bonfim
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aline Sardinha-Silva
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert W Thompson
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara E Hieny
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bruno B Andrade
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA,Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa,Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil,Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil,Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil,Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Martinez M, Fendley GA, Saxberg AD, Zoghbi ME. Stimulation of the human mitochondrial transporter ABCB10 by zinc-mesoporphrin. PLoS One 2020; 15:e0238754. [PMID: 33253225 PMCID: PMC7703921 DOI: 10.1371/journal.pone.0238754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/06/2020] [Indexed: 11/19/2022] Open
Abstract
Heme biosynthesis occurs through a series of reactions that take place within the cytoplasm and mitochondria, so intermediates need to move across these cellular compartments. However, the specific membrane transport mechanisms involved in the process are not yet identified. The ATP-binding cassette protein ABCB10 is essential for normal heme production, as knocking down this transporter in mice is embryonically lethal and accompanied by severe anemia plus oxidative damage. The role of ABCB10 is unknown, but given its location in the inner mitochondrial membrane, it has been proposed as a candidate to export either an early heme precursor or heme. Alternatively, ABCB10 might transport a molecule important for protection against oxidative damage. To help discern between these possibilities, we decided to study the effect of heme analogs, precursors, and antioxidant peptides on purified human ABCB10. Since substrate binding increases the ATP hydrolysis rate of ABC transporters, we have determined the ability of these molecules to activate purified ABCB10 reconstituted in lipid nanodiscs using ATPase measurements. Under our experimental conditions, we found that the only heme analog increasing ABCB10 ATPase activity was Zinc-mesoporphyrin. This activation of almost seventy percent was specific for ABCB10, as the ATPase activity of a negative control bacterial ABC transporter was not affected. The activation was also observed in cysteine-less ABCB10, suggesting that Zinc-mesoporphyrin's effect did not require binding to typical heme regulatory motifs. Furthermore, our data indicate that ABCB10 was not directly activated by neither the early heme precursor delta-aminolevulinic acid nor glutathione, downsizing their relevance as putative substrates for this transporter. Although additional studies are needed to determine the physiological substrate of ABCB10, our findings reveal Zinc-mesoporphyrin as the first tool compound to directly modulate ABCB10 activity and raise the possibility that some actions of Zinc-mesoporphyrin in cellular and animal studies could be mediated by ABCB10.
Collapse
Affiliation(s)
- Melissa Martinez
- Department of Molecular Cell Biology, School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Gregory A. Fendley
- Department of Molecular Cell Biology, School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Alexandra D. Saxberg
- Department of Molecular Cell Biology, School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Maria E. Zoghbi
- Department of Molecular Cell Biology, School of Natural Sciences, University of California Merced, Merced, California, United States of America
| |
Collapse
|
21
|
Li R, Zhang J, Zhou Y, Gao Q, Wang R, Fu Y, Zheng L, Yu H. Transcriptome Investigation and In Vitro Verification of Curcumin-Induced HO-1 as a Feature of Ferroptosis in Breast Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3469840. [PMID: 33294119 PMCID: PMC7691002 DOI: 10.1155/2020/3469840] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/07/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022]
Abstract
Ferroptosis is a form of oxidative cell death and has become a chemotherapeutic target for cancer treatment. Curcumin (CUR), a well-known cancer inhibitor, significantly inhibits the viability of breast cancer cells. Through transcriptomic analysis and flow cytometry experiments, it was found that after 48 hours of treatment of breast cancer cells at its half maximal inhibitory concentration (IC50), curcumin suppressed the viability of cancer cells via induction of ferroptotic death. Use of the ferroptosis inhibitor ferrostatin-1 and the iron chelator deferoxamine rescued cell death induced by curcumin. Furthermore, in subsequent cell validation experiments, the results showed that curcumin caused marked accumulation of intracellular iron, reactive oxygen species, lipid peroxides, and malondialdehyde, while glutathione levels were significantly downregulated. These changes are all manifestations of ferroptosis. Curcumin upregulates a variety of ferroptosis target genes related to redox regulation, especially heme oxygenase-1 (HO-1). Using the specific inhibitor zinc protoporphyrin 9 (ZnPP) to confirm the above experimental results showed that compared to the curcumin treatment group, treatment with ZnPP not only significantly improved cell viability but also reduced the accumulation of intracellular iron ions and other ferroptosis-related phenomena. Therefore, these data demonstrate that curcumin triggers the molecular and cytological characteristics of ferroptosis in breast cancer cells, and HO-1 promotes curcumin-induced ferroptosis.
Collapse
Affiliation(s)
- Ruihua Li
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Jing Zhang
- College of Animal Science, Jilin University, Changchun 130062, China
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Yongfeng Zhou
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Qi Gao
- Biological Emergency and Clinical POCT Key Laboratory, Beijing 102600, China
| | - Rui Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yurong Fu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Lianwen Zheng
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130022, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun 130062, China
| |
Collapse
|
22
|
Stevenson DK, Wong RJ, Hay WW. Comments on the 20 th Anniversary of NeoReviews. Neoreviews 2020; 21:e643-e648. [PMID: 33004557 DOI: 10.1542/neo.21-10-e643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- David K Stevenson
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA
| | - Ronald J Wong
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|
23
|
Hansen TWR, Wong RJ, Stevenson DK. Molecular Physiology and Pathophysiology of Bilirubin Handling by the Blood, Liver, Intestine, and Brain in the Newborn. Physiol Rev 2020; 100:1291-1346. [PMID: 32401177 DOI: 10.1152/physrev.00004.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bilirubin is the end product of heme catabolism formed during a process that involves oxidation-reduction reactions and conserves iron body stores. Unconjugated hyperbilirubinemia is common in newborn infants, but rare later in life. The basic physiology of bilirubin metabolism, such as production, transport, and excretion, has been well described. However, in the neonate, numerous variables related to nutrition, ethnicity, and genetic variants at several metabolic steps may be superimposed on the normal physiological hyperbilirubinemia that occurs in the first week of life and results in bilirubin levels that may be toxic to the brain. Bilirubin exists in several isomeric forms that differ in their polarities and is considered a physiologically important antioxidant. Here we review the chemistry of the bilirubin molecule and its metabolism in the body with a particular focus on the processes that impact the newborn infant, and how differences relative to older children and adults contribute to the risk of developing both acute and long-term neurological sequelae in the newborn infant. The final section deals with the interplay between the brain and bilirubin and its entry, clearance, and accumulation. We conclude with a discussion of the current state of knowledge regarding the mechanism(s) of bilirubin neurotoxicity.
Collapse
Affiliation(s)
- Thor W R Hansen
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Ronald J Wong
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - David K Stevenson
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
24
|
Two Faces of Heme Catabolic Pathway in Newborns: A Potential Role of Bilirubin and Carbon Monoxide in Neonatal Inflammatory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7140496. [PMID: 32908636 PMCID: PMC7450323 DOI: 10.1155/2020/7140496] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
In an infant's body, all the systems undergo significant changes in order to adapt to the new, extrauterine environment and challenges which it poses. Fragile homeostasis can be easily disrupted as the defensive mechanisms are yet imperfect. The activity of antioxidant enzymes, i.e., superoxide dismutase, catalase, and glutathione peroxidase, is low; therefore, neonates are especially vulnerable to oxidative stress. Free radical burden significantly contributes to neonatal illnesses such as sepsis, retinopathy of premature, necrotizing enterocolitis, bronchopulmonary dysplasia, or leukomalacia. However, newborns have an important ally-an inducible heme oxygenase-1 (HO-1) which expression rises rapidly in response to stress stimuli. HO-1 activity leads to production of carbon monoxide (CO), free iron ion, and biliverdin; the latter is promptly reduced to bilirubin. Although CO and bilirubin used to be considered noxious by-products, new interesting properties of those compounds are being revealed. Bilirubin proved to be an efficient free radicals scavenger and modulator of immune responses. CO affects a vast range of processes such as vasodilatation, platelet aggregation, and inflammatory reactions. Recently, developed nanoparticles consisting of PEGylated bilirubin as well as several kinds of molecules releasing CO have been successfully tested on animal models of inflammatory diseases. This paper focuses on the role of heme metabolites and their potential utility in prevention and treatment of neonatal diseases.
Collapse
|
25
|
Jasmer KJ, Hou J, Mannino P, Cheng J, Hannink M. Heme oxygenase promotes B-Raf-dependent melanosphere formation. Pigment Cell Melanoma Res 2020; 33:850-868. [PMID: 32558263 DOI: 10.1111/pcmr.12905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/09/2020] [Accepted: 06/07/2020] [Indexed: 12/22/2022]
Abstract
Biosynthesis and degradation of heme, an iron-bound protoporphyrin molecule utilized by a wide variety of metabolic processes, are tightly regulated. Two closely related enzymes, heme oxygenase 1 (HMOX1) and heme oxygenase 2 (HMOX2), degrade free heme to produce carbon monoxide, Fe2+ , and biliverdin. HMOX1 expression is controlled via the transcriptional activator, NFE2L2, and the transcriptional repressor, Bach1. Transcription of HMOX1 and other NFE2L2-dependent genes is increased in response to electrophilic and reactive oxygen species. Many tumor-derived cell lines have elevated levels of NFE2L2. Elevated expression of NFE2L2-dependent genes contributes to tumor growth and acquired resistance to therapies. Here, we report a novel role for heme oxygenase activity in melanosphere formation by human melanoma-derived cell lines. Transcriptional induction of HMOX1 through derepression of Bach1 or transcriptional activation of HMOX2 by oncogenic B-RafV600E results in increased melanosphere formation. Genetic ablation of HMOX1 diminishes melanosphere formation. Further, inhibition of heme oxygenase activity with tin protoporphyrin markedly reduces melanosphere formation driven by either Bach1 derepression or B-RafV600E expression. Global transcriptome analyses implicate genes involved in focal adhesion and extracellular matrix interactions in melanosphere formation.
Collapse
Affiliation(s)
- Kimberly J Jasmer
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA.,Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Jie Hou
- Computer Science Department, University of Missouri, Columbia, Missouri, USA
| | - Philip Mannino
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Jianlin Cheng
- Computer Science Department, University of Missouri, Columbia, Missouri, USA
| | - Mark Hannink
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
26
|
Abstract
Significance: Mucosal immunity in the gut has the important task of protecting an organism against potential danger, but at the same time of staying silent in response to harmless antigens present in the intestinal lumen. The delicate balance between immune activation and tolerance is referred to as gut homeostasis. Recent Advances: It has become clear that different types of immune cells and several factors participate in the maintenance of gut homeostasis, having as a final goal the prevention of non-necessary inflammation. Immune cells of the myeloid lineage, such as macrophages located in the lamina propria, represent the most abundant leukocyte population in the intestine and play a critical role in keeping the immune system silent, via the production of the anti-inflammatory cytokine interleukin-10. Critical Issues: Gut macrophages are an important source of the oxidative enzyme heme-oxygenase-1 (HO-1), which has crucial immune-modulatory properties. The protective role of HO-1 in the control of the intestinal inflammation, and its connection with the enteric flora have been demonstrated in experimental settings as well as in human biological samples. Future Directions: Loss of the gut homeostasis gives rise to conditions of acute inflammation that may degenerate into chronic disease, eventually leading to carcinogenesis. Understanding the mechanisms that regulate this enzyme will disclose novel therapeutic approaches that are designed to control chronic inflammation in the intestine.
Collapse
Affiliation(s)
- Giulia Marelli
- Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Paola Allavena
- Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| |
Collapse
|
27
|
Hansen TWR, Maisels MJ, Ebbesen F, Vreman HJ, Stevenson DK, Wong RJ, Bhutani VK. Sixty years of phototherapy for neonatal jaundice - from serendipitous observation to standardized treatment and rescue for millions. J Perinatol 2020; 40:180-193. [PMID: 31420582 DOI: 10.1038/s41372-019-0439-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/04/2019] [Accepted: 05/23/2019] [Indexed: 11/09/2022]
Abstract
A breakthrough discovery 60 years ago by Cremer et al. has since changed the way we treat infants with hyperbilirubinemia and saved the lives of millions from death and disabilities. "Photobiology" has evolved by inquiry of diverse light sources: fluorescent tubes (wavelength range of 400-520 nm; halogen spotlights that emit circular footprints of light; fiberoptic pads/blankets (mostly, 400-550 nm range) that can be placed in direct contact with skin; and the current narrow-band blue light-emitting diode (LED) light (450-470 nm), which overlaps the peak absorption wavelength (458 nm) for bilirubin photoisomerization. Excessive bombardment with photons has raised concerns for oxidative stress in very low birthweight versus term infants treated aggressively with phototherapy. Increased emphasis on prescribing phototherapy as a "drug" that is dosed cautiously and judiciously is needed. In this historical review, we chronicled the basic to the neurotoxic components of severe neonatal hyperbilirubinemia and the use of standardized interventions.
Collapse
Affiliation(s)
- Thor Willy Ruud Hansen
- Division of Paediatric and Adolescent Medicine, Department of Neonatal Intensive Care, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - M Jeffrey Maisels
- Department of Pediatrics, Oakland University William Beaumont School of Medicine, Beaumont Children's Hospital, Royal Oak, MI, USA
| | - Finn Ebbesen
- Department of Pediatrics, Aalborg University Hospital, Aalborg, Denmark.,Institute of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Hendrik J Vreman
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David K Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald J Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Vinod K Bhutani
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
28
|
Experimental models assessing bilirubin neurotoxicity. Pediatr Res 2020; 87:17-25. [PMID: 31493769 DOI: 10.1038/s41390-019-0570-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 02/08/2023]
Abstract
The molecular and cellular events leading to bilirubin-induced neurotoxicity, the mechanisms regulating liver and intestine expression in neonates, and alternative pathways of bilirubin catabolism remain incompletely defined. To answer these questions, researchers have developed a number of model systems to closely recapitulate the main characteristics of the disease, ranging from tissue cultures to engineered mouse models. In the present review we describe in vitro, ex vivo, and in vivo models developed to study bilirubin metabolism and neurotoxicity, with a special focus on the use of engineered animal models. In addition, we discussed the most recent studies related to potential therapeutic approaches to treat neonatal hyperbilirubinemia, ranging from anti-inflammatory drugs, activation of nuclear receptor pathways, blockade of bilirubin catabolism, and stimulation of alternative bilirubin-disposal pathways.
Collapse
|
29
|
Zakaria A, Rady M, Mahran L, Abou-Aisha K. Pioglitazone Attenuates Lipopolysaccharide-Induced Oxidative Stress, Dopaminergic Neuronal Loss and Neurobehavioral Impairment by Activating Nrf2/ARE/HO-1. Neurochem Res 2019; 44:10.1007/s11064-019-02907-0. [PMID: 31713708 DOI: 10.1007/s11064-019-02907-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to examine the neuroprotective potential of pioglitazone via activation of Nrf2/ARE-dependent HO-1 signaling pathway in chronic neuroinflammation and progressive neurodegeneration mouse model induced by lipopolysaccharide (LPS). After assessing spatial memory, anxiety and motor-coordination, TH+ neurons in substantia nigra (SN) were counted. The oxidative stress marker carbonyl protein levels and HO-1 enzyme activity were also evaluated. RT-qPCR was conducted to detect HO-1, Nrf2 and NF-κp65 mRNA expression levels and Nrf2 transcriptional activation of antioxidant response element (ARE) of HO-1 was investigated. Pioglitazone ameliorated LPS-induced dopaminergic neuronal loss, as well as mitigated neurobehavioral impairments. It enhanced Nrf2 mRNA expression, and augmented Nrf2/ARE-dependent HO-1 pathway activation by amplifying HO-1 mRNA expression. Moreover, it induced a significant decrease in NF-κB p65 mRNA expression, while reducing carbonyl protein levels and restoring the HO-1 enzyme activity. Interestingly, LPS induced Nrf2/antioxidant response element (ARE) of HO-1 activation, ultimately resulting in slight enhanced HO-1 mRNA expression. However, LPS elicited decrease in HO-1 enzyme activity. Zinc protoporphyrin-IX (ZnPPIX) administrated with pioglitazone abolished its effects in the LPS mouse model. The study results demonstrate that coordinated activation of Nrf2/ARE-dependent HO-1 pathway defense mechanism by the PPARγ agonist pioglitazone mediated its neuroprotective effects.
Collapse
Affiliation(s)
- Aya Zakaria
- Department of Pharmacology and Toxicology, German University in Cairo (GUC), New Cairo, Egypt.
| | - Mona Rady
- Department of Microbiology and Immunology, German University in Cairo (GUC), New Cairo, Egypt
| | - Laila Mahran
- Department of Pharmacology and Toxicology, German University in Cairo (GUC), New Cairo, Egypt
| | - Khaled Abou-Aisha
- Department of Microbiology and Immunology, German University in Cairo (GUC), New Cairo, Egypt.
| |
Collapse
|
30
|
Szade A, Szade K, Nowak WN, Bukowska-Strakova K, Muchova L, Gońka M, Żukowska M, Cieśla M, Kachamakova-Trojanowska N, Rams-Baron M, Ratuszna A, Dulak J, Józkowicz A. Cobalt protoporphyrin IX increases endogenous G-CSF and mobilizes HSC and granulocytes to the blood. EMBO Mol Med 2019; 11:e09571. [PMID: 31709729 PMCID: PMC6895613 DOI: 10.15252/emmm.201809571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
Granulocyte colony‐stimulating factor (G‐CSF) is used in clinical practice to mobilize cells from the bone marrow to the blood; however, it is not always effective. We show that cobalt protoporphyrin IX (CoPP) increases plasma concentrations of G‐CSF, IL‐6, and MCP‐1 in mice, triggering the mobilization of granulocytes and hematopoietic stem and progenitor cells (HSPC). Compared with recombinant G‐CSF, CoPP mobilizes higher number of HSPC and mature granulocytes. In contrast to G‐CSF, CoPP does not increase the number of circulating T cells. Transplantation of CoPP‐mobilized peripheral blood mononuclear cells (PBMC) results in higher chimerism and faster hematopoietic reconstitution than transplantation of PBMC mobilized by G‐CSF. Although CoPP is used to activate Nrf2/HO‐1 axis, the observed effects are Nrf2/HO‐1 independent. Concluding, CoPP increases expression of mobilization‐related cytokines and has superior mobilizing efficiency compared with recombinant G‐CSF. This observation could lead to the development of new strategies for the treatment of neutropenia and HSPC transplantation.
Collapse
Affiliation(s)
- Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Witold N Nowak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Clinical Immunology and Transplantology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Lucie Muchova
- Fourth Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Medicine, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Monika Gońka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Żukowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maciej Cieśla
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marzena Rams-Baron
- A. Chelkowski Institute of Physics, University of Silesia, Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, Chorzow, Poland
| | - Alicja Ratuszna
- A. Chelkowski Institute of Physics, University of Silesia, Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, Chorzow, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
31
|
Phikud Navakot Modulates the Level of Pro-Inflammatory Mediators and the Protein Expression of SOD1 and 2 and the Nrf2/HO-1 Signaling Pathway in Rats with Acute Myocardial Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4823645. [PMID: 31641366 PMCID: PMC6766678 DOI: 10.1155/2019/4823645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022]
Abstract
Phikud Navakot (PN) is nine major herbs in a famous traditional Thai recipe namely “Yahom Navakot” used to treat cardiovascular disorders. This study investigated the cardioprotective effects of PN formula on isoproterenol-induced myocardial infarction (IMI) in Sprague-Dawley rats. Forty-five rats were randomly divided into nine groups (n = 5 per group): the control, the IMI, the IMI + propranolol, the control or the IMI + PN formula (PN ethanolic extract at doses of 64, 127, or 255 mg/kg) by oroesophageal gavage for 28 days. The ST segment and serum troponin T levels were significantly increased in IMI rats. PN did not eliminate tissue necrosis, infiltration of inflammatory cells, or interstitial edema in IMI rats. All doses of PN decreased (p < 0.001) serum TNF-α and IL-6 levels. PN (127 and 255 mg/kg) up-regulated (p < 0.05) heme oxygenase (HO)-1 expression, whereas PN (255 mg/kg) significantly increased superoxide dismutase (SOD) 1 and 2 expression, compared with IMI rats. Nuclear factor erythroid 2-related factor 2 (Nrf2) and HO-1 expression significantly increased in IMI rats and IMI rats that received PN. PN formula possesses potential anti-inflammatory and antioxidant properties by modulating the levels of TNF-α, IL-6 and antioxidant enzymes. Our study reveals a novel cardioprotective effect of PN in IMI rats through the Nrf2/HO-1 signaling.
Collapse
|
32
|
Drummond GS, Baum J, Greenberg M, Lewis D, Abraham NG. HO-1 overexpression and underexpression: Clinical implications. Arch Biochem Biophys 2019; 673:108073. [PMID: 31425676 DOI: 10.1016/j.abb.2019.108073] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/23/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022]
Abstract
In this review we examine the effects of both over- and under-production of heme oxygenase-1 (HO-1) and HO activity on a broad spectrum of biological systems and on vascular disease. In a few instances e.g., neonatal jaundice, overproduction of HO-1 and increased HO activity results in elevated levels of bilirubin requiring clinical intervention with inhibitors of HO activity. In contrast HO-1 levels and HO activity are low in obesity and the HO system responds to mitigate the deleterious effects of oxidative stress through increased levels of bilirubin (anti-inflammatory) and CO (anti-apoptotic) and decreased levels of heme (pro-oxidant). Site specific HO-1 overexpression diminishes adipocyte terminal differentiation and lipid accumulation of obesity mediated release of inflammatory molecules. A series of diverse strategies have been implemented that focus on increasing HO-1 and HO activity that are central to reversing the clinical complications associated with diseases including, obesity, metabolic syndrome and vascular disease.
Collapse
Affiliation(s)
- George S Drummond
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Jeffrey Baum
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Menachem Greenberg
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - David Lewis
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
33
|
Brewster JT, Zafar H, Root HD, Thiabaud GD, Sessler JL. Porphyrinoid f-Element Complexes. Inorg Chem 2019; 59:32-47. [DOI: 10.1021/acs.inorgchem.9b00884] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- James T. Brewster
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Hadiqa Zafar
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Harrison D. Root
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Gregory D. Thiabaud
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| |
Collapse
|
34
|
Brewster JT, Root HD, Mangel D, Samia A, Zafar H, Sedgwick AC, Lynch VM, Sessler JL. UO 2 2+-mediated ring contraction of pyrihexaphyrin: synthesis of a contracted expanded porphyrin-uranyl complex. Chem Sci 2019; 10:5596-5602. [PMID: 31293744 PMCID: PMC6552508 DOI: 10.1039/c9sc01593k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022] Open
Abstract
A new mixed hexaphyrin, pyrihexaphyrin (0.1.0.0.1.0) (1), was prepared via an acid catalyzed cyclization between 5,5′-(pyridine-2,6-diyl)bis(pyrrole-2-carbaldehyde) (2) and terpyrrole (3).
A new mixed hexaphyrin, pyrihexaphyrin (0.1.0.0.1.0) (1), was prepared via an acid catalyzed cyclization between 5,5′-(pyridine-2,6-diyl)bis(pyrrole-2-carbaldehyde) (2) and terpyrrole (3). This expanded porphyrin undergoes a ring contraction upon metallation with uranyl silylamide [UO2[N(SiMe3)2]2] under anaerobic conditions followed by purification over basic aluminum oxide exposed to air. The uranyl-contracted pyrihexaphyrin (0.0.0.0.1.0) complex (4) produced as a result contains a unique structural architecture and possesses a formally 22 π-electron globally aromatic periphery, as inferred from NMR spectroscopy, single crystal X-ray diffraction, and computational analyses. Support for the proposed contraction mechanism came from experimental data and DFT calculations. Proton NMR and mass spectroscopic analysis provided the first insight into expanded porphyrin-mediated activation of the uranyl dication (UO22+).
Collapse
Affiliation(s)
- James T Brewster
- Department of Chemistry , The University of Texas at Austin , 105 East 24th St., Stop A5300 , Austin , Texas 78712 , USA .
| | - Harrison D Root
- Department of Chemistry , The University of Texas at Austin , 105 East 24th St., Stop A5300 , Austin , Texas 78712 , USA .
| | - Daniel Mangel
- Department of Chemistry , The University of Texas at Austin , 105 East 24th St., Stop A5300 , Austin , Texas 78712 , USA .
| | - Adam Samia
- Department of Chemistry , The University of Texas at Austin , 105 East 24th St., Stop A5300 , Austin , Texas 78712 , USA .
| | - Hadiqa Zafar
- Department of Chemistry , The University of Texas at Austin , 105 East 24th St., Stop A5300 , Austin , Texas 78712 , USA .
| | - Adam C Sedgwick
- Department of Chemistry , The University of Texas at Austin , 105 East 24th St., Stop A5300 , Austin , Texas 78712 , USA .
| | - Vincent M Lynch
- Department of Chemistry , The University of Texas at Austin , 105 East 24th St., Stop A5300 , Austin , Texas 78712 , USA .
| | - Jonathan L Sessler
- Department of Chemistry , The University of Texas at Austin , 105 East 24th St., Stop A5300 , Austin , Texas 78712 , USA .
| |
Collapse
|
35
|
A Dual Role of Heme Oxygenase-1 in Cancer Cells. Int J Mol Sci 2018; 20:ijms20010039. [PMID: 30583467 PMCID: PMC6337503 DOI: 10.3390/ijms20010039] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in cancer progression and its inhibition is considered beneficial in a number of cancers. However, increasing studies have shown a dark side of HO-1, in which HO-1 acts as a critical mediator in ferroptosis induction and plays a causative factor for the progression of several diseases. Ferroptosis is a newly identified iron- and lipid peroxidation-dependent cell death. The critical role of HO-1 in heme metabolism makes it an important candidate to mediate protective or detrimental effects via ferroptosis induction. This review summarizes the current understanding on the regulatory mechanisms of HO-1 in ferroptosis. The amount of cellular iron and reactive oxygen species (ROS) is the determinative momentum for the role of HO-1, in which excessive cellular iron and ROS tend to enforce HO-1 from a protective role to a perpetrator. Despite the dark side that is related to cell death, there is a prospective application of HO-1 to mediate ferroptosis for cancer therapy as a chemotherapeutic strategy against tumors.
Collapse
|
36
|
Neonatal hyperbilirubinaemia: a global perspective. THE LANCET CHILD & ADOLESCENT HEALTH 2018; 2:610-620. [DOI: 10.1016/s2352-4642(18)30139-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023]
|
37
|
Abstract
Mature red blood cells are reliant on the glycolytic pathway for energy production and the hexose monophosphate shunt for cell protection from oxidative insults. The most common red blood cell enzyme disorders are characterized by hemolysis but with wide clinical variability. Glucose-6-phosphate dehydrogenase deficiency is the most common red cell enzyme disorder worldwide. Frequent clinical presentations include neonatal jaundice and episodic hemolysis after exposure to oxidative stress. Symptoms of pyruvate kinase deficiency and other glycolytic enzyme disorders include neonatal jaundice, chronic hemolytic anemia, gallstones, and transfusion-related and transfusion-independent iron overload. Diagnosis is critical for appropriate supportive care, monitoring, and treatment.
Collapse
Affiliation(s)
- Rachael F Grace
- Department of Pediatric Hematology/Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, 450 Brookline Avenue, Dana 3-106, Boston, MA 02215, USA.
| | - Bertil Glader
- Department of Pediatric Hematology/Oncology, Lucile Packard Children's Hospital, Stanford University School of Medicine, 1000 Welch Road # 300, Palo Alto, CA 94304, USA
| |
Collapse
|
38
|
Abstract
Heme oxygenase-1 (HO-1, encoded by HMOX1) through degradation of pro-oxidant heme into carbon monoxide (CO), ferrous ions (Fe2+) and biliverdin, exhibits cytoprotective, anti-apoptotic and anti-inflammatory properties. All of these potentially beneficial functions of HO-1 may play an important role in tumors’ development and progression. Moreover, HO-1 is very often upregulated in tumors in comparison to healthy tissues, and its expression is further induced upon chemo-, radio- and photodynamic therapy, what results in decreased effectiveness of the treatment. Consequently, HO-1 can be proposed as a therapeutic target for anticancer treatment in many types of tumors. Nonetheless, possibilities of specific inhibition of HO-1 are strongly limited. Metalloporphyrins are widely used in in vitro studies, however, they are unselective and may exert serious side effects including an increase in HMOX1 mRNA level. On the other hand, detailed information about pharmacokinetics and biodistribution of imidazole-dioxolane derivatives, other potential inhibitors, is lacking. The genetic inhibition of HO-1 by RNA interference (RNAi) or CRISPR/Cas9 approaches provides the possibility to specifically target HO-1; however, the potential therapeutic application of those methods are distant at best. In summary, HO-1 inhibition might be the valuable anticancer approach, however, the ideal strategy for HO-1 targeting requires further studies.
Collapse
|
39
|
Inhibition of heme oxygenase ameliorates anemia and reduces iron overload in a β-thalassemia mouse model. Blood 2017; 131:236-246. [PMID: 29180398 DOI: 10.1182/blood-2017-07-798728] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022] Open
Abstract
Thalassemias are a heterogeneous group of red blood cell disorders, considered a major cause of morbidity and mortality among genetic diseases. However, there is still no universally available cure for thalassemias. The underlying basis of thalassemia pathology is the premature apoptotic destruction of erythroblasts causing ineffective erythropoiesis. In β-thalassemia, β-globin synthesis is reduced causing α-globin accumulation. Unpaired globin chains, with heme attached to them, accumulate in thalassemic erythroblasts causing oxidative stress and the premature cell death. We hypothesize that in β-thalassemia heme oxygenase (HO) 1 could play a pathogenic role in the development of anemia and ineffective erythropoiesis. To test this hypothesis, we exploited a mouse model of β-thalassemia intermedia, Th3/+ We observed that HO inhibition using tin protoporphyrin IX (SnPP) decreased heme-iron recycling in the liver and ameliorated anemia in the Th3/+ mice. SnPP administration led to a decrease in erythropoietin and increase in hepcidin serum levels, changes that were accompanied by an alleviation of ineffective erythropoiesis in Th3/+ mice. Additionally, the bone marrow from Th3/+ mice treated with SnPP exhibited decreased heme catabolism and diminished iron release as well as reduced apoptosis. Our results indicate that the iron released from heme because of HO activity contributes to the pathophysiology of thalassemia. Therefore, new therapies that suppress heme catabolism may be beneficial in ameliorating the anemia and ineffective erythropoiesis in thalassemias.
Collapse
|
40
|
Vasiliadou R, Welham KJ. Simulating the phase II metabolism of raloxifene on a screen-printed electrode. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Raloxifene (RLX) is a selective estrogen receptor modulator widely used for the treatment of osteoporosis in post-menopause women. Toxicological in vitro studies suggested the reactivity of RLX through phase I metabolism. Herein, we describe a simple and inexpensive method for monitoring the reactive metabolism and detoxification of RLX by electrochemistry (EC) and mass spectrometry (MS). The phase I metabolite was synthesized electrochemically on a screen-printed electrode (SPE) and subsequently reacted with glutathione (GSH). The resulted GSH-adducts and GSH disulfides were characterized off-line by electrospray ionization (ESI)–MS.
Collapse
Affiliation(s)
- Rafaela Vasiliadou
- Department of Chemistry, University of Hull, Cottingham Road, HU6 7RX, UK
- Department of Chemistry, University of Hull, Cottingham Road, HU6 7RX, UK
| | - Kevin J. Welham
- Department of Chemistry, University of Hull, Cottingham Road, HU6 7RX, UK
- Department of Chemistry, University of Hull, Cottingham Road, HU6 7RX, UK
| |
Collapse
|
41
|
Hum M, McLaughlin BE, Kong X, Vlahakis JZ, Vukomanovic D, Szarek WA, Nakatsu K. Differential inhibition of rat and mouse microsome heme oxygenase by derivatives of imidazole and benzimidazole. Can J Physiol Pharmacol 2017; 95:1454-1461. [PMID: 28793202 DOI: 10.1139/cjpp-2017-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metalloporphyrin heme oxygenase (HO) inhibitors have made an important contribution to elucidating the role of HO in physiological processes. Nevertheless, their off-target effects have drawn substantial criticism, which prompted us to develop non-porphyrin, azole-based inhibitors of HO. These second-generation HO inhibitors were evaluated using spleen and brain microsomes from rats as native sources of HO-1 and HO-2, respectively. Recently, the use of azole-based inhibitors of HO has been extended to other mammalian species and, as a consequence, it will be important to characterize the inhibitors in these species. The goal of this study was to compare the inhibitory profile of imidazole- and benzimidazole-based inhibitors of HO in a breast-cancer-implanted mouse to that of an untreated rat. For spleen and brain microsomes from both species, HO protein expression was determined by Western blotting and concentration-response curves for imidazole- and benzimidazole-derivative inhibition of HO activity were determined using a headspace gas-chromatographic assay. It was found that the effects on HO activity by imidazole and benzimidazole derivatives were different between the 2 species and were not explained by differences in HO expression. Thus, the HO inhibitory profile should be determined for azole derivatives before they are used in mammalian species other than rats.
Collapse
Affiliation(s)
- Maaike Hum
- a Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Brian E McLaughlin
- a Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Xianqi Kong
- b Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Jason Z Vlahakis
- b Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Dragic Vukomanovic
- a Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Walter A Szarek
- b Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kanji Nakatsu
- a Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
42
|
van Dijk R, Aronson SJ, de Waart DR, van de Graaf SF, Duijst S, Seppen J, Elferink RO, Beuers U, Bosma PJ. Biliverdin Reductase inhibitors did not improve severe unconjugated hyperbilirubinemia in vivo. Sci Rep 2017; 7:1646. [PMID: 28490767 PMCID: PMC5431759 DOI: 10.1038/s41598-017-01602-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/30/2017] [Indexed: 12/31/2022] Open
Abstract
We aimed to identify potent biliverdin reductase (BVRA) inhibitors as a novel concept for the treatment of severe unconjugated hyperbilirubinemia. 1280 FDA-approved compounds were screened in vitro for their ability to inhibit human and rat BVRA activity and 26 compounds were identified as BVRA inhibitors. Montelukast and Disulfiram were selected as potentially clinically applicable drugs and tested to reduce serum unconjugated bilirubin (UCB) levels in the Ugt1a1-deficient rat, a model for chronic unconjugated hyperbilirubinemia. Oral administration of Disulfiram was toxic in the Ugt1a1-deficient rat (weight loss, transaminase elevation). Oral Montelukast administration led to low serum concentrations and did not alter serum UCB levels. Intraperitoneal injections of Montelukast resulted in concentrations up to 110 μmol/L in serum and 400 μmol/L in the liver. Still, serum UCB levels remained unaltered. This first study on biliverdin reductase inhibition as a novel concept for treatment of unconjugated hyperbilirubinemia identified putative in vitro BVRA inhibitors. Montelukast, the clinically most suitable inhibitor, did not result in reduction of serum UCB in the Ugt1a1-deficient rat. The proposed treatment strategy will not result in amelioration of severe unconjugated hyperbilirubinemia in humans without the identification or development of more potent BVRA inhibitors.
Collapse
Affiliation(s)
- Remco van Dijk
- Tytgat Institute for Liver and Intestinal Research & Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sem J Aronson
- Tytgat Institute for Liver and Intestinal Research & Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk R de Waart
- Tytgat Institute for Liver and Intestinal Research & Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stan F van de Graaf
- Tytgat Institute for Liver and Intestinal Research & Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Suzanne Duijst
- Tytgat Institute for Liver and Intestinal Research & Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jurgen Seppen
- Tytgat Institute for Liver and Intestinal Research & Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald Oude Elferink
- Tytgat Institute for Liver and Intestinal Research & Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal Research & Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Piter J Bosma
- Tytgat Institute for Liver and Intestinal Research & Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Stevenson DK. Leading by Example and Design: The Joseph St Geme Jr Leadership Award, 2016. Pediatrics 2016; 138:peds.2016-2487. [PMID: 27940790 DOI: 10.1542/peds.2016-2487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2016] [Indexed: 11/24/2022] Open
|
44
|
Detsika MG, Duann P, Atsaves V, Papalois A, Lianos EA. Heme Oxygenase 1 Up-Regulates Glomerular Decay Accelerating Factor Expression and Minimizes Complement Deposition and Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2833-2845. [PMID: 27662796 DOI: 10.1016/j.ajpath.2016.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/27/2016] [Accepted: 07/11/2016] [Indexed: 02/07/2023]
Abstract
Complement-activation controllers, including decay accelerating factor (DAF), are gaining emphasis as they minimize injury in various dysregulated complement-activation disorders, including glomerulopathies. Heme oxygenase (HO)-1 overexpression or induction has been shown to attenuate injury in complement-dependent models of glomerulonephritis. This study investigated whether up-regulation of DAF by heme oxygenase 1 (HO-1) is an underlying mechanism by using Hmox-1-deficient rats (Hmox1+/-; Hmox1-/-) or rats with HO-1 overexpression targeted to glomerular epithelial cells (GECHO-1), which are particularly vulnerable to complement-mediated injury owing to their terminally differentiated nature. Constitutively expressed DAF was decreased in glomeruli of Hmox1-/- rats and augmented in glomeruli of GECHO-1 rats. In GECHO-1 rats with anti-glomerular basement membrane antibody mediated, complement-dependent injury, complement component C3 fragment b (C3b) deposition was reduced, whereas proteinuria was diminished. In glomeruli of wild-type rats, the natural Hmox substrate, hemin, induced glomerular DAF. This effect was attenuated in glomeruli of Hmox1-/- rats and augmented in glomeruli of GECHO-1 rats. Hemin analogues differing in either metal or porphyrin ring functionalities, acting as competitive Hmox-substrate inhibitors, also increased glomerular DAF and reduced C3b deposition after spontaneous complement activation. In the presence of a DAF-blocking antibody, the reduction in C3b deposition was reversed. These observations establish HO-1 as a physiologic regulator of glomerular DAF and identify hemin analogues as inducers of functional glomerular DAF able to minimize C3b deposition.
Collapse
Affiliation(s)
- Maria G Detsika
- First Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University School of Medicine, Athens, Greece.
| | - Pu Duann
- Division of Nephrology, Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Vassilios Atsaves
- First Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University School of Medicine, Athens, Greece
| | | | - Elias A Lianos
- First Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University School of Medicine, Athens, Greece; Division of Nephrology, Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
45
|
EETs and HO-1 cross-talk. Prostaglandins Other Lipid Mediat 2016; 125:65-79. [DOI: 10.1016/j.prostaglandins.2016.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/03/2016] [Accepted: 06/20/2016] [Indexed: 01/26/2023]
|
46
|
Abstract
Preterm neonates with increased bilirubin production loads are more likely to sustain adverse outcomes due to either neurotoxicity or overtreatment with phototherapy and/or exchange transfusion. Clinicians should rely on expert consensus opinions to guide timely and effective interventions until there is better evidence to refine bilirubin-induced neurologic dysfunction or benefits of bilirubin. In this article, we review the evolving evidence for bilirubin-induced brain injury in preterm infants and highlight the clinical approaches that minimize the risk of bilirubin neurotoxicity.
Collapse
|
47
|
Abstract
Phototherapy has been used to treat newborns with jaundice for more than 50 years with the presumption that it is safe and effective for all infants. In fact, this presumption may not be true for all infants, especially the smallest and most immature. The safety and efficacy of phototherapy have never really been questioned or adequately tested in the latter, yet clinical applications of phototherapy have been further refined as its mechanisms of action have been better understood and alternative light sources have become available. This article addresses what is known about the possible risks of photo-oxidative injury in extremely low birth weight infants.
Collapse
|
48
|
Inhibition of heme oxygenase activity using a microparticle formulation of zinc protoporphyrin in an acute hemolytic newborn mouse model. Pediatr Res 2016; 79:251-7. [PMID: 26488552 DOI: 10.1038/pr.2015.207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/20/2015] [Indexed: 01/20/2023]
Abstract
BACKGROUND Increased bilirubin production due to hemolysis can lead to neonatal hyperbilirubinemia. Inhibition of heme oxygenase (HO), the rate-limiting enzyme in heme catabolism, by metalloporphyrins (Mps) may be an ideal preventive strategy for neonatal hemolytic disease. Zinc protoporphyrin (ZnPP) is a naturally occurring Mp, potent, not phototoxic, with minimal HO-1 upregulation, but is not orally absorbed. Recently, we designed a lipid-based ZnPP formulation (ZnPP-Lipid), which is orally absorbed by newborn mice. Here, we evaluated the efficacy of ZnPP-Lipid in heme-loaded newborn mice, a model analogous to hemolytic infants. METHODS After 24 h of heme administration (30 µmol/kg s.c.), 4-d-old mice were given 30 µmol ZnPP-Lipid/kg via intragastric injections. After 3 h, liver and brain HO activity were measured. HO-1 upregulation was assessed by determinations of HO-1 protein, promoter activity, and mRNA by Western blot, in vivo bioluminescence imaging, and RT-PCR, respectively. RESULTS After heme loading, liver HO activity significantly increased ~1.6-fold, which was inhibited in a dose-dependent manner by ZnPP-Lipid. A dose of 30 µmol/kg returned activity to control levels. Brain HO activity was not inhibited. No significant increases in liver and brain HO-1 protein, promoter activity, and mRNA were observed. CONCLUSION ZnPP-Lipid is effective and thus has potential for treating neonatal hyperbilirubinemia due to hemolysis.
Collapse
|
49
|
Ryter SW, Choi AMK. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 2016; 167:7-34. [PMID: 26166253 PMCID: PMC4857893 DOI: 10.1016/j.trsl.2015.06.011] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022]
Abstract
The heme oxygenase-1 (HO-1) enzyme system remains an attractive therapeutic target for the treatment of inflammatory conditions. HO-1, a cellular stress protein, serves a vital metabolic function as the rate-limiting step in the degradation of heme to generate carbon monoxide (CO), iron, and biliverdin-IXα (BV), the latter which is converted to bilirubin-IXα (BR). HO-1 may function as a pleiotropic regulator of inflammatory signaling programs through the generation of its biologically active end products, namely CO, BV and BR. CO, when applied exogenously, can affect apoptotic, proliferative, and inflammatory cellular programs. Specifically, CO can modulate the production of proinflammatory or anti-inflammatory cytokines and mediators. HO-1 and CO may also have immunomodulatory effects with respect to regulating the functions of antigen-presenting cells, dendritic cells, and regulatory T cells. Therapeutic strategies to modulate HO-1 in disease include the application of natural-inducing compounds and gene therapy approaches for the targeted genetic overexpression or knockdown of HO-1. Several compounds have been used therapeutically to inhibit HO activity, including competitive inhibitors of the metalloporphyrin series or noncompetitive isoform-selective derivatives of imidazole-dioxolanes. The end products of HO activity, CO, BV and BR may be used therapeutically as pharmacologic treatments. CO may be applied by inhalation or through the use of CO-releasing molecules. This review will discuss HO-1 as a therapeutic target in diseases involving inflammation, including lung and vascular injury, sepsis, ischemia-reperfusion injury, and transplant rejection.
Collapse
Affiliation(s)
- Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY.
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY
| |
Collapse
|
50
|
Loboda A, Jozkowicz A, Dulak J. HO-1/CO system in tumor growth, angiogenesis and metabolism - Targeting HO-1 as an anti-tumor therapy. Vascul Pharmacol 2015; 74:11-22. [PMID: 26392237 DOI: 10.1016/j.vph.2015.09.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/02/2015] [Accepted: 09/16/2015] [Indexed: 02/08/2023]
Abstract
Heme oxygenase-1 (HO-1, hmox-1) catalyzes the rate-limiting step in the heme degradation processes. Out of three by-products of HO-1 activity, biliverdin, iron ions and carbon monoxide (CO), the latter was mostly shown to mediate many beneficial HO-1 effects, including protection against oxidative injury, regulation of apoptosis, modulation of inflammation as well as contribution to angiogenesis. Mounting evidence suggests that HO-1/CO systemmay be of special benefit in protection inmany pathological conditions, like atherosclerosis or myocardial infarction. By contrast, the augmented expression of HO-1 in tumor tissues may have detrimental effect as HO-1 accelerates the formation of tumor neovasculature and provides the selective advantage for tumor cells to overcome the increased oxidative stress during tumorigenesis and during treatment. The inhibition of HO-1 has been proposed as an anti-cancer therapy, however, because of non-specific effects of known HO-1 inhibitors, the discovery of ideal drug lowering HO-1 expression/activity is still an open question. Importantly, in several types of cancer HO-1/CO system exerts opposite activities, making the possible treatment more complicated. All together indicates the complex role for HO-1/CO in various in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|