1
|
Pietrobono S, Bertolini M, De Vita V, Sabbadini F, Fazzini F, Frusteri C, Scarlato E, Mangiameli D, Quinzii A, Casalino S, Zecchetto C, Merz V, Melisi D. CCL3 predicts exceptional response to TGFβ inhibition in basal-like pancreatic cancer enriched in LIF-producing macrophages. NPJ Precis Oncol 2024; 8:246. [PMID: 39478186 PMCID: PMC11525688 DOI: 10.1038/s41698-024-00742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
The TGFβ receptor inhibitor galunisertib showed promising efficacy in patients with pancreatic ductal adenocarcinoma (PDAC) in the phase 2 H9H-MC-JBAJ study. Identifying biomarkers for this treatment remains essential. Baseline plasma levels of chemokine CCL3 were integrated with clinical outcomes in PDAC patients treated with galunisertib plus gemcitabine (n = 104) or placebo plus gemcitabine (n = 52). High CCL3 was a poor prognostic factor in the placebo group (mOS 3.6 vs. 10.1 months; p < 0.01) but a positive predictor for galunisertib (mOS 9.2 vs. 3.6 months; p < 0.01). Mechanistically, tumor-derived CCL3 activates Tgfβ signaling in macrophages, inducing their M2 phenotype and Lif secretion, sustaining a mesenchymal/basal-like ecotype. TGFβ inhibition redirects macrophage polarization to M1, reducing Lif and shifting PDAC cells to a more epithelial/classical phenotype, improving gemcitabine sensitivity. This study supports exploring TGFβ-targeting agents in PDAC with a mesenchymal/basal-like ecotype driven by high CCL3 levels.
Collapse
Affiliation(s)
- Silvia Pietrobono
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Monica Bertolini
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Veronica De Vita
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Fabio Sabbadini
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Federica Fazzini
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Cristina Frusteri
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Enza Scarlato
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Domenico Mangiameli
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Alberto Quinzii
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Simona Casalino
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Camilla Zecchetto
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Valeria Merz
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Davide Melisi
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy.
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| |
Collapse
|
2
|
Melisi D, Casalino S, Pietrobono S, Quinzii A, Zecchetto C, Merz V. Integration of liposomal irinotecan in the first-line treatment of metastatic pancreatic cancer: try to do not think about the white bear. Ther Adv Med Oncol 2024; 16:17588359241234487. [PMID: 38584763 PMCID: PMC10996353 DOI: 10.1177/17588359241234487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/05/2024] [Indexed: 04/09/2024] Open
Abstract
The approval of novel therapeutic agents remains widely reliant on evidence derived from large phase III randomized controlled trials. Liposomal irinotecan (ONIVYDE®) stands out as the only drug that has demonstrated improved survival both as a first-line therapy in combination with oxaliplatin and 5-fluorouracil/leucovorin (5FU/LV) (NALIRIFOX) compared to the standard gemcitabine plus nab-paclitaxel in the NAPOLI3 trial, and as a second-line treatment in combination with 5FU/LV compared to the standard 5FU/LV in the NAPOLI1 trial. However, just as the white bear of the Dostoevsky's paradox, the judgment of these results is invariably distracted by the intrusive thought of how different they might be if compared to similar regimens containing standard-free irinotecan as FOLFIRINOX or FOLFIRI, respectively. Here, we present and thoroughly discuss the evidence encompassing the pharmacologic, preclinical, and clinical development of liposomal irinotecan that can dispel any intrusive thoughts and foster a rational and well-considered judgment of this agent and its potential integration into the therapeutic strategies for pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Davide Melisi
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Piazzale L.A. Scuro, 10, Verona 37134, Italy
| | - Simona Casalino
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Silvia Pietrobono
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Alberto Quinzii
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Camilla Zecchetto
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Valeria Merz
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
| |
Collapse
|
3
|
Tan YQ, Sun B, Zhang X, Zhang S, Guo H, Basappa B, Zhu T, Sethi G, Lobie PE, Pandey V. Concurrent inhibition of pBADS99 synergistically improves MEK inhibitor efficacy in KRAS G12D-mutant pancreatic ductal adenocarcinoma. Cell Death Dis 2024; 15:173. [PMID: 38409090 PMCID: PMC10897366 DOI: 10.1038/s41419-024-06551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
Therapeutic targeting of KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) has remained a significant challenge in clinical oncology. Direct targeting of KRAS has proven difficult, and inhibition of the KRAS effectors have shown limited success due to compensatory activation of survival pathways. Being a core downstream effector of the KRAS-driven p44/42 MAPK and PI3K/AKT pathways governing intrinsic apoptosis, BAD phosphorylation emerges as a promising therapeutic target. Herein, a positive association of the pBADS99/BAD ratio with higher disease stage and worse overall survival of PDAC was observed. Homology-directed repair of BAD to BADS99A or small molecule inhibition of BADS99 phosphorylation by NCK significantly reduced PDAC cell viability by promoting cell cycle arrest and apoptosis. NCK also abrogated the growth of preformed colonies of PDAC cells in 3D culture. Furthermore, high-throughput screening with an oncology drug library to identify potential combinations revealed a strong synergistic effect between NCK and MEK inhibitors in PDAC cells harboring either wild-type or mutant-KRAS. Mechanistically, both mutant-KRAS and MEK inhibition increased the phosphorylation of BADS99 in PDAC cells, an effect abrogated by NCK. Combined pBADS99-MEK inhibition demonstrated strong synergy in reducing cell viability, enhancing apoptosis, and achieving xenograft stasis in KRAS-mutant PDAC. In conclusion, the inhibition of BADS99 phosphorylation enhances the efficacy of MEK inhibition, and their combined inhibition represents a mechanistically based and potentially effective therapeutic strategy for the treatment of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- Yan Qin Tan
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, 519087, Guangdong, People's Republic of China
| | - Bowen Sun
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Xi Zhang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Shuwei Zhang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Hui Guo
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India
| | - Tao Zhu
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
- Hefei National Laboratory for Physical Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China.
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
4
|
Pietrobono S, Sabbadini F, Bertolini M, Mangiameli D, De Vita V, Fazzini F, Lunardi G, Casalino S, Scarlato E, Merz V, Zecchetto C, Quinzii A, Di Conza G, Lahn M, Melisi D. Autotaxin Secretion Is a Stromal Mechanism of Adaptive Resistance to TGFβ Inhibition in Pancreatic Ductal Adenocarcinoma. Cancer Res 2024; 84:118-132. [PMID: 37738399 PMCID: PMC10758691 DOI: 10.1158/0008-5472.can-23-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/11/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
The TGFβ receptor inhibitor galunisertib demonstrated efficacy in patients with pancreatic ductal adenocarcinoma (PDAC) in the randomized phase II H9H-MC-JBAJ study, which compared galunisertib plus the chemotherapeutic agent gemcitabine with gemcitabine alone. However, additional stromal paracrine signals might confer adaptive resistance that limits the efficacy of this therapeutic strategy. Here, we found that autotaxin, a secreted enzyme that promotes inflammation and fibrosis by generating lysophosphatidic acid (LPA), mediates adaptive resistance to TGFβ receptor inhibition. Blocking TGFβ signaling prompted the skewing of cancer-associated fibroblasts (CAF) toward an inflammatory (iCAF) phenotype. iCAFs were responsible for a significant secretion of autotaxin. Paracrine autotaxin increased LPA-NFκB signaling in tumor cells that triggered treatment resistance. The autotaxin inhibitor IOA-289 suppressed NFκB activation in PDAC cells and overcame resistance to galunisertib and gemcitabine. In immunocompetent orthotopic murine models, IOA-289 synergized with galunisertib in restoring sensitivity to gemcitabine. Most importantly, treatment with galunisertib significantly increased plasma levels of autotaxin in patients enrolled in the H9H-MC-JBAJ study, and median progression-free survival was significantly longer in patients without an increase of autotaxin upon treatment with galunisertib compared with those with increased autotaxin. These results establish that autotaxin secretion by CAFs is increased by TGFβ inhibition and that circulating autotaxin levels predict response to the combination treatment approach of gemcitabine plus galunisertib. SIGNIFICANCE TGFβ inhibition skews cancer-associated fibroblasts toward an inflammatory phenotype that secretes autotaxin to drive adaptive resistance in PDAC, revealing autotaxin as a therapeutic target and biomarker of galunisertib response.
Collapse
Affiliation(s)
- Silvia Pietrobono
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Fabio Sabbadini
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Monica Bertolini
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Domenico Mangiameli
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Veronica De Vita
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Federica Fazzini
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Giulia Lunardi
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Simona Casalino
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Enza Scarlato
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Valeria Merz
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Camilla Zecchetto
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Alberto Quinzii
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | | | | | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
5
|
Grobbelaar C, Kgomo M, Mabeta P. Angiogenesis and Pancreatic Cancer: Novel Approaches to Overcome Treatment Resistance. Curr Cancer Drug Targets 2024; 24:1116-1127. [PMID: 38299403 DOI: 10.2174/0115680096284588240105051402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
Pancreatic cancer (PCa) is acknowledged as a significant contributor to global cancer- related mortality and is widely recognized as one of the most challenging malignant diseases to treat. Pancreatic ductal adenocarcinoma (PDAC), which is the most common type of PCa, is highly aggressive and is mostly incurable. The poor prognosis of this neoplasm is exacerbated by the prevalence of angiogenic molecules, which contribute to stromal stiffness and immune escape. PDAC overexpresses various proangiogenic proteins, including vascular endothelial growth factor (VEGF)-A, and the levels of these molecules correlate with poor prognosis and treatment resistance. Moreover, VEGF-targeting anti-angiogenesis treatments are associated with the onset of resistance due to the development of hypoxia, which in turn induces the production of angiogenic molecules. Furthermore, excessive angiogenesis is one of the hallmarks of the second most common form of PCa, namely, pancreatic neuroendocrine tumor (PNET). In this review, the role of angiogenesis regulators in promoting disease progression in PCa, and the impact of these molecules on resistance to gemcitabine and various therapies against PCa are discussed. Finally, the use of anti-angiogenic agents in combination with chemotherapy and other targeted therapeutic molecules is discussed as a novel solution to overcome current treatment limitations in PCa.
Collapse
Affiliation(s)
- Craig Grobbelaar
- Department of Physiology, University of Pretoria, CNR Lynnwood Road and Roper Street, Hatfield, 0028, South Africa
| | - Mpho Kgomo
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria, 9 Bophelo Road, Arcadia, CNR Lynnwood Road and Roper Street, Hatfield, 0028, South Africa
| | - Peace Mabeta
- Department of Physiology, University of Pretoria, CNR Lynnwood Road and Roper Street, Hatfield, 0028South Africa
| |
Collapse
|
6
|
Hasibuan PAZ, Keliat JM, Lubis MF, Nasution A. The ethyl acetate extract of Vernonia amygdalina leaf ameliorates gemcitabine effect against migration and invasion of PANC-1 cells via down-regulation the VEGF, COX 2, and RAS/MEK pathways. Saudi Pharm J 2024; 32:101872. [PMID: 38111670 PMCID: PMC10727942 DOI: 10.1016/j.jsps.2023.101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/12/2023] [Indexed: 12/20/2023] Open
Abstract
Individuals diagnosed with cancer often turn to the use of herbal remedies with the intention of treating and ameliorating the condition, impeding the progression of metastasis, enhancing immune function, mitigating stress, and inducing relaxation. Recently, medicinal plants were combined with conventional chemotherapy to decrease the side effects and increase the effectiveness of chemotherapy. This study showed the effectiveness of gemcitabine (Gem) was significantly increased after being used together with ethyl acetate extract obtained from Vernonia amygdalina (Eav) leaves. The combination doses of Eav and Gem were determined based on cytotoxic activity using the MTT assay method. The anticancer effect of this combination was identified by several parameters including the apoptosis effect, anti-migration, and anti-invasion activities of PANC-1 cells. Furthermore, this effect was explained via protein expression evaluation using immunohistochemical and flow cytometry. The Eav has a better Inhibitory Concentration 50 (IC50) than Gem of 21.19 ± 0.64 µg/mL and 164.78 ± 1.40 µg/mL. The combination of Eav and Gem at IC50 (1:1) has the strongest activity than Eav and Gem alone at 500.00 µg/mL. The anti-cancer effect of this combination showed significantly increased levels of apoptosis, particularly in the early phase of 17.46 ± 0.35 % (p < 0.0001) than Eav and Gem alone of 7.76 ± 0.25 % and 7.06 ± 0.20 %. A similar impact was evaluated in the migration and invasion of PANC-1 cells after the combination treatment. The % relative migration and cell invasion were significantly decreased compared to the control group and Eav or Gem alone by 21.49 ± 0.96 % and 125.25 ± 5.25 cells, respectively (p < 0.0001). This study found that signature molecules of VEGF, COX2, RAS, and MEK were down-regulated after treatment. Our study suggested that the Eav ameliorates the Gem effect against PANC-1 cells through apoptosis, migration, and invasion influence via RAS/MEK pathways.
Collapse
Affiliation(s)
| | - Jane Melita Keliat
- Department of Pharmaceutical and Food Analysis, Faculty of Vocational, Universitas Sumatera Utara, Indonesia
| | - Muhammad Fauzan Lubis
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Indonesia
| | - Annisa Nasution
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Indonesia
| |
Collapse
|
7
|
Kast V, Nadernezhad A, Pette D, Gabrielyan A, Fusenig M, Honselmann KC, Stange DE, Werner C, Loessner D. A Tumor Microenvironment Model of Pancreatic Cancer to Elucidate Responses toward Immunotherapy. Adv Healthc Mater 2023; 12:e2201907. [PMID: 36417691 PMCID: PMC11468239 DOI: 10.1002/adhm.202201907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/07/2022] [Indexed: 11/25/2022]
Abstract
Pancreatic cancer is a devastating malignancy with minimal treatment options. Standard-of-care therapy, including surgery and chemotherapy, is unsatisfactory, and therapies harnessing the immune system have been unsuccessful in clinical trials. Resistance to therapy and disease progression are mediated by the tumor microenvironment, which contains excessive amounts of extracellular matrix and stromal cells, acting as a barrier to drug delivery. There is a lack of preclinical pancreatic cancer models that reconstruct the extracellular, cellular, and biomechanical elements of tumor tissues to assess responses toward immunotherapy. To address this limitation and explore the effects of immunotherapy in combination with chemotherapy, a multicellular 3D cancer model using a star-shaped poly(ethylene glycol)-heparin hydrogel matrix is developed. Human pancreatic cancer cells, cancer-associated fibroblasts, and myeloid cells are grown encapsulated in hydrogels to mimic key components of tumor tissues, and cell responses toward treatment are assessed. Combining the CD11b agonist ADH-503 with anti-PD-1 immunotherapy and chemotherapy leads to a significant reduction in tumor cell viability, proliferation, metabolic activity, immunomodulation, and secretion of immunosuppressive and tumor growth-promoting cytokines.
Collapse
Affiliation(s)
- Verena Kast
- Leibniz Institute of Polymer Research Dresden e.VMax Bergmann Centre of BiomaterialsHohe Straße 601069DresdenGermany
| | - Ali Nadernezhad
- Leibniz Institute of Polymer Research Dresden e.VMax Bergmann Centre of BiomaterialsHohe Straße 601069DresdenGermany
| | - Dagmar Pette
- Leibniz Institute of Polymer Research Dresden e.VMax Bergmann Centre of BiomaterialsHohe Straße 601069DresdenGermany
| | - Anastasiia Gabrielyan
- Leibniz Institute of Polymer Research Dresden e.VMax Bergmann Centre of BiomaterialsHohe Straße 601069DresdenGermany
| | - Maximilian Fusenig
- Leibniz Institute of Polymer Research Dresden e.VMax Bergmann Centre of BiomaterialsHohe Straße 601069DresdenGermany
| | - Kim C. Honselmann
- Department of SurgeryUniversity Medical Center Schleswig‐Holstein, Campus Lübeck23562LübeckGermany
| | - Daniel E. Stange
- Department of Visceral, Thoracic and Vascular SurgeryUniversity Hospital Carl Gustav CarusMedical FacultyTechnical University Dresden01307DresdenGermany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden e.VMax Bergmann Centre of BiomaterialsHohe Straße 601069DresdenGermany
- Center for Regenerative Therapies DresdenTechnical University DresdenFetscherstr. 10501307DresdenGermany
| | - Daniela Loessner
- Leibniz Institute of Polymer Research Dresden e.VMax Bergmann Centre of BiomaterialsHohe Straße 601069DresdenGermany
- Department of Chemical and Biological Engineering and Department of Materials Science and EngineeringFaculty of EngineeringMonash UniversityMelbourneVIC3800Australia
- Department of Anatomy and Developmental BiologyBiomedicine Discovery InstituteFaculty of MedicineNursing and Health SciencesMonash UniversityMelbourneVIC3800Australia
| |
Collapse
|
8
|
Yan C, Niu Y, Li F, Zhao W, Ma L. System analysis based on the pyroptosis-related genes identifies GSDMC as a novel therapy target for pancreatic adenocarcinoma. J Transl Med 2022; 20:455. [PMID: 36199146 PMCID: PMC9533512 DOI: 10.1186/s12967-022-03632-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is one of the most common malignant tumors of the digestive tract. Pyroptosis is a newly discovered programmed cell death that highly correlated with the prognosis of tumors. However, the prognostic value of pyroptosis in PAAD remains unclear. Methods A total of 178 pancreatic cancer PAAD samples and 167 normal samples were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. The “DESeq2” R package was used to identify differntially expressed pyroptosis-related genes between normal pancreatic samples and PAAD samples. The prognostic model was established in TCGA cohort based on univariate Cox and the least absolute shrinkage and selection operator (LASSO) Cox regression analyses, which was validated in test set from Gene Expression Omnibus (GEO) cohort. Univariate independent prognostic analysis and multivariate independent prognostic analysis were used to determine whether the risk score can be used as an independent prognostic factor to predict the clinicopathological features of PAAD patients. A nomogram was used to predict the survival probability of PAAD patients, which could help in clinical decision-making. The R package "pRRophetic" was applied to calculate the drug sensitivity of each samples from high- and low-risk group. Tumor immune infiltration was investigated using an ESTIMATE algorithm. Finally, the pro‐tumor phenotype of GSDMC was explored in PANC-1 and CFPAC-1 cells. Result On the basis of univariate Cox and LASSO regression analyses, we constructed a risk model with identified five pyroptosis-related genes (IL18, CASP4, NLRP1, GSDMC, and NLRP2), which was validated in the test set. The PAAD samples were divided into high-risk and low-risk groups on the basis of the risk score's median. According to Kaplan Meier curve analysis, samples from high-risk groups had worse outcomes than those from low-risk groups. The time-dependent receiver operating characteristics (ROC) analysis revealed that the risk model could predict the prognosis of PAAD accurately. A nomogram accompanied by calibration curves was presented for predicting 1-, 2-, and 3-year survival in PAAD patients. More importantly, 4 small molecular compounds (A.443654, PD.173074, Epothilone. B, Lapatinib) were identified, which might be potential drugs for the treatment of PAAD patients. Finally, the depletion of GSDMC inhibits the proliferation, invasion, and migration of pancreatic adenocarcinoma cells. Conclusion In this study, we developed a pyroptosis-related prognostic model based on IL18, CASP4, NLRP1, NLRP2, and GSDMC , which may be helpful for clinicians to make clinical decisions for PAAD patients and provide valuable insights for individualized treatment. Our result suggest that GSDMC may promote the proliferation and migration of PAAD cell lines. These findings may provide new insights into the roles of pyroptosis-related genes in PAAD, and offer new therapeutic targets for the treatment of PAAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03632-z.
Collapse
Affiliation(s)
- Cheng Yan
- School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, 453000, Henan, China
| | - Yandie Niu
- School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, 453000, Henan, China
| | - Feng Li
- School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, 453000, Henan, China
| | - Wei Zhao
- School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, 453000, Henan, China
| | - Liukai Ma
- School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, 453000, Henan, China.
| |
Collapse
|
9
|
Topkan E, Selek U, Kucuk A, Pehlivan B. Low Pre-ChemoradiotherapyPan-Immune-Inflammation Value (PIV) Measures Predict Better Survival Outcomes in Locally Advanced Pancreatic Adenocarcinomas. J Inflamm Res 2022; 15:5413-5423. [PMID: 36158517 PMCID: PMC9499729 DOI: 10.2147/jir.s385328] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Abstract
Objective This study sought to determine whether pretreatment pan-immune-inflammation value (PIV) could be used to predict prognosis in patients with locally advanced pancreatic adenocarcinoma (LA-PAC) following definitive concurrent chemoradiotherapy (C-CRT). Methods The outcomes of 178 LA-PAC patients who received definitive C-CRT were analyzed retrospectively. For all patients, the PIV was calculated using the peripheral blood platelet (P), monocyte (M), neutrophil (N), and lymphocyte (L) counts obtained on the first day of C-CRT: PIV=P×M×N÷L. The optimum cutoff values for PIV connected to progression-free (PFS) and overall survival (OS) results were sought using receiver operating characteristic (ROC) curve analysis. The OS and PFS differences between the PIV groups constituted the primary and secondary endpoints, respectively. Results ROC curve analysis indicated that the ideal PIV cutoff was 464 (AUC: 75.9%, sensitivity: 74.1%, specificity: 71.9%), which categorized patients into two groups based on PFS and OS results: low PIV (L-PIV; N = 69) and high PIV (H-PIV; N = 109). According to comparative survival analyses, patients in the L-PIV group had significantly longer median PFS (14.3 vs 7.3 months; HR: 3.04; P<0.001) and OS (25.9 vs 13.3 months; HR: 2.86; P<0.001) than those in the H-PIV group. Although none of the H-PIV patients could survive beyond 5 years, the estimated 5-year OS rate was 29.7% in the L-PIV cohort. In multivariate analyses, besides the L-PIV, N0 nodal stage, and CA 19-9 ≤ 90 U/mL appeared to be the independent predictors of better PFS (P < 0.05 for each) and OS (P < 0.05 for each) results. Conclusion The present results indicated that pre-C-CRT L-PIV measures were associated with favorable median and long-term PFS and OS results in LA-PAC patients, suggesting that the PIV is a potent and independent novel prognostic biomarker.
Collapse
Affiliation(s)
- Erkan Topkan
- Department of Radiation Oncology, Baskent University Medical Faculty, Adana, Turkey
| | - Ugur Selek
- Department of Radiation Oncology, Koc University School of Medicine, Istanbul, Turkey
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmet Kucuk
- Clinic of Radiation Oncology, Mersin Education and Research Hospital, Mersin, Turkey
| | - Berrin Pehlivan
- Department of Radiation Oncology, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
10
|
Wasik A, Ratajczak-Wielgomas K, Badzinski A, Dziegiel P, Podhorska-Okolow M. The Role of Periostin in Angiogenesis and Lymphangiogenesis in Tumors. Cancers (Basel) 2022; 14:cancers14174225. [PMID: 36077762 PMCID: PMC9454705 DOI: 10.3390/cancers14174225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Cancers are common diseases that affect people of all ages worldwide. For this reason, continuous attempts are being made to improve current therapeutic options. The formation of metastases significantly decreases patient survival. Therefore, understanding the mechanisms that are involved in this process seems to be crucial for effective cancer therapy. Cancer dissemination occurs mainly through blood and lymphatic vessels. As a result, many scientists have conducted a number of studies on the formation of new vessels. Many studies have shown that proangiogenic factors and the extracellular matrix protein, i.e., periostin, may be important in tumor angio- and lymphangiogenesis, thus contributing to metastasis formation and worsening of the prognosis. Abstract Periostin (POSTN) is a protein that is part of the extracellular matrix (ECM) and which significantly affects the control of intracellular signaling pathways (PI3K-AKT, FAK) through binding integrin receptors (αvβ3, αvβ5, α6β4). In addition, increased POSTN expression enhances the expression of VEGF family growth factors and promotes Erk phosphorylation. As a result, this glycoprotein controls the Erk/VEGF pathway. Therefore, it plays a crucial role in the formation of new blood and lymphatic vessels, which may be significant in the process of metastasis. Moreover, POSTN is involved in the proliferation, progression, migration and epithelial-mesenchymal transition (EMT) of tumor cells. Its increased expression has been detected in many cancers, including breast cancer, ovarian cancer, non-small cell lung carcinoma and glioblastoma. Many studies have shown that this protein may be an independent prognostic and predictive factor in many cancers, which may influence the choice of optimal therapy.
Collapse
Affiliation(s)
- Adrian Wasik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Correspondence:
| | - Arkadiusz Badzinski
- Silesian Nanomicroscopy Center, Silesia LabMed: Research and Implementation Center, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Human Biology, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Marzenna Podhorska-Okolow
- Department of Human Biology, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
- Department of Ultrastructural Research, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
11
|
Merz V, Mangiameli D, Zecchetto C, Quinzii A, Pietrobono S, Messina C, Casalino S, Gaule M, Pesoni C, Vitale P, Trentin C, Frisinghelli M, Caffo O, Melisi D. Predictive Biomarkers for a Personalized Approach in Resectable Pancreatic Cancer. Front Surg 2022; 9:866173. [PMID: 35599791 PMCID: PMC9114435 DOI: 10.3389/fsurg.2022.866173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022] Open
Abstract
The mainstay treatment for patients with immediate resectable pancreatic cancer remains upfront surgery, which represents the only potentially curative strategy. Nevertheless, the majority of patients surgically resected for pancreatic cancer experiences disease relapse, even when a combination adjuvant therapy is offered. Therefore, aiming at improving disease free survival and overall survival of these patients, there is an increasing interest in evaluating the activity and efficacy of neoadjuvant and perioperative treatments. In this view, it is of utmost importance to find biomarkers able to select patients who may benefit from a preoperative therapy rather than upfront surgical resection. Defined genomic alterations and a dynamic inflammatory microenvironment are the major culprits for disease recurrence and resistance to chemotherapeutic treatments in pancreatic cancer patients. Signal transduction pathways or tumor immune microenvironment could predict early recurrence and response to chemotherapy. In the last decade, distinct molecular subtypes of pancreatic cancer have been described, laying the bases to a tailored therapeutic approach, started firstly in the treatment of advanced disease. Patients with homologous repair deficiency, in particular with mutant germline BRCA genes, represent the first subgroup demonstrating to benefit from specific therapies. A fraction of patients with pancreatic cancer could take advantage of genome sequencing with the aim of identifying possible targetable mutations. These genomic driven strategies could be even more relevant in a potentially curative setting. In this review, we outline putative predictive markers that could help in the next future in tailoring the best therapeutic strategy for pancreatic cancer patients with a potentially curable disease.
Collapse
Affiliation(s)
- Valeria Merz
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, Verona, Italy
| | - Domenico Mangiameli
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, Verona, Italy
| | - Camilla Zecchetto
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Alberto Quinzii
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Silvia Pietrobono
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, Verona, Italy
| | | | - Simona Casalino
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Marina Gaule
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Camilla Pesoni
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | | | - Chiara Trentin
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
| | | | - Orazio Caffo
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
| | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, Verona, Italy
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
12
|
Zhao L, Zhou Y, Bai Z, Zhang F, Yang X. The underlying molecular mechanism of intratumoral radiofrequency hyperthermia-enhanced chemotherapy of pancreatic cancer. J Interv Med 2022; 5:57-63. [PMID: 35936663 PMCID: PMC9349012 DOI: 10.1016/j.jimed.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Background To investigate the underlying molecular mechanisms of radiofrequency hyperthermia (RFH)-enhanced direct chemotherapy of pancreatic cancers. Method Rat ductal PaCa cell line DSL-6A/C1 and orthotopic pancreatic cancers of Lewis rats were divided into four study groups with various treatments: i) phosphate-buffered saline (PBS) as a control; ii) RFH alone; iii) intratumoral chemotherapy alone (gemcitabine); and (iv) combination therapy of gemcitabine plus intratumoral RFH at 42 °C for 30 min. In the in-vitro confirmation experiments, the viability and apoptosis of DSL-6A/C1 cells in each treatment group were evaluated using cell live/dead staining, flow cytometry, and Western blot. In the in vivo validation experiments, related proteins were evaluated by immunohistochemistry (IHC) staining of tumors. Results Of the in-vitro experiments, the lowest cell viability and more apoptotic cells were shown in the group with combination therapy compared to other treatments. Western blot data showed elevated Bax/Bcl-2, Caspase-3, and HSP70 expressions in DSL cells with combination therapy, compared to other treatments. Of the in vivo experiments, IHC staining detected the significantly increased expressions of HSP70, IL-1β, TNF-ɑ, Bax, and Caspase-3 in pancreatic cancer tissues of the animal group treated by combination therapy of gemcitabine with RFH. Conclusion Molecular imaging-guided interventional RFH can significantly enhance the chemotherapeutic effect on pancreatic cancers via potential molecular mechanisms of up-regulating Bax/caspase-3-dependent apoptosis pathways.
Collapse
|
13
|
Pekarek L, Fraile-Martinez O, Garcia-Montero C, Saez MA, Barquero-Pozanco I, Del Hierro-Marlasca L, de Castro Martinez P, Romero-Bazán A, Alvarez-Mon MA, Monserrat J, García-Honduvilla N, Buján J, Alvarez-Mon M, Guijarro LG, Ortega MA. Clinical Applications of Classical and Novel Biological Markers of Pancreatic Cancer. Cancers (Basel) 2022; 14:1866. [PMID: 35454771 PMCID: PMC9029823 DOI: 10.3390/cancers14081866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
The incidence and prevalence of pancreatic adenocarcinoma have increased in recent years. Pancreatic cancer is the seventh leading cause of cancer death, but it is projected to become the second leading cause of cancer-related mortality by 2040. Most patients are diagnosed in an advanced stage of the disease, with very limited 5-year survival. The discovery of different tissue markers has elucidated the underlying pathophysiology of pancreatic adenocarcinoma and allowed stratification of patient risk at different stages and assessment of tumour recurrence. Due to the invasive capacity of this tumour and the absence of screening markers, new immunohistochemical and serological markers may be used as prognostic markers for recurrence and in the study of possible new therapeutic targets because the survival of these patients is low in most cases. The present article reviews the currently used main histopathological and serological markers and discusses the main characteristics of markers under development.
Collapse
Affiliation(s)
- Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Ines Barquero-Pozanco
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Laura Del Hierro-Marlasca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Patricia de Castro Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Adoración Romero-Bazán
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
14
|
Yang C, Wang X, Qiu C, Zheng Z, Lin K, Tu M, Zhang K, Jiang K, Gao W. Identification of FEZ2 as a potential oncogene in pancreatic ductal adenocarcinoma. PeerJ 2022; 9:e12736. [PMID: 35036176 PMCID: PMC8742541 DOI: 10.7717/peerj.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/12/2021] [Indexed: 12/02/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the common malignant tumors with high lethal rate and poor prognosis. Dysregulation of many genes have been reported to be involved in the occurrence and development of PDAC. However, as a highly conserved gene in eukaryotes, the role of Fasciculation and Elongation protein Zeta 2 (FEZ2) in pancreatic cancer progression is not clear. In this study, we identified the oncogenic effect of FEZ2 on PDAC. By mining of The Cancer Genome Atlas (TCGA) database, we found that FEZ2 was upregulated in PDAC tissues and FEZ2 expression was negatively regulated by its methylation. Moreover, high expression and low methylation of FEZ2 correlated with poor prognosis in PDAC patients. Besides, we found that FEZ2 could promote PDAC cells proliferation, migration and 5-FU resistance in vitro. Furthermore, Gene pathway enrichment analysis demonstrated a positive correlation between Wnt signaling activation and FEZ2 expression in PDAC patients. Western blot showed that FEZ2 knockdown significantly suppressed β-catenin expression. Collectively, our finding revealed that FEZ2 functioned as a potential oncogene on PDAC progression and migration, and the expression of FEZ2 had guidance value for the treatment and chemotherapy program of PDAC patients.
Collapse
Affiliation(s)
- Chaozhi Yang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuebing Wang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chenjie Qiu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ziruo Zheng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kai Lin
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Min Tu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kai Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wentao Gao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
15
|
Mitola G, Falvo P, Bertolini F. New Insight to Overcome Tumor Resistance: An Overview from Cellular to Clinical Therapies. Life (Basel) 2021; 11:1131. [PMID: 34833007 PMCID: PMC8621237 DOI: 10.3390/life11111131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022] Open
Abstract
Disease relapse caused by drug resistance still represents a major clinical hurdle in cancer treatments. Tumor cells may take advantage of different intracellular and genetic systems attenuating the drug effects. Resistant cells or minimal residual disease (MRD) cells have strong clinical relevance, as they might give rise to secondary tumors when the therapy is concluded. Thus, MRDs are crucial therapeutic targets in order to prevent tumor relapse. Therefore, several groups aim at understanding how MRDs are orginated, characterizing their molecular features, and eradicating them. In this review, we will describe MRD from a genetic, evolutionary, and molecular point of view. Moreover, we will focus on the new in vitro, in vivo, preclinical, and clinical studies that aim at eradicating tumor resistance.
Collapse
Affiliation(s)
| | | | - Francesco Bertolini
- Laboratory of Hematology-Oncology, IEO European Institute of Oncology IRCCS, 16, 20139 Milan, Italy;
| |
Collapse
|
16
|
Merz V, Gaule M, Zecchetto C, Cavaliere A, Casalino S, Pesoni C, Contarelli S, Sabbadini F, Bertolini M, Mangiameli D, Milella M, Fedele V, Melisi D. Targeting KRAS: The Elephant in the Room of Epithelial Cancers. Front Oncol 2021; 11:638360. [PMID: 33777798 PMCID: PMC7991835 DOI: 10.3389/fonc.2021.638360] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations of the proto-oncogene KRAS are the most frequent gain-of-function alterations found in cancer. KRAS is mutated in about 30% of all human tumors, but it could reach more than 90% in certain cancer types such as pancreatic adenocarcinoma. Although historically considered to be undruggable, a particular KRAS mutation, the G12C variant, has recently emerged as an actionable alteration especially in non-small cell lung cancer (NSCLC). KRASG12C and pan-KRAS inhibitors are being tested in clinical trials and have recently shown promising activity. Due to the difficulties in direct targeting of KRAS, other approaches are being explored. The inhibition of target upstream activators or downstream effectors of KRAS pathway has shown to be moderately effective given the evidence of emerging mechanisms of resistance. Various synthetic lethal partners of KRAS have recently being identified and the inhibition of some of those might prove to be successful in the future. The study of escape mechanisms to KRAS inhibition could support the utility of combination strategies in overcoming intrinsic and adaptive resistance and enhancing clinical benefit of KRASG12C inhibitors. Considering the role of the microenvironment in influencing tumor initiation and promotion, the immune tumor niche of KRAS mutant tumors has been deeply explored and characterized for its unique immunosuppressive skewing. However, a number of aspects remains to be fully understood, and modulating this tumor niche might revert the immunoresistance of KRAS mutant tumors. Synergistic associations of KRASG12C and immune checkpoint inhibitors are being tested.
Collapse
Affiliation(s)
- Valeria Merz
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
| | - Marina Gaule
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Camilla Zecchetto
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Alessandro Cavaliere
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Simona Casalino
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Camilla Pesoni
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Serena Contarelli
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Fabio Sabbadini
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Monica Bertolini
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Domenico Mangiameli
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Michele Milella
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Vita Fedele
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| |
Collapse
|
17
|
Nguyen MTT, Nguyen HX, Dang PH, Le TH, Do TNV, Omar AM, Awale S, Nguyen NT. Panduratins Q-Y, dimeric metabolites from Boesenbergia rotunda and their antiausterity activities against the PANC-1 human pancreatic cancer cell line. PHYTOCHEMISTRY 2021; 183:112646. [PMID: 33421887 DOI: 10.1016/j.phytochem.2020.112646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
A methanolic extract of the rhizomes of Boesenbergia rotunda showed potent preferential cytotoxicity against PANC-1 human pancreatic cancer cells under nutrient deficiency conditions with a PC50 value of 6.6 μg/mL. Bioactivity-guided phytochemical investigation of the rhizomes of B. rotunda led to the isolation of nine undescribed dimeric metabolites, panduratins Q-Y. Their structures were elucidated based on NMR, MS, and ECD spectroscopic data interpretation. Panduratins Q-S and U-W exhibited potent cytotoxicity towards PANC-1 cell line with the PC50 values ranging from 0.8 to 6.3 μM. Panduratin W, which possessed a cyclohexenylchalcone-linked flavanone skeleton, showed the most cytotoxicity with a PC50 value of 0.8 μM under nutrient-deprived medium.
Collapse
Affiliation(s)
- Mai T T Nguyen
- Faculty of Chemistry, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Viet Nam; Cancer Research Laboratory, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Viet Nam; Vietnam National University, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Hai X Nguyen
- Faculty of Chemistry, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Viet Nam; Vietnam National University, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Phu H Dang
- Faculty of Chemistry, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Viet Nam; Vietnam National University, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Tho H Le
- Faculty of Chemistry, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Viet Nam; Vietnam National University, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Truong N V Do
- Faculty of Chemistry, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Viet Nam; Vietnam National University, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Ashraf M Omar
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Suresh Awale
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Nhan T Nguyen
- Faculty of Chemistry, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Viet Nam; Cancer Research Laboratory, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Viet Nam; Vietnam National University, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
18
|
Tasaki Y, Suzuki M, Katsushima K, Shinjo K, Iijima K, Murofushi Y, Naiki-Ito A, Hayashi K, Qiu C, Takahashi A, Tanaka Y, Kawaguchi T, Sugawara M, Kataoka T, Naito M, Miyata K, Kataoka K, Noda T, Gao W, Kataoka H, Takahashi S, Kimura K, Kondo Y. Cancer-Specific Targeting of Taurine-Upregulated Gene 1 Enhances the Effects of Chemotherapy in Pancreatic Cancer. Cancer Res 2021; 81:1654-1666. [PMID: 33648930 DOI: 10.1158/0008-5472.can-20-3021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/13/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
Overcoming drug resistance is one of the biggest challenges in cancer chemotherapy. In this study, we examine whether targeting the long noncoding RNA taurine upregulated gene 1 (TUG1) could be an effective therapeutic approach to overcome drug resistance in pancreatic ductal adenocarcinoma (PDAC). TUG1 was expressed at significantly higher levels across 197 PDAC tissues compared with normal pancreatic tissues. Overall survival of patients with PDAC who had undergone 5-FU-based chemotherapy was shorter in high TUG1 group than in low TUG1 group. Mechanistically, TUG1 antagonized miR-376b-3p and upregulated dihydropyrimidine dehydrogenase (DPD). TUG1 depletion induced susceptibility to 5-FU in BxPC-3 and PK-9 pancreatic cell lines. Consistently, the cellular concentration of 5-FU was significantly higher under TUG1-depleted conditions. In PDAC xenograft models, intravenous treatment with a cancer-specific drug delivery system (TUG1-DDS) and 5-FU significantly suppressed PDAC tumor growth compared with 5-FU treatment alone. This novel approach using TUG1-DDS in combination with 5-FU may serve as an effective therapeutic option to attenuate DPD activity and meet appropriate 5-FU dosage requirements in targeted PDAC cells, which can reduce the systemic adverse effects of chemotherapy. SIGNIFICANCE: Targeting TUG1 coupled with a cancer-specific drug delivery system effectively modulates 5-FU catabolism in TUG1-overexpressing PDAC cells, thus contributing to a new combinatorial strategy for cancer treatment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/7/1654/F1.large.jpg.
Collapse
Affiliation(s)
- Yoshihiko Tasaki
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Department of Clinical Pharmaceutics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Miho Suzuki
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keisuke Katsushima
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenta Iijima
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshiteru Murofushi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Kazuki Hayashi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Chenjie Qiu
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, P.R. China
| | - Akiko Takahashi
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Yoko Tanaka
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tokuichi Kawaguchi
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Minoru Sugawara
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomoya Kataoka
- Department of Clinical Pharmaceutics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan.,Institute for Future Initiatives, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tetsuo Noda
- Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Wentao Gao
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, P.R. China
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Kazunori Kimura
- Department of Clinical Pharmaceutics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|
19
|
Nguyen MTT, Nguyen HX, Le TH, Do TNV, Dang PH, Pham TV, Giang TTM, Sun S, Kim MJ, Tawila AM, Omar AM, Awale S, Nguyen NT. A new flavanone derivative from the rhizomes of Boesenbergia pandurata. Nat Prod Res 2020; 36:1959-1965. [DOI: 10.1080/14786419.2020.1837822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mai Thanh Thi Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Cancer Research Laboratory, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hai Xuan Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tho Huu Le
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Truong Nhat Van Do
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phu Hoang Dang
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tung Van Pham
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Truc Thanh Minh Giang
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Sijia Sun
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Min Jo Kim
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Ahmed M. Tawila
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Ashraf M. Omar
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Suresh Awale
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Nhan Trung Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Cancer Research Laboratory, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
20
|
Antimicrobial Peptides as New Combination Agents in Cancer Therapeutics: A Promising Protocol against HT-29 Tumoral Spheroids. Int J Mol Sci 2020; 21:ijms21186964. [PMID: 32971958 PMCID: PMC7555805 DOI: 10.3390/ijms21186964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides are molecules synthetized by a large variety of organisms as an innate defense against pathogens. These natural compounds have been identified as promising alternatives to widely used molecules to treat infections and cancer cells. Antimicrobial peptides could be viewed as future chemotherapeutic alternatives, having the advantage of low propensity to drug resistance. In this study, we evaluated the efficiency of the antimicrobial peptide gramicidin A (GA) and the anticancer drug, doxorubicin (Doxo) against the spheroids from colorectal cancer cells (HT-29). The two drugs were applied separately against HT-29 spheroids as well as together to determine if they can act synergistically. The spheroid evolution, cell viability, and ATP levels were monitored at 24 and 48 h after the applied treatments. The results show significant drops in cell viability and cellular ATP levels for all the experimental treatments. The simultaneous use of the two compounds (GA and Doxo) seems to cause a synergistic effect against the spheroids.
Collapse
|
21
|
Zheng L, Zhang B, He X, Cao G, Li Y, Cai K, Yang B, Wu Y. A New Fusion Peptide Targeting Pancreatic Cancer and Inhibiting Tumor Growth. Onco Targets Ther 2020; 13:7865-7875. [PMID: 32884283 PMCID: PMC7434629 DOI: 10.2147/ott.s246969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/26/2020] [Indexed: 11/23/2022] Open
Abstract
Background Pancreatic cancer is a highly malignant tumor of the digestive system. Early pancreatic cancer is often difficult to diagnosis due to its atypical clinical symptoms. Patients with pancreatic cancer have a very poor prognosis because they have lost the opportunity for radical surgical tumor resection and they are less sensitive to the clinically used radiotherapy and chemotherapy. Methods In this study, a peptide targeting pancreatic cancer cells was screened by phage display technology, and its targeting property was evaluated in vitro using PANC1 cells by fluorescence imaging and flow cytometry. Furthermore, the targeting peptide was conjugated to the pro-apoptotic KLAKLAKKLAKLAK (KLA), the fusion peptide and its targeting ability that allowing KLA to specifically enter pancreatic tumor cells in vitro and in vivo was confirmed by fluorescence imaging and in vivo imaging system (IVIS). Its mechanism was determined using flow cytometry, mitochondrial membrane potential evaluation and Western blot. The inhibitory effect on pancreatic tumor growth and toxic effects were evaluated by animal experiment. Results Due to the internalization facilitated by the targeting mechanism of the targeting peptide, KLA specifically entered pancreatic cancer cells, destroyed mitochondria and induced apoptosis. The fusion peptide and its targeting ability that allowing KLA to specifically enter pancreatic tumor cells and exert a significant inhibitory effect on pancreatic tumor growth with reduced toxic effects. Conclusion This approach possesses potential advantages in the clinical diagnosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, People's Republic of China
| | - Bo Zhang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, People's Republic of China.,Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, People's Republic of China
| | - Xiaoman He
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, People's Republic of China
| | - Guodong Cao
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, People's Republic of China
| | - Yongzhou Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, People's Republic of China
| | - Kailun Cai
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, People's Republic of China
| | - Bin Yang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, People's Republic of China.,Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, People's Republic of China
| | - Yulian Wu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, People's Republic of China.,Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, People's Republic of China
| |
Collapse
|
22
|
Simionato F, Zecchetto C, Merz V, Cavaliere A, Casalino S, Gaule M, D'Onofrio M, Malleo G, Landoni L, Esposito A, Marchegiani G, Casetti L, Tuveri M, Paiella S, Scopelliti F, Giardino A, Frigerio I, Regi P, Capelli P, Gobbo S, Gabbrielli A, Bernardoni L, Fedele V, Rossi I, Piazzola C, Giacomazzi S, Pasquato M, Gianfortone M, Milleri S, Milella M, Butturini G, Salvia R, Bassi C, Melisi D. A phase II study of liposomal irinotecan with 5-fluorouracil, leucovorin and oxaliplatin in patients with resectable pancreatic cancer: the nITRO trial. Ther Adv Med Oncol 2020; 12:1758835920947969. [PMID: 33403007 PMCID: PMC7745557 DOI: 10.1177/1758835920947969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Up-front surgery followed by postoperative chemotherapy remains the standard paradigm for the treatment of patients with resectable pancreatic cancer. However, the risk for positive surgical margins, the poor recovery after surgery that often impairs postoperative treatment, and the common metastatic relapse limit the overall clinical outcomes achieved with this strategy. Polychemotherapeutic combinations are valid options for postoperative treatment in patients with good performance status. liposomal irinotecan (Nal-IRI) is a novel nanoliposome formulation of irinotecan that accumulates in tumor-associated macrophages improving the therapeutic index of irinotecan and has been approved for the treatment of patients with metastatic pancreatic cancer after progression under gemcitabine-based therapy. Thus, it remains of the outmost urgency to investigate introduction of the most novel agents, such as nal-IRI, in perioperative approaches aimed at increasing the long-term effectiveness of surgery. Methods: The nITRO trial is a phase II, single-arm, open-label study to assess the safety and the activity of nal-IRI with fluorouracil/leucovorin (5-FU/LV) and oxaliplatin in the perioperative treatment of patients with resectable pancreatic cancer. The primary tumor must be resectable with no involvement of the major arteries and no involvement or <180° interface between tumor and vessel wall of the major veins. A total of 72 patients will be enrolled to receive a perioperative treatment of three cycles before and three cycles after surgical resection with nal-IRI 50 mg/m2, oxaliplatin 60 mg/m2, leucovorin 200 mg/m2, and 5-fluorouracil 2400 mg/m2, days 1 and 15 of a 28-day cycle. The primary objective is to improve from 40% to 55% the proportion of patients achieving R0 resection after preoperative treatment. Discussion: The nITRO trial will contribute to strengthen the clinical evidence supporting perioperative strategies in resectable pancreatic cancer patients. Moreover, this study represents a unique opportunity for translational analyses aimed to identify novel immune-related prognostic and predictive factors in this setting. Trial registration Clinicaltrial.gov: NCT03528785. Trial registration data: 1 January 2018 Protocol number: CRC 2017_01 EudraCT Number: 2017-000345-46
Collapse
Affiliation(s)
- Francesca Simionato
- Digestive Molecular Clinical Oncology Unit, Section of Medical Oncology, Department of Medicine, University of Verona, Verona, Italy
| | - Camilla Zecchetto
- Digestive Molecular Clinical Oncology Unit, Section of Medical Oncology, Department of Medicine, University of Verona, Verona, Italy
| | - Valeria Merz
- Digestive Molecular Clinical Oncology Unit, Section of Medical Oncology, Department of Medicine, University of Verona, Verona, Italy
| | - Alessandro Cavaliere
- Digestive Molecular Clinical Oncology Unit, Section of Medical Oncology, Department of Medicine, University of Verona, Verona, Italy
| | - Simona Casalino
- Digestive Molecular Clinical Oncology Unit, Section of Medical Oncology, Department of Medicine, University of Verona, Verona, Italy
| | - Marina Gaule
- Digestive Molecular Clinical Oncology Unit, Section of Medical Oncology, Department of Medicine, University of Verona, Verona, Italy
| | - Mirko D'Onofrio
- Department of Radiology, University and Hospital Trust of Verona, Verona, Italy
| | - Giuseppe Malleo
- Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Landoni
- Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Alessandro Esposito
- Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | | | - Luca Casetti
- Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Massimiliano Tuveri
- Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Salvatore Paiella
- Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Filippo Scopelliti
- Department of Surgery, Pancreatic Surgery Unit, Hospital P. Pederzoli, Peschiera del Garda, Italy
| | - Alessandro Giardino
- Department of Surgery, Pancreatic Surgery Unit, Hospital P. Pederzoli, Peschiera del Garda, Italy
| | - Isabella Frigerio
- Department of Surgery, Pancreatic Surgery Unit, Hospital P. Pederzoli, Peschiera del Garda, Italy
| | - Paolo Regi
- Department of Surgery, Pancreatic Surgery Unit, Hospital P. Pederzoli, Peschiera del Garda, Italy
| | - Paola Capelli
- Department of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Stefano Gobbo
- Department of Pathology, Hospital P. Pederzoli, Peschiera del Garda, Italy
| | | | - Laura Bernardoni
- Endoscopy Unit, University and Hospital Trust of Verona, Verona, Italy
| | - Vita Fedele
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Irene Rossi
- Centro Ricerche Cliniche di Verona, University and Hospital Trust of Verona, Verona, Italy
| | - Cristiana Piazzola
- Centro Ricerche Cliniche di Verona, University and Hospital Trust of Verona, Verona, Italy
| | - Serena Giacomazzi
- Centro Ricerche Cliniche di Verona, University and Hospital Trust of Verona, Verona, Italy
| | - Martina Pasquato
- Centro Ricerche Cliniche di Verona, University and Hospital Trust of Verona, Verona, Italy
| | - Morena Gianfortone
- Centro Ricerche Cliniche di Verona, University and Hospital Trust of Verona, Verona, Italy
| | - Stefano Milleri
- Centro Ricerche Cliniche di Verona, University and Hospital Trust of Verona, Verona, Italy
| | - Michele Milella
- Medical Oncology Unit, University and Hospital Trust of Verona, Verona, Italy
| | - Giovanni Butturini
- Department of Surgery, Pancreatic Surgery Unit, Hospital P. Pederzoli, Peschiera del Garda, Italy
| | - Roberto Salvia
- Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Claudio Bassi
- Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Davide Melisi
- Digestive Molecular Clinical Oncology Unit, Section of Medical Oncology, Department of Medicine, University of Verona, AOUI Verona - Policlinico "G.B. Rossi", Piazzale L.A. Scuro, 10, Verona 37134, Italy
| |
Collapse
|
23
|
Liu Z, Ahn MHY, Kurokawa T, Ly A, Zhang G, Wang F, Yamada T, Sadagopan A, Cheng J, Ferrone CR, Liss AS, Honselmann KC, Wojtkiewicz GR, Ferrone S, Wang X. A fast, simple, and cost-effective method of expanding patient-derived xenograft mouse models of pancreatic ductal adenocarcinoma. J Transl Med 2020; 18:255. [PMID: 32580742 PMCID: PMC7315507 DOI: 10.1186/s12967-020-02414-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) mouse models of cancer have been recognized as better mouse models that recapitulate the characteristics of original malignancies including preserved tumor heterogeneity, lineage hierarchy, and tumor microenvironment. However, common challenges of PDX models are the significant time required for tumor expansion, reduced tumor take rates, and higher costs. Here, we describe a fast, simple, and cost-effective method of expanding PDX of pancreatic ductal adenocarcinoma (PDAC) in mice. METHODS We used two established frozen PDAC PDX tissues (derived from two different patients) and implanted them subcutaneously into SCID mice. After tissues reached 10-20 mm in diameter, we performed survival surgery on each mouse to harvest 90-95% of subcutaneous PDX (incomplete resection), allowing the remaining 5-10% of PDX to continue growing in the same mouse. RESULTS We expanded three consecutive passages (P1, P2, and P3) of PDX in the same mouse. Comparing the times required for in vivo expansion, P2 and P3 (expanded through incomplete resection) grew 26-60% faster than P1. Moreover, such expanded PDX tissues were successfully implanted orthotopically into mouse pancreases. Within 20 weeks using only 14 mice, we generated sufficient PDX tissue for future implantation of 200 mice. Our histology study confirmed that the morphologies of cancer cells and stromal structures were similar across all three passages of subcutaneous PDX and the orthotopic PDX and were reflective of the original patient tumors. CONCLUSIONS Taking advantage of incomplete resection of tumors associated with high local recurrence, we established a fast method of PDAC PDX expansion in mice.
Collapse
Affiliation(s)
- Zhenyang Liu
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Gastroenterology and Urology and of Medical Oncology, Hunan Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Michael Ho-Young Ahn
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomohiro Kurokawa
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gong Zhang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fuyou Wang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Teppei Yamada
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ananthan Sadagopan
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jane Cheng
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of General and Gastrointestinal Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew S Liss
- Division of General and Gastrointestinal Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kim C Honselmann
- Division of General and Gastrointestinal Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory R Wojtkiewicz
- Mouse Imaging Program, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinhui Wang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Nguyen MTT, Nguyen KDH, Dang PH, Nguyen HX, Awale S, Nguyen NT. A new cytotoxic cardenolide from the roots of Calotropis gigantea. Nat Prod Res 2020; 35:5096-5101. [PMID: 32571094 DOI: 10.1080/14786419.2020.1781114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Bioactivity-guided isolation of the CHCl3-soluble fraction of the roots of Calotropis gigantea was carried out to obtain a new cardenolide glycoside, caloside G. Its absolute structure was elucidated based on NMR and ECD spectroscopic data interpretation. Caloside G showed noteworthy cytotoxicity against the PANC-1 human pancreatic and HeLa human cervical carcinoma cell lines, with the submicromolar IC50 values of 0.038 and 0.09 µM, respectively.
Collapse
Affiliation(s)
- Mai T T Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.,Cancer Research Laboratory, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Khang D H Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phu H Dang
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hai X Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Suresh Awale
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Nhan T Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.,Cancer Research Laboratory, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
25
|
Plasma IL8 Is a Biomarker for TAK1 Activation and Predicts Resistance to Nanoliposomal Irinotecan in Patients with Gemcitabine-Refractory Pancreatic Cancer. Clin Cancer Res 2020; 26:4661-4669. [DOI: 10.1158/1078-0432.ccr-20-0395] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/25/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022]
|
26
|
Yan Q, Hu D, Li M, Chen Y, Wu X, Ye Q, Wang Z, He L, Zhu J. The Serum MicroRNA Signatures for Pancreatic Cancer Detection and Operability Evaluation. Front Bioeng Biotechnol 2020; 8:379. [PMID: 32411694 PMCID: PMC7201024 DOI: 10.3389/fbioe.2020.00379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer (PC) has high morbidity and mortality. It is the fourth leading cause of cancer death. Its diagnosis and treatment are difficult. Liquid biopsy makes early diagnosis of pancreatic cancer possible. We analyzed the expression profiles of 2,555 serum miRNAs in 100 pancreatic cancer patients and 150 healthy controls. With advanced feature selection methods, we identified 13 pancreatic cancer signature miRNAs that can classify the pancreatic cancer patients and healthy controls. For pancreatic cancer treatment, operation is still the first choice. But many pancreatic cancer patients are already inoperable. Therefore, we compared the 79 inoperable and 21 operable patients and identified 432 miRNAs that can predict whether a pancreatic cancer patient was operable. The functional analysis of the 13 pancreatic cancer signatures and the 432 operability miRNAs revealed the molecular mechanisms of pancreatic cancer and shield light on the diagnosis and therapy of pancreatic cancer in clinical practice.
Collapse
Affiliation(s)
- Qiuliang Yan
- Department of General Surgery, Jinhua People's Hospital, Jinhua, China
| | - Dandan Hu
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Maolan Li
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Chen
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinghuang Ye
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijiang Wang
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingzhe He
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinhui Zhu
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Saravanan S, Vimalraj S, Pavani K, Nikarika R, Sumantran VN. Intussusceptive angiogenesis as a key therapeutic target for cancer therapy. Life Sci 2020; 252:117670. [PMID: 32298741 DOI: 10.1016/j.lfs.2020.117670] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
Abstract
Deregulation of angiogenesis is a key reason for tumor growth and progression. Several anti-angiogenic drugs in clinical practice attempt to normalize abnormal tumor vasculature. Unfortunately, these drugs are ineffective due to the development of resistance in patients after drug holidays. A sizable literature suggests that resistance to these anti-angiogenic drugs occurs due to various compensatory mechanisms of tumor angiogenesis. Therefore, we describe different compensatory mechanisms of tumor angiogenesis, and explain why intussusceptive angiogenesis (IA), is a crucial mechanism of compensatory angiogenesis in tumors which resist anti-VEGF (vascular endothelial growth factor) therapies. IA is often overlooked due to the scarcity of experimental models. Therefore, we examine data from existing experimental models and our novel ex-ovo model of angiogenesis in chick embryos, and explain the important genes and signaling pathways driving IA. Using bio-informatic analyses of major genes regulating conventional sprouting angiogenesis (SA) and intussusceptive angiogenesis, we provide fresh insights on the 'angiogenic switch' which regulates the transition from SA to IA. Finally, we examine the interplay between molecules regulating SA, IA, and molecules known to promote tumor progression. Based on these analyses, we conclude that intussusceptive angiogenesis (IA) is a promising therapeutic target for developing effective anti-cancer treatment regimes.
Collapse
Affiliation(s)
- Sekaran Saravanan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India.
| | - Koka Pavani
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Ramesh Nikarika
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Venil N Sumantran
- Abdul Kalam Center for Innovation and Entrepreneurship, Dr. MGR Educational & Research Institute, Maduravoyal, Chennai 600095, India
| |
Collapse
|
28
|
Debreli Coskun M, Sudha T, Bharali DJ, Celikler S, Davis PJ, Mousa SA. αvβ3 Integrin Antagonists Enhance Chemotherapy Response in an Orthotopic Pancreatic Cancer Model. Front Pharmacol 2020; 11:95. [PMID: 32174830 PMCID: PMC7056702 DOI: 10.3389/fphar.2020.00095] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer decreases survival time and quality of life because of drug resistance and peripheral neuropathy during conventional treatment. This study was undertaken to investigate whether αvβ3 integrin receptor antagonist compounds NDAT and XT199 can suppress the development of cisplatin resistance and cisplatin-induced peripheral neuropathy in an orthotopic pancreatic SUIT2-luc cancer cell mouse model. Anticancer effects of these compounds and their combination with cisplatin were assessed in this tumor mouse model with bioluminescent signaling and histopathology, and a cytokine assay was used to examine expression of inflammatory cytokines IL-1β, IL-6, IL-10, and TNF-α from plasma samples. To determine the neuroprotective effects of the compounds on cisplatin-induced peripheral neuropathy, behavioral hind-limb posture of the mice was evaluated. The combination therapy of NDAT or XT199 with cisplatin elicited greater inhibition of tumor growth and increased tumor necrosis compared to cisplatin alone. NDAT and XT199 in combination with cisplatin significantly decreased expression of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α and significantly increased expression of anti-inflammatory cytokine IL-10 in comparison to cisplatin alone. Cisplatin-treated groups showed stocking-glove hind-limb posture, whereas NDAT and XT199 with cisplatin-treated groups displayed normal hind-limb posture. Results clearly suggest that NDAT and XT199 treatment with cisplatin that inactivates NF-κB may contribute to increased antitumor and anti-inflammatory efficacy as well as alleviate cisplatin-mediated loss of motor function in this pancreatic tumor mouse model.
Collapse
Affiliation(s)
- Melis Debreli Coskun
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States.,Department of Biology, Faculty of Arts and Sciences, Uludag University, Bursa, Turkey
| | - Thangirala Sudha
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Dhruba J Bharali
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Serap Celikler
- Department of Biology, Faculty of Arts and Sciences, Uludag University, Bursa, Turkey
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States.,Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| |
Collapse
|
29
|
Cheng CS, Chen JX, Tang J, Geng YW, Zheng L, Lv LL, Chen LY, Chen Z. Paeonol Inhibits Pancreatic Cancer Cell Migration and Invasion Through the Inhibition of TGF-β1/Smad Signaling and Epithelial-Mesenchymal-Transition. Cancer Manag Res 2020; 12:641-651. [PMID: 32099461 PMCID: PMC6996112 DOI: 10.2147/cmar.s224416] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Paeonol, a natural product derived from the root of Cynanchum paniculatum (Bunge) K. Schum and the root of Paeonia suffruticosa Andr. (Ranunculaceae) has attracted extensive attention for its anti-cancer proliferation effect in recent years. The present study examined the role of paeonol in suppressing migration and invasion in pancreatic cancer cells by inhibiting TGF-β1/Smad signaling. Methods Cell viability was evaluated by MTT and colonial formation assay. Migration and invasion capabilities were examined by cell scratch-wound healing assay and the Boyden chamber invasion assay. Western Blot and qRT-PCR were used to measure the protein and RNA levels of vimentin, E-cadherin, N-cadherin, and TGF-β1/Smad signaling. Results At non-cytotoxic dose, 100 μΜ and 150 μΜ of paeonol showed significant anti-migration and anti-invasion effects on Panc-1 and Capan-1 cells (p<0.01). Paeonol inhibited epithelial-mesenchymal-transition by upregulating E-cadherin, and down regulating N-cadherin and vimentin expressions. Paeonol inhibited TGF-β1/Smad signaling pathway by downregulating TGF-β1, p-Smad2/Smad2 and p-Smad3/Smad3 expressions. Further, TGF-β1 attenuated the anti-migration and anti-invasion capacities of paeonol in Panc-1 and Capan-1 cells. Conclusion These findings revealed that paeonol could suppress proliferation and inhibit migration and invasion in Panc-1 and Capan-1 cells by inhibiting the TGF-β1/Smad pathway and might be a promising novel anti-pancreatic cancer drug.
Collapse
Affiliation(s)
- Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Jing-Xian Chen
- Department of Traditional Chinese Medicine, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China.,Workstation of Xia Xiang, National Master of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jian Tang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Ya-Wen Geng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China.,Workstation of Xia Xiang, National Master of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Ling-Ling Lv
- Department of Traditional Chinese Medicine, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Lian-Yu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
30
|
Taieb J, Prager GW, Melisi D, Westphalen CB, D'Esquermes N, Ferreras A, Carrato A, Macarulla T. First-line and second-line treatment of patients with metastatic pancreatic adenocarcinoma in routine clinical practice across Europe: a retrospective, observational chart review study. ESMO Open 2020; 5:e000587. [PMID: 31958291 PMCID: PMC7003396 DOI: 10.1136/esmoopen-2019-000587] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Treatment of metastatic pancreatic adenocarcinoma (mPAC) relies on chemotherapeutic regimens. We investigated patterns of first-line and second-line treatment choices, their geographical variation between European countries, and alignment with current European recommendations. METHODS This retrospective, observational chart review study was conducted between July 2014 and January 2016. Physicians were recruited from nine European countries. Patient data were collected in electronic patient record forms (PRFs) by physicians managing patients with mPAC. Patients with a current mPAC diagnosis aged ≥18 years old who had completed first-line therapy during the study period were included. RESULTS Participating physicians (n=225) completed 2565 PRFs. The vast majority of PRFs were from France, Germany, Italy, Spain and the UK. Most patients (86.6%) had stage IV disease at diagnosis. The most common first-line treatments were FOLFIRINOX (5-fluorouracil, leucovorin/folinic acid, irinotecan and oxaliplatin) (35.6%), gemcitabine+nab-paclitaxel (25.7%) and gemcitabine monotherapy (20.5%). Physicians in France and the UK prescribed FOLFIRINOX more frequently than gemcitabine+nab-paclitaxel. Gemcitabine-based therapies were more widely used at second-line, although 5-fluorouracil-based therapies were preferred in Italy and Spain, where gemcitabine-based treatments were more frequently selected for first-line. For patients receiving first-line modified FOLFIRINOX, second-line gemcitabine monotherapy was preferred in the overall population (45.9%). CONCLUSION Although treatment choices for patients with mPAC varied between countries, they align with current European guidelines. Factors including drug availability, reimbursement, patient characteristics, physician preference and prior first-line therapy affect treatment choices. Approved, recommended therapies for patients who progress following first-line treatment are lacking. These findings may influence the development of effective treatment plans, potentially improving future patient outcomes.
Collapse
Affiliation(s)
- Julien Taieb
- Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Gerald W Prager
- Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, Università degli Studi di Verona, Verona, Veneto, Italy
| | - C Benedikt Westphalen
- Department of Medicine III and Comprehensive Cancer Center Munich, University Hospital LMU Munich, Munich, Germany
| | | | | | - Alfredo Carrato
- Ramón y Cajal University Hospital, IRYCIS, CIBERONIC, Alcala University, Madrid, Spain
| | - Teresa Macarulla
- Vall d'Hebron University Hospital (HUVH), Barcelona, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
31
|
Coix Seed Extract Enhances the Anti-Pancreatic Cancer Efficacy of Gemcitabine through Regulating ABCB1- and ABCG2-Mediated Drug Efflux: A Bioluminescent Pharmacokinetic and Pharmacodynamic Study. Int J Mol Sci 2019; 20:ijms20215250. [PMID: 31652737 PMCID: PMC6862065 DOI: 10.3390/ijms20215250] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/29/2023] Open
Abstract
A deep insight into the function and kinetics of ATP-binding cassette (ABC) transporters may aid in the development of pharmaceutics that can minimize the particular facet of chemo-resistance. We utilized bioluminescence imaging to monitor the ABC transporter mediated intracellular drug efflux function. We also investigated the potential association between the intracellular bioluminescent pharmacokinetic profiles and the anti-tumor efficacy of the coix seed extract and gemcitabine against pancreatic cancer cells in vitro and in vivo. The bioluminescent pharmacokinetic parameters and pharmacodynamic index (IC50 and TGI) were determined. The expression levels ABCB1 and ABCG2 were assessed. Results showed that coix seed extract could synergistically enhance the anti-cancer efficacy of gemcitabine (p < 0.05). Meanwhile coix seed extract alone or in combination with gemcitabine could significantly increase the AUCluc while decreasing the Kluc (p < 0.01). Western blot and immunohistochemistry assay demonstrated that coix seed extract could significantly mitigate gemcitabine-induced upregulation of ABCB1 and ABCG2 protein. The Pearson correlation analysis demonstrated that the bioluminescent pharmacokinetic parameters and pharmacodynamic index have strong association in vitro and in vivo. In conclusion coix seed extract could augment the efficacy of gemcitabine therapy in pancreatic cancer cells may at least partly due to the alteration of ABC transporter-mediated drug efflux function.
Collapse
|
32
|
Santoro R, Zanotto M, Simionato F, Zecchetto C, Merz V, Cavallini C, Piro G, Sabbadini F, Boschi F, Scarpa A, Melisi D. Modulating TAK1 Expression Inhibits YAP and TAZ Oncogenic Functions in Pancreatic Cancer. Mol Cancer Ther 2019; 19:247-257. [PMID: 31562256 DOI: 10.1158/1535-7163.mct-19-0270] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/19/2019] [Accepted: 09/18/2019] [Indexed: 11/16/2022]
Abstract
YAP and TAZ are central determinants of malignancy; however, their functions remain still undruggable. We identified TGFβ-activated kinase 1 (TAK1) as a central hub integrating the most relevant signals sustaining pancreatic cancer aggressiveness and chemoresistance. Glycogen synthase kinase (GSK)3 is known to stabilize TAK1, and its inhibition causes a reduction in TAK1 levels. Here, we hypothesized that TAK1 could sustain YAP/TAZ program, and thus, modulation of TAK1 expression through the inhibition of GSK3 could impair YAP/TAZ functions in pancreatic cancer.Differentially expressed transcripts between pancreatic cancer cells expressing scramble or TAK1-specific shRNA were annotated for functional interrelatedness by ingenuity pathway analysis. TAK1 expression was modulated by using different GSK3 inhibitors, including LY2090314. In vivo activity of LY2090314 alone or in combination with nab-paclitaxel was evaluated in an orthotopic nude mouse model.Differential gene expression profiling revealed significant association of TAK1 expression with HIPPO and ubiquitination pathways. We measured a significant downregulation of YAP/TAZ and their regulated genes in shTAK1 cells. TAK1 prevented YAP/TAZ proteasomal degradation in a kinase independent manner, through a complex with TRAF6, thereby fostering their K63-ubiquitination versus K48-ubiquitination. Pharmacologic modulation of TAK1 by using GSK3 inhibitors significantly decreased YAP/TAZ levels and suppressed their target genes and oncogenic functions. In vivo, LY2090314 plus nab-paclitaxel significantly prolonged mice survival duration.Our study demonstrates a unique role for TAK1 in controlling YAP/TAZ in pancreatic cancer. LY2090314 is a novel agent that warrants further clinical development in combination with nab-paclitaxel for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Raffaela Santoro
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, Università degli studi di Verona, Verona, Italy
| | - Marco Zanotto
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, Università degli studi di Verona, Verona, Italy
| | - Francesca Simionato
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Camilla Zecchetto
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Valeria Merz
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Chiara Cavallini
- Research Center LURM, Interdepartmental Laboratory of Medical Research, Università degli studi di Verona, Verona, Italy
| | - Geny Piro
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, Università degli studi di Verona, Verona, Italy
| | - Fabio Sabbadini
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, Università degli studi di Verona, Verona, Italy
| | - Federico Boschi
- Department of Computer Science, Università degli studi di Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Research Centre, University and Hospital Trust of Verona and Department of Diagnostics and Public Health, Section of Anatomical Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, Università degli studi di Verona, Verona, Italy. .,Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
33
|
Konczalla L, Perez DR, Wenzel N, Wolters-Eisfeld G, Klemp C, Lüddeke J, Wolski A, Landschulze D, Meier C, Buchholz A, Yao D, Hofmann BT, Graß JK, Spriestersbach SL, Grupp K, Schumacher U, Betzel C, Kapis S, Nuguid T, Steinberg P, Püschel K, Sauter G, Bockhorn M, Uzunoglu FG, Izbicki JR, Güngör C, El Gammal AT. Biperiden and mepazine effectively inhibit MALT1 activity and tumor growth in pancreatic cancer. Int J Cancer 2019; 146:1618-1630. [PMID: 31291468 DOI: 10.1002/ijc.32567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/31/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022]
Abstract
MALT1 is a key mediator of NF-κB signaling and a main driver of B-cell lymphomas. Remarkably, MALT1 is expressed in the majority of pancreatic ductal adenocarcinomas (PDACs) as well, but absent from normal exocrine pancreatic tissue. Following, MALT1 shows off to be a specific target in cancer cells of PDAC without affecting regular pancreatic cells. Therefore, we studied the impact of pharmacological MALT1 inhibition in pancreatic cancer and showed promising effects on tumor progression. Mepazine (Mep), a phenothiazine derivative, is a known potent MALT1 inhibitor. Newly, we described that biperiden (Bip) is a potent MALT1 inhibitor with even less pharmacological side effects. Thus, Bip is a promising drug leading to reduced proliferation and increased apoptosis in PDAC cells in vitro and in vivo. By compromising MALT1 activity, nuclear translocation of c-Rel is prevented. c-Rel is critical for NF-κB-dependent inhibition of apoptosis. Hence, off-label use of Bip or Mep represents a promising new therapeutic approach to PDAC treatment. Regularly, the Anticholinergicum Bip is used to treat neurological side effects of Phenothiazines, like extrapyramidal symptoms.
Collapse
Affiliation(s)
- Leonie Konczalla
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel R Perez
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nadine Wenzel
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gerrit Wolters-Eisfeld
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clarissa Klemp
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Lüddeke
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Wolski
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Landschulze
- Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
| | - Chris Meier
- Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
| | - Anika Buchholz
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dichao Yao
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bianca T Hofmann
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia K Graß
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah L Spriestersbach
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Grupp
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, c/o DESY, University of Hamburg, Hamburg, Germany
| | - Svetlana Kapis
- Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, c/o DESY, University of Hamburg, Hamburg, Germany
| | - Theresa Nuguid
- Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, c/o DESY, University of Hamburg, Hamburg, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximillian Bockhorn
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Faik G Uzunoglu
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cenap Güngör
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander T El Gammal
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
34
|
Speirs MMP, Swensen AC, Chan TY, Jones PM, Holman JC, Harris MB, Maschek JA, Cox JE, Carson RH, Hill JT, Andersen JL, Prince JT, Price JC. Imbalanced sphingolipid signaling is maintained as a core proponent of a cancerous phenotype in spite of metabolic pressure and epigenetic drift. Oncotarget 2019; 10:449-479. [PMID: 30728898 PMCID: PMC6355186 DOI: 10.18632/oncotarget.26533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/10/2018] [Indexed: 01/01/2023] Open
Abstract
Tumor heterogeneity may arise through genetic drift and environmentally driven clonal selection for metabolic fitness. This would promote subpopulations derived from single cancer cells that exhibit distinct phenotypes while conserving vital pro-survival pathways. We aimed to identify significant drivers of cell fitness in pancreatic adenocarcinoma (PDAC) creating subclones in different nutrient formulations to encourage differential metabolic reprogramming. The genetic and phenotypic expression profiles of each subclone were analyzed relative to a healthy control cell line (hTert-HPNE). The subclones exhibited distinct variations in protein expression and lipid metabolism. Relative to hTert-HPNE, PSN-1 subclones uniformly maintained modified sphingolipid signaling and specifically retained elevated sphingosine-1-phosphate (S1P) relative to C16 ceramide (C16 Cer) ratios. Each clone utilized a different perturbation to this pathway, but maintained this modified signaling to preserve cancerous phenotypes, such as rapid proliferation and defense against mitochondria-mediated apoptosis. Although the subclones were unique in their sensitivity, inhibition of S1P synthesis significantly reduced the ratio of S1P/C16 Cer, slowed cell proliferation, and enhanced sensitivity to apoptotic signals. This reliance on S1P signaling identifies this pathway as a promising drug-sensitizing target that may be used to eliminate cancerous cells consistently across uniquely reprogrammed PDAC clones.
Collapse
Affiliation(s)
- Monique M P Speirs
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Adam C Swensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Tsz Y Chan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Peter M Jones
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - John C Holman
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - McCall B Harris
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - John A Maschek
- Health Sciences Cores-Metabolomics, University of Utah, Salt Lake, Utah, USA
| | - James E Cox
- Health Sciences Cores-Metabolomics, University of Utah, Salt Lake, Utah, USA
| | - Richard H Carson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Jonathon T Hill
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - John T Prince
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
35
|
Ji M, Li Z, Lin Z, Chen L. Antitumor activity of the novel HDAC inhibitor CUDC-101 combined with gemcitabine in pancreatic cancer. Am J Cancer Res 2018; 8:2402-2418. [PMID: 30662800 PMCID: PMC6325471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023] Open
Abstract
Histone deacetylase (HDAC) is overexpressed in multiple cancers including pancreatic cancer (PC). However, the effects of histone deacetylase inhibitor (HDACi) on apoptosis and epithelial-mesenchymal transition (EMT) differ in various cancers. In this study, we aimed to investigate the anti-tumor effects of a novel multitargets HDACi, CUDC-101, combined with gemcitabine in PC cell lines. In vitro, we found that Co-treatment with CUDC-101 and gemcitabine results in greater levels of apoptosis and significantly inhibited cell proliferation on PC cells. In addition, CUDC-101 enhanced gemcitabine-induced apoptosis via inhibited PI3K/Akt/mTOR and Erk pathway activation, as indicated by the phosphorylation status of Akt, 4EBP1, S6 and Erk. We also found that co-treatment with gemcitabine and CUDC-101 not only synergistically suppressed ability of PC cell migration and invasion, but also synergistically inhibited EMT signaling pathway through modulation of cadherin, vimentin and transcription factors Snail, Slug and MMP-9. In vivo, the co-treatment group showed a significant anti-tumor function in the growth of xenograft tumors. Overall, combination of CUDC-101 and gemcitabine significantly increased anti-tumor activities compared with single drug alone, thus supporting a further evaluation of combination treatment for PC. Accordingly, it provides a rationale to investigate the combination of gemcitabine and CUDC-101 as a potential therapeutic strategy for PC.
Collapse
Affiliation(s)
- Meiying Ji
- Department of Research Center, Yanbian University HospitalYanji 133000, China
- Department of Pathology and Cancer Research Center, Yanbian University Medical CollegeYanji 133002, China
| | - Zhenling Li
- Department of Pathology and Cancer Research Center, Yanbian University Medical CollegeYanji 133002, China
| | - Zhenhua Lin
- Department of Pathology and Cancer Research Center, Yanbian University Medical CollegeYanji 133002, China
- Key Laboratory of The Science and Technology Department of Jilin ProvinceYanji 133002, China
| | - Liyan Chen
- Department of Pathology and Cancer Research Center, Yanbian University Medical CollegeYanji 133002, China
- Key Laboratory of The Science and Technology Department of Jilin ProvinceYanji 133002, China
| |
Collapse
|
36
|
Nanoparticle Delivery of RIG-I Agonist Enables Effective and Safe Adjuvant Therapy in Pancreatic Cancer. Mol Ther 2018; 27:507-517. [PMID: 30545600 DOI: 10.1016/j.ymthe.2018.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 01/14/2023] Open
Abstract
Local immunomodulation can be a promising strategy to augment the efficacy and decrease off-target toxicities associated with cancer treatment. Pancreatic cancer is resistant to immunotherapies due to the immunosuppressive tumor microenvironment. Herein, we investigated a therapeutic approach involving delivery of a short interfering double-stranded RNA (dsRNA), specific to Bcl2, with 5' triphosphate ends, by lipid calcium phosphate nanoparticles, in an orthotopic allograft KPC model of pancreatic cancer. Retinoic acid-inducible gene I (RIG-I)-like receptors can bind to 5' triphosphate dsRNA (ppp dsRNA), a pathogen-associated molecular pattern, producing type I interferon, while Bcl2 silencing can drive apoptosis of cancer cells. Our approach demonstrated a robust enrichment of tumor tissue with therapeutic nanoparticles and enabled a significant tumor growth inhibition, prolonging median overall survival. Nanoparticles encapsulating dual-therapeutic ppp dsRNA allowed strong induction in levels of pro-inflammatory Th1 cytokines, further increasing proportions of CD8+ T cells over regulatory T cells, M1 over M2 macrophages, and decreased levels of immunosuppressive B regulatory and plasma cells in the tumor microenvironment. Thus, these results provide a new immunotherapy approach for pancreatic cancer.
Collapse
|
37
|
Durymanov M, Kroll C, Permyakova A, O'Neill E, Sulaiman R, Person M, Reineke J. Subcutaneous Inoculation of 3D Pancreatic Cancer Spheroids Results in Development of Reproducible Stroma-Rich Tumors. Transl Oncol 2018; 12:180-189. [PMID: 30554606 PMCID: PMC6295361 DOI: 10.1016/j.tranon.2018.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease characterized by high expression of extracellular matrix in tumor tissue, which contributes to chemoresistance and poor prognosis. Here, we developed 3D pancreatic cancer spheroids, based on pancreatic cancer cells and fibroblast co-culture, which demonstrate innate desmoplastic properties and stay poorly permeable for model nanoparticles. Our study revealed that establishment of tumors by transplantation of spheroids significantly improved subcutaneous xenograft model of PDAC, which stays the most widely used animal model for testing of new drugs and drug delivery approaches. Spheroid based tumors abundantly produced different extracellular matrix (ECM) components including collagen I, fibronectin, laminin and hyaluronic acid. These tumors were highly reproducible with excellent uniformity in terms of ECM architecture recapitulating clinical PDAC tumors, whereas in more common cell based xenografts a significant intertumor heterogeneity in extracellular matrix production was found. Moreover, spheroid based xenografts demonstrated higher expression of pro-fibrotic and pro-survival PDAC hallmarks in opposite to cell based counterparts. We believe that future development of this model will provide an effective instrument for testing of anti-cancer drugs with improved predictive value.
Collapse
Affiliation(s)
- Mikhail Durymanov
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD
| | - Christian Kroll
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD
| | - Anastasia Permyakova
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD
| | | | - Raed Sulaiman
- Department of Pathology and Laboratory Medicine, Avera McKennan Hospital, Sioux Falls, SD
| | | | - Joshua Reineke
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD.
| |
Collapse
|
38
|
Melisi D, Garcia-Carbonero R, Macarulla T, Pezet D, Deplanque G, Fuchs M, Trojan J, Oettle H, Kozloff M, Cleverly A, Smith C, Estrem ST, Gueorguieva I, Lahn MMF, Blunt A, Benhadji KA, Tabernero J. Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br J Cancer 2018; 119:1208-1214. [PMID: 30318515 PMCID: PMC6251034 DOI: 10.1038/s41416-018-0246-z] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/14/2018] [Accepted: 08/03/2018] [Indexed: 12/24/2022] Open
Abstract
Background Galunisertib is the first-in-class, first-in-human, oral small-molecule type I transforming growth factor-beta receptor (ALK5) serine/threonine kinase inhibitor to enter clinical development. The effect of galunisertib vs. placebo in patients with unresectable pancreatic cancer was determined. Methods This was a two-part, multinational study: phase 1b was a non-randomised, open-label, multicentre, and dose-escalation study; phase 2 was a randomised, placebo- and Bayesian-augmented controlled, double-blind study in patients with locally advanced or metastatic pancreatic adenocarcinoma considered candidates for first-line chemotherapy with gemcitabine. Patients were randomised 2:1 to galunisertib–gemcitabine (N = 104) or placebo-gemcitabine (N = 52). Gemcitabine dose was 1000 mg/m2 QW. Primary endpoints for phases 1b and 2, respectively, were phase 2 dose and overall survival. Secondary objectives included tolerability and biomarkers. Results Dose-escalation suggested a 300-mg/day dose. Primary objective was met: median survival times were 8.9 and 7.1 months for galunisertib and placebo, respectively (hazard ratio [HR] = 0.79 [95% credible interval: 0.59–1.09] and posterior probability HR < 1 = 0.93). Lower baseline biomarkers macrophage inflammatory protein-1-alpha and interferon-gamma-induced protein 10 were associated with galunisertib benefit. Conclusions Galunisertib–gemcitabine combination improved overall survival vs. gemcitabine in patients with unresectable pancreatic cancer, with minimal added toxicity. Future exploration of galunisertib in pancreatic cancer is ongoing in combination with durvalumab.
Collapse
Affiliation(s)
- Davide Melisi
- University of Verona, Piazzale Ludovico Antonio Scuro, 10, 37134, Verona, Italy.
| | - Rocio Garcia-Carbonero
- Oncology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), UCM, CNIO, CIBERONC, Madrid, Spain
| | - Teresa Macarulla
- Vall d'Hebron University Hospital Institute of Oncology (VHIO), CIBERONC, C/ Natzaret, 115-117, 08035, Barcelona, Spain
| | - Denis Pezet
- Centre Hospitalier Universitaire, 1 Place Lucie Aubrac, 63003, Clermont-Ferrand, France
| | - Gael Deplanque
- Hôpital Riviera-Chablais, Avenue de la Prairie 3, 1800, Vevey, Switzerland
| | - Martin Fuchs
- Klinikum Bogenhausen, Städtisches Klinikum München GmbH, Englschalkinger Road 77, 81925, Munich, Germany
| | - Jorg Trojan
- Goethe University Medical Center, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Helmut Oettle
- Onkologische und Hämatologische Schwerpunktpraxis, Friedrichshafen, Germany
| | - Mark Kozloff
- Ingalls Memorial Hospital, 71W. 156th St., Harvey, IL, 60426, USA
| | - Ann Cleverly
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - Claire Smith
- formerly of Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Shawn T Estrem
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | | | | | - Al Blunt
- Advaxis, Inc., 305 College Road East, Princeton, NJ, 08540, USA
| | - Karim A Benhadji
- Eli Lilly and Company, 440 Route 22 East, Bridgewater, NJ, 08807, USA
| | - Josep Tabernero
- Vall d'Hebron University Hospital and Institute of Oncology (VHIO), CIBERONC, Universitat Autònoma de Barcelona, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| |
Collapse
|
39
|
Ghasabi M, Mansoori B, Mohammadi A, Duijf PH, Shomali N, Shirafkan N, Mokhtarzadeh A, Baradaran B. MicroRNAs in cancer drug resistance: Basic evidence and clinical applications. J Cell Physiol 2018; 234:2152-2168. [PMID: 30146724 DOI: 10.1002/jcp.26810] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/30/2018] [Indexed: 12/19/2022]
Abstract
Development of drug resistance has considerably limited the efficacy of cancer treatments, including chemotherapy and targeted therapies. Hence, understanding the molecular mechanisms underpinning the innate or the acquired resistance to these therapies is critical to improve drug efficiency and clinical outcomes. Several studies have implicated microRNAs (miRNA) in this process. MiRNAs repress gene expression by specific binding to complementary sequences in the 3' region of target messenger RNAs (mRNAs), followed by target mRNA degradation or blocked translation. By targeting molecules specific to a particular pathway within tumor cells, the new generation of cancer treatment strategies has shown significant advantages over conventional chemotherapy. However, the long-term efficacy of targeted therapies often remains poor, because tumor cells develop resistance to such therapeutics. Targeted therapies often involve monoclonal antibodies (mAbs), such as those blocking the ErB/HER tyrosine kinases, epidermal growth factor receptor (cetuximab) and HER2 (trastuzumab), and those inhibiting vascular endothelial growth factor receptor signaling (e.g., bevacizumab). Even though these are among the most used agents in tumor medicine, clinical response to these drugs is reduced due to the emergence of drug resistance as a result of toxic effects in the tumor microenvironment. Research on different types of human cancers has revealed that aberrant expression of miRNAs promotes resistance to the aforementioned drugs. In this study, we review the mechanisms of tumor cell resistance to mAb therapies and the role of miRNAs therein. Emerging treatment strategies combine therapies using innovative miRNA mimics or antagonizers with conventional approaches to maximize outcomes of patients with cancer.
Collapse
Affiliation(s)
- Mehri Ghasabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal Hg Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naghmeh Shirafkan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Lambert IH, Sørensen BH. Facilitating the Cellular Accumulation of Pt-Based Chemotherapeutic Drugs. Int J Mol Sci 2018; 19:E2249. [PMID: 30071606 PMCID: PMC6121265 DOI: 10.3390/ijms19082249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/02/2018] [Accepted: 07/15/2018] [Indexed: 01/12/2023] Open
Abstract
Cisplatin, carboplatin, and oxaliplatin are Pt-based drugs used in the chemotherapeutic eradication of cancer cells. Although most cancer patient cells initially respond well to the treatment, the clinical effectiveness declines over time as the cancer cells develop resistance to the drugs. The Pt-based drugs are accumulated via membrane-bound transporters, translocated to the nucleus, where they trigger various intracellular cell death programs through DNA interaction. Here we illustrate how resistance to Pt-based drugs, acquired through limitation in the activity/subcellular localization of canonical drug transporters, might be circumvented by the facilitated uptake of Pt-based drug complexes via nanocarriers/endocytosis or lipophilic drugs by diffusion.
Collapse
Affiliation(s)
- Ian Henry Lambert
- Department of Biology, Section of Cell Biology and Physiology, Universitetsparken 13, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Belinda Halling Sørensen
- Department of Biology, Section of Cell Biology and Physiology, Universitetsparken 13, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
41
|
Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 2018; 8:46635-46651. [PMID: 28422728 PMCID: PMC5542299 DOI: 10.18632/oncotarget.16743] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent approach using immunotherapy, an effective but much cheaper therapeutic option of pharmaceutical drugs would still provide the best choice for cancer patients as the first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or host defense peptides (HDP) display broad-spectrum activity against bacteria based on electrostatic interactions with negatively charged lipids on the bacterial surface. Because of increased proportions of phosphatidylserine (negatively charged) on the surface of cancer cells compared to normal cells, cationic amphipathic peptides could be an effective source of anticancer agents that are both selective and refractory to current resistance mechanisms. We reviewed herein the prospect for AMP application to cancer treatment, with a focus on modes of action of cationic AMPs.
Collapse
Affiliation(s)
- Berthony Deslouches
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
42
|
Resveratrol-Induced Downregulation of NAF-1 Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine via the ROS/Nrf2 Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9482018. [PMID: 29765509 PMCID: PMC5885341 DOI: 10.1155/2018/9482018] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/31/2017] [Accepted: 12/18/2017] [Indexed: 01/20/2023]
Abstract
NAF-1 (nutrient-deprivation autophagy factor-1), which is an outer mitochondrial membrane protein, is known to play important roles in calcium metabolism, antiapoptosis, and antiautophagy. Resveratrol, a natural polyphenolic compound, is considered as a potent anticancer agent. Nevertheless, the molecular mechanisms underlying the effects of resveratrol and NAF-1 and their mediation of drug resistance in pancreatic cancer remain unclear. Here, we demonstrate that resveratrol suppresses the expression of NAF-1 in pancreatic cancer cells by inducing cellular reactive oxygen species (ROS) accumulation and activating Nrf2 signaling. In addition, the knockdown of NAF-1 activates apoptosis and impedes the proliferation of pancreatic cancer cells. More importantly, the targeting of NAF-1 by resveratrol can improve the sensitivity of pancreatic cancer cells to gemcitabine. These results highlight the significance of strategies that target NAF-1, which may enhance the efficacy of gemcitabine in pancreatic cancer therapy.
Collapse
|
43
|
Wu ST, Williams CD, Grover PA, Moore LJ, Mukherjee P. Early detection of pancreatic cancer in mouse models using a novel antibody, TAB004. PLoS One 2018; 13:e0193260. [PMID: 29462213 PMCID: PMC5819830 DOI: 10.1371/journal.pone.0193260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/07/2018] [Indexed: 01/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is the fourth-leading cause of cancer death in the United States with a 5-year overall survival rate of 8% for all stages combined. But this decreases to 3% for the majority of patients that present with stage IV PDA at time of diagnosis. The lack of distinct early symptoms for PDA is one of the primary reasons for the late diagnosis. Common symptoms like weight loss, abdominal and back pains, and jaundice are often mistaken for symptoms of other issues and do not appear until the cancer has progressed to a late stage. Thus the development of novel imaging platforms for PDA is crucial for the early detection of the disease. MUC1 is a tumor-associated antigen (tMUC1) expressed on 80% of PDA. The goal of this study was to determine the targeting and detection capabilities of a tMUC1 specific antibody, TAB004. TAB004 antibody conjugated to a near infrared fluorescent probe was injected intraperitoneally into immune competent orthotopic and spontaneous models of PDA. Results show that fluorophore conjugated TAB004 specifically targets a) 1 week old small tumor in the pancreas in an orthotopic PDA model and b) very early pre-neoplastic lesions (PanIN lesions) that develop in the spontaneous PDA model before progression to adenocarcinoma. Thus, TAB004 is a promising antibody to deliver imaging agents directly to the pancreatic tumor microenvironment, significantly affecting early detection of PDA.
Collapse
Affiliation(s)
- Shu-ta Wu
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Chandra D. Williams
- Department of Animal Laboratory Resources, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Priyanka A. Grover
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Laura J. Moore
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
44
|
Angiopoietin-Like Proteins in Angiogenesis, Inflammation and Cancer. Int J Mol Sci 2018; 19:ijms19020431. [PMID: 29389861 PMCID: PMC5855653 DOI: 10.3390/ijms19020431] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/27/2022] Open
Abstract
Altered expression of secreted factors by tumor cells or cells of the tumor microenvironment is a key event in cancer development and progression. In the last decade, emerging evidences supported the autocrine and paracrine activity of the members of the Angiopoietin-like (ANGPTL) protein family in angiogenesis, inflammation and in the regulation of different steps of carcinogenesis and metastasis development. Thus, ANGPTL proteins become attractive either as prognostic or predictive biomarkers, or as novel target for cancer treatment. Here, we outline the current knowledge about the functions of the ANGPTL proteins in angiogenesis, cancer progression and metastasis. Moreover, we discuss the most recent evidences sustaining their role as prognostic or predictive biomarkers for cancer therapy. Although the role of ANGPTL proteins in cancer has not been fully elucidated, increasing evidence suggest their key effects in the proliferative and invasive properties of cancer cells. Moreover, given the common overexpression of ANGPTL proteins in several aggressive solid tumors, and their role in tumor cells and cells of the tumor microenvironment, the field of research about ANGPTL proteins network may highlight new potential targets for the development of future therapeutic strategies.
Collapse
|
45
|
Yin T, Zhang Z, Cao B, Duan Q, Shi P, Zhao H, Camara SN, Shen Q, Wang C. Bmi1 inhibition enhances the sensitivity of pancreatic cancer cells to gemcitabine. Oncotarget 2018; 7:37192-37204. [PMID: 27177084 PMCID: PMC5095068 DOI: 10.18632/oncotarget.9293] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/16/2016] [Indexed: 12/25/2022] Open
Abstract
As the standard therapy for pancreatic cancer, gemcitabine shows limited efficacy in pancreatic cancer patients because of chemoresistance. Aberrant expression of Bmi1 has been reported to activate multiple growth-regulatory pathways and confer anti-apoptotic abilities to many cancer cells. However, the role of Bmi1 in response of pancreatic cancer cells towards gemcitabine resistance remains elusive. In this study, we found that certain dose of gemcitabine treatment induced Bmi1 expression in pancreatic cancer cells. Knockdown of Bmi1 enhanced ROS production and promoted the cytotoxic effect of gemcitabine. The increased oxidative stress upon gemcitabine treatment could disrupt mitochondrial membrane and decrease mitochondrial membrane potential, eventually leading to apoptosis. Bmi1 inhibition also suppressed the activation of NF-κB signaling and the expressions of downstream molecules in pancreatic cancer cells treated with gemcitabine. Moreover, we observed Bmi1 inhibition sensitized the pancreatic xenograft tumors to gemcitabine in vivo. Taken together, our study demonstrated that Bmi1 could decrease the sensitivity of pancreatic cancer cells to gemcitabine through increasing oxidative stress and inhibiting NF-κB signaling, thus Bmi1 may serve as a promising target for sensitizing pancreatic cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhengle Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Bin Cao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qingke Duan
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Pengfei Shi
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hengqiang Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Soriba Naby Camara
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chunyou Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
46
|
Maloney E, Khokhlova T, Pillarisetty VG, Schade GR, Repasky EA, Wang YN, Giuliani L, Primavera M, Hwang JH. Focused ultrasound for immuno-adjuvant treatment of pancreatic cancer: An emerging clinical paradigm in the era of personalized oncotherapy. Int Rev Immunol 2017; 36:338-351. [PMID: 28961038 PMCID: PMC6224292 DOI: 10.1080/08830185.2017.1363199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Current clinical treatment regimens, including many emergent immune strategies (e.g., checkpoint inhibitors) have done little to affect the devastating course of pancreatic ductal adenocarcinoma (PDA). Clinical trials for PDA often employ multi-modal treatment, and have started to incorporate stromal-targeted therapies, which have shown promising results in early reports. Focused ultrasound (FUS) is one such therapy that is uniquely equipped to address local and systemic limitations of conventional cancer therapies as well as emergent immune therapies for PDA. FUS methods can non-invasively generate mechanical and/or thermal effects that capitalize on the unique oncogenomic/proteomic signature of a tumor. Potential benefits of FUS therapy for PDA include: (1) emulsification of targeted tumor into undenatured antigens in situ, increasing dendritic cell maturation, and increasing intra-tumoral CD8+/ T regulatory cell ratio and CD8+ T cell activity; (2) reduction in intra-tumoral hypoxic stress; (3) modulation of tumor cell membrane protein localization to enhance immunogenicity; (4) modulation of the local cytokine milieu toward a Th1-type inflammatory profile; (5) up-regulation of local chemoattractants; (6) remodeling the tumor stroma; (7) localized delivery of exogenously packaged immune-stimulating antigens, genes and therapeutic drugs. While not all of these results have been studied in experimental PDA models to date, the principles garnered from other solid tumor and disease models have direct relevance to the design of optimal FUS protocols for PDA. In this review, we address the pertinent limitations in current and emergent immune therapies that can be improved with FUS therapy for PDA.
Collapse
Affiliation(s)
- Ezekiel Maloney
- a Department of Radiology , University of Washington , Seattle WA , USA
| | - Tanya Khokhlova
- b Department of Medicine Division of Gastroenterology , University of Washington , Seattle WA , USA
| | | | - George R Schade
- d Department of Urology , University of Washington , Seattle WA , USA
| | - Elizabeth A Repasky
- e Department of Immunology , Roswell Park Cancer Institute , Buffalo NY , USA
| | - Yak-Nam Wang
- f Applied Physics Laboratory , University of Washington , Seattle WA , USA
| | - Lorenzo Giuliani
- g School of Medicine , The Sapienza University of Rome , Rome , Italy
| | - Matteo Primavera
- h School of Medicine , The Sapienza University of Rome , Rome , Italy
| | - Joo Ha Hwang
- i Department of Medicine Division of Gastroenterology , University of Washington , Seattle WA , USA
| |
Collapse
|
47
|
Jiang Z, Chen K, Cheng L, Yan B, Qian W, Cao J, Li J, Wu E, Ma Q, Yang W. Resveratrol and cancer treatment: updates. Ann N Y Acad Sci 2017; 1403:59-69. [PMID: 28945938 DOI: 10.1111/nyas.13466] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022]
Abstract
Cancer, a growing health problem worldwide, affects millions of people every year. The overall survival rates of most cancers have been prolonged owing to the efforts of clinicians and scientists. However, some tumors develop resistance to chemoradiotherapeutic agents, and the cancer research community continues to search for effective sensitizers. Resveratrol, a natural polyphenolic phytoalexin, has shown promising effects in inhibiting proliferation and cancer progression in several tumor models. However, its molecular mechanisms and applications in chemotherapy and radiotherapy have yet to be fully determined. In this concise review, we highlight the role and related molecular mechanisms of resveratrol in cancer treatment. In particular, we focus on the role of resveratrol in the tumor microenvironment and the sensitization of cancer cells for chemotherapy and radiotherapy. Resveratrol shows promising efficacies in cancer treatment and may be applied in clinical therapy, but it requires further clinical study.
Collapse
Affiliation(s)
- Zhengdong Jiang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ke Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liang Cheng
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Bin Yan
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Junyu Cao
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jie Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas.,Department of Pharmaceutical Sciences, Texas A&M University College of Pharmacy, College Station, Texas
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
48
|
EMT and Treatment Resistance in Pancreatic Cancer. Cancers (Basel) 2017; 9:cancers9090122. [PMID: 28895920 PMCID: PMC5615337 DOI: 10.3390/cancers9090122] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/01/2017] [Accepted: 09/10/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) is the third leading cause of adult cancer mortality in the United States. The poor prognosis for patients with PC is mainly due to its aggressive course, the limited efficacy of active systemic treatments, and a metastatic behavior, demonstrated throughout the evolution of the disease. On average, 80% of patients with PC are diagnosed with metastatic disease, and the half of those who undergo surgery and adjuvant therapy develop liver metastasis within two years. Metastatic dissemination is an early event in PC and is mainly attributed to an evolutionary biological process called epithelial-to-mesenchymal transition (EMT). This innate mechanism could have a dual role during embryonic growth and organ differentiation, and in cancer progression, cancer stem cell intravasation, and metastasis settlement. Many of the molecular pathways decisive in EMT progression have been already unraveled, but little is known about the causes behind the induction of this mechanism. EMT is one of the most distinctive and critical features of PC, occurring even in the very first stages of tumor development. This is known as pancreatic intraepithelial neoplasia (PanIN) and leads to early dissemination, drug resistance, and unfavorable prognosis and survival. The intention of this review is to shed new light on the critical role assumed by EMT during PC progression, with a particular focus on its role in PC resistance.
Collapse
|
49
|
Sahu N, Chan E, Chu F, Pham T, Koeppen H, Forrest W, Merchant M, Settleman J. Cotargeting of MEK and PDGFR/STAT3 Pathways to Treat Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2017; 16:1729-1738. [DOI: 10.1158/1535-7163.mct-17-0009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/09/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022]
|
50
|
Zhao X, Sun W, Puszyk WM, Wallet S, Hochwald S, Robertson K, Liu C. Focal adhesion kinase inhibitor PF573228 and death receptor 5 agonist lexatumumab synergistically induce apoptosis in pancreatic carcinoma. Tumour Biol 2017; 39:1010428317699120. [PMID: 28459212 DOI: 10.1177/1010428317699120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Pancreatic cancer has one of the lowest survival rates of all cancers. The mechanism underlying chemo-resistance of pancreatic cancer is not well understood. Our previous article reported that small molecule YM155 induced apoptosis in pancreatic cancer cells via activation of death receptor 5. In this study, we aim to continuously address death receptor 5-mediated apoptosis in chemo-resistant pancreatic carcinoma. We found that in comparison to paired pancreatic cancer tissues and adjacent normal tissues, five of the six cancer tissues had downregulated death receptor 5 and upregulated Bcl-xL. Mono treatment with lexatumumab was not sufficient to induce apoptosis in pancreatic cancer cells, whereas focal adhesion kinase inhibitor PF573228 significantly sensitized lexatumumab-induced apoptosis. Western blotting analysis revealed that lexatumumab and PF573228 combination treatment increased death receptor 5 but decreased Bcl-xL expression. Interestingly, pre-treatment with Bcl-xL inhibitor ABT263 reversed the insensitivity of panc-1 cells to lexatumumab or PF573228-induced apoptosis. Specific small interfering RNA-mediated gene silencing of Bcl-xL effectively sensitized pancreatic cancer cells to lexatumumab or PF573228-induced apoptosis. Furthermore, lexatumumab and PF573228 combination was shown to exhibit significant xenograft pancreatic tumor growth inhibition in SCID mice. Our data provide fundamental evidence to support the notion that lexatumumab and PF573228 co-treatment could be a potentially effective regime for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Xiangxuan Zhao
- 1 Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- 2 Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Sun
- 1 Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - William M Puszyk
- 2 Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Shannon Wallet
- 3 Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Steve Hochwald
- 4 Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Keith Robertson
- 5 Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Chen Liu
- 2 Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|