1
|
Johnson MC, Zweig JA, Zhang Y, Ryabinin AE. Effects of social housing on alcohol intake in mice depend on the non-social environment. Front Behav Neurosci 2024; 18:1380031. [PMID: 38817806 PMCID: PMC11137225 DOI: 10.3389/fnbeh.2024.1380031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Background Excessive alcohol consumption leads to serious health problems. Mechanisms regulating the consumption of alcohol are insufficiently understood. Previous preclinical studies suggested that non-social environmental and social environmental complexities can regulate alcohol consumption in opposite directions. However, previous studies did not include all conditions and/or did not include female rodents. Therefore, in this study, we examined the effects of social versus single housing in standard versus non-standard housing conditions in male and female mice. Methods Adult C57BL/6 J mice were housed in either standard shoebox cages or in automated Herdsman 2 (HM2) cages and exposed to a two-bottle choice procedure with 3% or 6% ethanol versus water for 5 days. The HM2 cages use radiotracking devices to measure the fluid consumption of individual mice in an undisturbed and automated manner. In both housing conditions, mice were housed either at one or at four per cage. Results In standard cages, group housing of animals decreased alcohol consumption and water consumption. In HM2 cages, group housing significantly increased ethanol preference and decreased water intake. There were no significant differences in these effects between male and female animals. These observations were similar for 3 and 6% ethanol solutions but were more pronounced for the latter. The effects of social environment on ethanol preference in HM2 cages were accompanied by an increase in the number of approaches to the ethanol solution and a decrease in the number of approaches to water. The differences in ethanol intake could not be explained by differences in locomotor or exploratory activity as socially housed mice showed fewer non-consummatory visits to the ethanol solutions than single-housed animals. In addition, we observed that significant changes in behaviors measuring the approach to the fluid were not always accompanied by significant changes in fluid consumption, and vice versa, suggesting that it is important to assess both measures of motivation to consume alcohol. Conclusion Our results indicate that the direction of the effects of social environment on alcohol intake in mice depends on the non-social housing environment. Understanding mechanisms by which social and non-social housing conditions modulate alcohol intake could suggest approaches to counteract environmental factors enhancing hazardous alcohol consumption.
Collapse
Affiliation(s)
| | | | | | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
2
|
Abstract
Prairie voles have emerged as an important rodent model for understanding the neuroscience of social behavior. Prairie voles are well known for their capacity for pair bonding and alloparental care. These behavioral phenomena overlap with human social behavior but are not commonly observed in traditional rodent models. In this article, we highlight the many benefits of using prairie voles in neuroscience research. We begin by describing the advantages of using diverse and non-traditional study models. We then focus on social behaviors, including pair bonding, alloparental care, and peer interactions, that have brought voles to the forefront of social neuroscience. We describe many additional features of prairie vole biology and behavior that provide researchers with opportunities to address an array of research questions. We also survey neuroethological methods that have been used with prairie voles, from classic to modern techniques. Finally, we conclude with a discussion of other vole species, particularly meadow voles, and their own unique advantages for neuroscience studies. This article provides a foundation for researchers who are new to working with voles, as well as for experienced neuroscientists who want to expand their research scope. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- William M. Kenkel
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE 19716
| | - Morgan L. Gustison
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| | - Annaliese K. Beery
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
3
|
Walcott AT, Ryabinin AE. Assessing effects of oxytocin on alcohol consumption in socially housed prairie voles using radio frequency tracking. Addict Biol 2021; 26:e12893. [PMID: 32160654 DOI: 10.1111/adb.12893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 01/09/2023]
Abstract
Alcohol use disorder affects millions of people each year. Currently approved pharmacotherapies have limited success in treating this disorder. Evidence suggests that this lack of success is partly due to how these pharmacotherapies are tested in preclinical settings. The vast majority of preclinical studies assessing the effects of pharmacotherapies on alcohol or drug self-administration are done in individually housed animals. However, it is known that alcohol and drug intake are heavily influenced by social settings. Here, we adapted radio frequency tracking technology to determine the effects of oxytocin, a potential therapy for alcohol use disorder, on alcohol consumption in socially housed male and female prairie voles. Voluntary alcohol consumption in these animals resulted in high daily alcohol intakes, blood ethanol concentrations that are considered intoxicating, and central changes in FosB immunoreactivity, indicative of changes in neural activity. Prairie voles that received oxytocin temporarily reduced alcohol consumption but not alcohol preference, compared with control prairie voles regardless whether their cagemates received a similar treatment or not. Our results demonstrate that oxytocin can decrease consummatory behaviors in the presence of peers that are not receiving this treatment, and therefore, its potential use in clinical trials is warranted. Moreover, effectiveness of other pharmacotherapies in preclinical studies can be tested in mixed-treatment socially housed animals similarly to clinical studies in humans.
Collapse
Affiliation(s)
- Andre T. Walcott
- Department of Behavioral Neuroscience Oregon Health & Science University Portland OR 97239 USA
| | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience Oregon Health & Science University Portland OR 97239 USA
| |
Collapse
|
4
|
Ferreyra E, Pasquetta L, Ramirez A, Wille-Bille A, Molina JC, Miranda-Morales RS. Biparental care in C57BL/6J mice: effects on adolescent behavior and alcohol consumption. Psychopharmacology (Berl) 2020; 237:1841-1850. [PMID: 32173769 DOI: 10.1007/s00213-020-05501-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022]
Abstract
RATIONALE Social attachment plays an important role in offspring development. Different parenting experiences during lactation may shape offspring behavior and later alcohol use. OBJECTIVES We tested the hypothesis that differential rearing conditions (single mother, SM or biparental, BP) in the non-monogamous C57BL/6J mice may affect (1) parental behavior during lactation, (2) adolescent behavior, and (3) adolescent initiation of alcohol drinking. METHODS Mice were reared in SM or BP (cohabitation of father-mother since copulation) condition until weaning (postnatal day, PND, 21). Litters from both conditions were filmed during PNDs 6, 9, and 12 and an ethogram was made taking into account nest-, pup-, or self-directed behaviors. At PNDs, 28-29 adolescent animals were evaluated in a modified version of the concentric square field for measurement of behavioral patterns. Other groups of adolescents were tested in a 4-h daily, two-bottle choice alcohol consumption test (10% alcohol vs. water) during 3 weeks (4 days per week). RESULTS Single mothers spent less time in the nest, left unattended the nest more times, displayed more self-directed and less pup-directed behaviors than BP parents. SM-reared adolescents displayed more anxiogenic-like and less risk-associated behaviors than BP counterparts. The alcohol consumption test indicated a strong effect of rearing condition. Since the fifth day of test, SM adolescents consumed more quantities of alcohol than BP adolescents. CONCLUSIONS During single-mother parenting, pups are left unattended more often, and during adolescence, these organisms exhibited increased anxiety responses. This behavioral phenotype may act as a risk factor for alcohol initiation during adolescence.
Collapse
Affiliation(s)
- Eliana Ferreyra
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, 5016, Córdoba, Argentina
| | - Lucila Pasquetta
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, 5016, Córdoba, Argentina
| | - Abraham Ramirez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, 5016, Córdoba, Argentina
| | - Aranza Wille-Bille
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, 5016, Córdoba, Argentina
| | - Juan Carlos Molina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, 5016, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Roberto Sebastián Miranda-Morales
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, 5016, Córdoba, Argentina. .,Facultad de Psicología, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
| |
Collapse
|
5
|
Potretzke S, Robins MT, Ryabinin AE. Differential sensitivity of alcohol drinking and partner preference to a CRFR1 antagonist in prairie voles and mice. Horm Behav 2020; 120:104676. [PMID: 31927017 PMCID: PMC7117978 DOI: 10.1016/j.yhbeh.2020.104676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 12/17/2022]
Abstract
Available pharmacotherapies to treat alcohol use disorder (AUD) show limited efficacy. Preclinical studies in mice and rats suggested that antagonists of the corticotropin releasing factor receptor 1 (CRFR1) could be more efficacious for such treatment. However, clinical trials with CRFR1 antagonists were not successful. While a number of potential explanations for this translational failure have been suggested, we hypothesized that the lack of success in clinical trials could be in part due to different neuroanatomical organization of the CRFR1 system in mice and rats versus humans. The CRF system in prairie voles (Microtus ochrogaster), a socially monogamous rodent species, also shows differences in organization from mice and rats. To test our hypothesis, we compared the efficacy of a potent CRFR1 antagonist, CP-376,395, to modulate alcohol drinking in male and female prairie voles versus male and female C57BL/6J mice using an almost identical 2-bottle choice drinking procedure. CP-376,375 (10 and 20 mg/kg, i.p.) significantly decreased alcohol intake (but not alcohol preference) in mice, but not prairie voles. Furthermore, administration of this antagonist (20 mg/kg, i.p.) prior to the partner preference test (PPT) decreased partner preference (PP) in male prairie voles. These findings support our hypothesis that the greater efficacy of CRFR1 antagonists to suppress alcohol consumption in mice and rats versus other mammalian species could be due to the differences in organization of the CRFR1 system between species. They further indicate that activity of the CRFR1 system is necessary for the formation of pair-bonds, but not consumption of high doses of alcohol. Overall, we suggest that testing potential pharmacotherapies should not rely only on studies in mice and rats.
Collapse
Affiliation(s)
- Sheena Potretzke
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Meridith T Robins
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
6
|
Ryabinin AE, Walcott AT. Assessing Social Alcohol Drinking in Rodent Models: Are We There Yet? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:33-51. [PMID: 30193708 DOI: 10.1016/bs.irn.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathological and social consequences associated with excessive alcohol consumption and dependence constitute a serious concern for human well-being. The success of preventative and therapeutic strategies for alcohol use disorder depends on the development of appropriate animal models of alcohol consumption. Alcohol consumption in humans typically occurs in social settings. In contrast, the vast majority of animal models investigate alcohol drinking in socially isolated animals. A number of rodent model studies have attempted to assess drinking of individual animals within social setting. These studies identified varied directions of effects of social environment on alcohol consumption. However, the interpretation of these results is strongly hampered by technical issues associated with the existing approaches to assess drinking of individual animals within each group. This review analyzes the existing literature mostly focusing on the interpretation caveats of performed studies and highlights some of the new directions in these studies.
Collapse
Affiliation(s)
- Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.
| | - Andre T Walcott
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
7
|
Oxytocin reduces alcohol consumption in prairie voles. Physiol Behav 2017; 179:411-421. [PMID: 28716609 DOI: 10.1016/j.physbeh.2017.07.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 11/23/2022]
Abstract
Alcohol use disorder (AUD) negatively affects millions of people every year in the United States, and effective treatments for AUD are still needed. The neuropeptide oxytocin has shown promise for reducing alcohol drinking in mice and rats. Because oxytocin also plays a key role in complex prosocial behaviors like bonding and attachment, we tested the effect of oxytocin on alcohol drinking in prairie voles, a species that both consumes high amounts of alcohol and forms oxytocin dependent social bonds in a manner similar to humans. Oxytocin treatment (1.0, 3.0, and 10.0mg/kg, i.p.) reduced alcohol consumption in male and female prairie voles in animals that had access to 15% ethanol vs water every other day for 12 alcohol drinking sessions. In animals with continuous access to 15% alcohol and water, oxytocin (3.0mg/kg) reduced alcohol consumption only in the first hour of access after treatment, with no significant effects on consumption over the 24-hr period. In an open field locomotor test, oxytocin (1.0, 3.0, and 10.0mg/kg, i.p.) did not affect overall locomotor activity; however, ethanol (2g/kg, i.p.) increased locomotor activity in males and females, and produced anxiolytic effects (increased time in the center of an open field) in females only. Because prairie voles have been shown to match the alcohol consumption of their cage mate, we evaluated the relationship between cage mates' alcohol drinking. There was an overall pattern of social facilitation (consumption by one cage mate predicted consumption by the other cage mate); however, we found significant individual differences across cages in which many cages did not show significant matching, and, in some cases one cage mate's consumption negatively predicted the other cage mate's consumption. Overall, our data provide support for the potential of oxytocin as a treatment to reduce alcohol consumption.
Collapse
|
8
|
Panksepp JB, Rodriguez ED, Ryabinin AE. Sweetened ethanol drinking during social isolation: enhanced intake, resistance to genetic heterogeneity and the emergence of a distinctive drinking pattern in adolescent mice. GENES BRAIN AND BEHAVIOR 2016; 16:369-383. [PMID: 27706910 DOI: 10.1111/gbb.12346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 01/15/2023]
Abstract
With its ease of availability during adolescence, sweetened ethanol ('alcopops') is consumed within many contexts. We asked here whether genetically based differences in social motivation are associated with how the adolescent social environment impacts voluntary ethanol intake. Mice with previously described differences in sociability (BALB/cJ, C57BL/6J, FVB/NJ and MSM/MsJ strains) were weaned into isolation or same-sex pairs (postnatal day, PD, 21), and then given continuous access to two fluids on PDs 34-45: one containing water and the other containing an ascending series of saccharin-sweetened ethanol (3-6-10%). Prior to the introduction of ethanol (PDs 30-33), increased water and food intake was detected in some of the isolation-reared groups, and controls indicated that isolated mice also consumed more 'saccharin-only' solution. Voluntary drinking of 'ethanol-only' was also higher in a subset of the isolated groups on PDs 46-49. However, sweetened ethanol intake was increased in all isolated strain × sex combinations irrespective of genotype. Surprisingly, blood ethanol concentration (BEC) was not different between these isolate and socially housed groups 4 h into the dark phase. Using lickometer-based measures of intake in FVB mice, we identified that a predominance of increased drinking during isolation transpired outside of the typical circadian consumption peak, occurring ≈8.5 h into the dark phase, with an associated difference in BEC. These findings collectively indicate that isolate housing leads to increased consumption of rewarding substances in adolescent mice independent of their genotype, and that for ethanol this may be because of when individuals drink during the circadian cycle.
Collapse
Affiliation(s)
- J B Panksepp
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - E D Rodriguez
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - A E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
9
|
Prairie Voles as a Model to Screen Medications for the Treatment of Alcoholism and Addictions. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:403-21. [PMID: 27055620 DOI: 10.1016/bs.irn.2016.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Most preclinical studies of medications to treat addictions are performed in mice and rats. These two rodent species belong to one phylogenetic subfamily, which narrows the likelihood of identifying potential mechanisms regulating addictions in other species, ie, humans. Expanding the genetic diversity of organisms modeling alcohol and drug abuse enhances our ability to screen for medications to treat addiction. Recently, research laboratories adapted the prairie vole model to study mechanisms of alcohol and drugs of abuse. This development not only expanded the diversity of genotypes used to screen medications, but also enhanced capabilities of such screens. Prairie voles belong to 3-5% of mammalian species exhibiting social monogamy. This unusual trait is reflected in their ability to form lasting long-term affiliations between adult individuals. The prairie vole animal model has high predictive validity for mechanisms regulating human social behaviors. In addition, these animals exhibit high alcohol intake and preference. In laboratory settings, prairie voles are used to model social influences on drug reward and alcohol consumption as well as effects of addictive substances on social bonding. As a result, this species can be adapted to screen medications whose effectiveness could be (a) resistant to social influences promoting excessive drug taking, (b) dependent on the presence of social support, and (c) medications affecting harmful social consequences of alcohol and drug abuse. This report reviews the literature on studies of alcohol and psychostimulants in prairie voles and discusses capabilities of this animal model as a screen for novel medications to treat alcoholism and addictions.
Collapse
|
10
|
Strickland JC, Smith MA. Animal models of social contact and drug self-administration. Pharmacol Biochem Behav 2015; 136:47-54. [PMID: 26159089 DOI: 10.1016/j.pbb.2015.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 06/27/2015] [Accepted: 06/30/2015] [Indexed: 01/28/2023]
Abstract
Social learning theories of drug abuse propose that individuals imitate drug use behaviors modeled by social peers, and that these behaviors are selectively reinforced and/or punished depending on group norms. Historically, animal models of social influence have focused on distal factors (i.e., those factors outside the drug-taking context) in drug self-administration studies. Recently, several investigators have developed novel models, or significantly modified existing models, to examine the role of proximal factors (i.e., those factors that are immediately present at the time of drug taking) on measures of drug self-administration. Studies using these newer models have revealed several important conclusions regarding the effects of social learning on drug abuse: 1) the presence of a social partner influences drug self-administration, 2) the behavior of a social partner determines whether social contact will increase or decrease drug intake, and 3) social partners can model and imitate specific patterns of drug self-administration. These findings are congruent with those obtained in the human laboratory, providing support for the cross-species generality and validity of these preclinical models. This mini-review describes in detail some of the preclinical animal models used to study social contact and drug self-administration to guide future research on social learning and drug abuse.
Collapse
Affiliation(s)
| | - Mark A Smith
- Department of Psychology, Davidson College, Davidson, NC 28035, USA; Program in Neuroscience, Davidson College, Davidson, NC 28035, USA.
| |
Collapse
|
11
|
Renoir T. New frontiers in the neuropsychopharmacology of mental illness. Front Pharmacol 2014; 5:212. [PMID: 25278898 PMCID: PMC4166207 DOI: 10.3389/fphar.2014.00212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/15/2022] Open
Affiliation(s)
- Thibault Renoir
- Behavioural Neuroscience, Florey Institute of Neuroscience and Mental Health, University of Melbourne Melbourne, VIC, Australia ; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
12
|
Anacker AMJ, Smith ML, Ryabinin AE. Establishment of stable dominance interactions in prairie vole peers: relationships with alcohol drinking and activation of the paraventricular nucleus of the hypothalamus. Soc Neurosci 2014; 9:484-94. [PMID: 24963825 DOI: 10.1080/17470919.2014.931885] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dominance hierarchies are an important aspect of group-living as they determine individual access to resources. The existence of dominance ranks in access to space has not been described in socially monogamous, communally nesting prairie voles (Microtus ochrogaster). Here, we tested whether dominance could be assessed using the tube test. We also tested whether dominance related to alcohol intake, similar to what has been demonstrated in nonmonogamous species. Same-sex pairs of unfamiliar peers were tested in a series of three trials of the tube test, then paired and allowed individual access to alcohol and water for 4 days, and then tested again in the tube test. For all pairs, the same subjects won the majority of trials before and after alcohol drinking. The number of wins negatively correlated with alcohol intake on the first day of drinking and positively correlated with levels of Fos in the paraventricular nucleus of the hypothalamus following the tube test in a separate group of voles. Dominance was not related to Fos levels in other brain regions examined. Together, these results indicate that prairie voles quickly establish stable dominance ranks through a process possibly involving the hypothalamus and suggest that dominance is linked to alcohol drinking.
Collapse
Affiliation(s)
- Allison M J Anacker
- a Department of Behavioral Neuroscience , Oregon Health & Science University , Portland , OR 97239 , USA
| | | | | |
Collapse
|
13
|
Drinking alcohol has sex-dependent effects on pair bond formation in prairie voles. Proc Natl Acad Sci U S A 2014; 111:6052-7. [PMID: 24711424 DOI: 10.1073/pnas.1320879111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alcohol use and abuse profoundly influences a variety of behaviors, including social interactions. In some cases, it erodes social relationships; in others, it facilitates sociality. Here, we show that voluntary alcohol consumption can inhibit male partner preference (PP) formation (a laboratory proxy for pair bonding) in socially monogamous prairie voles (Microtus ochrogaster). Conversely, female PP is not inhibited, and may be facilitated by alcohol. Behavior and neurochemical analysis suggests that the effects of alcohol on social bonding are mediated by neural mechanisms regulating pair bond formation and not alcohol's effects on mating, locomotor, or aggressive behaviors. Several neuropeptide systems involved in the regulation of social behavior (especially neuropeptide Y and corticotropin-releasing factor) are modulated by alcohol drinking during cohabitation. These findings provide the first evidence to our knowledge that alcohol has a direct impact on the neural systems involved in social bonding in a sex-specific manner, providing an opportunity to explore the mechanisms by which alcohol affects social relationships.
Collapse
|