1
|
Talaee N, Azad Yekta M, Vaseghi S. New insights into individual differences in response to chronic unpredictable mild stress (CUMS) in rats with respect to hippocampal BDNF and GSK3-β expression levels. Physiol Behav 2024; 287:114718. [PMID: 39426694 DOI: 10.1016/j.physbeh.2024.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Preclinical and clinical studies have shown a wide-range of individual differences in response to stressors or novel environments which can affect the susceptibility to develop abnormal behaviors and neuropsychiatric disorders. Both vulnerability and resiliency have been observed in animals and humans experiencing stressful events. Chronic unpredictable mild stress (CUMS) is a rodent depression model consisting of various stressors. This protocol leads to depressive- and anhedonic-like behaviors in rodents. The present study aimed to evaluate potential individual differences in response to CUMS in rats, with respect to the expression level of brain-derived neurotrophic factor (BDNF) and glycogen synthase kinases 3-beta (GSK3-β) (proteins involved in the modulation of mood, neuroplasticity, and cognition) in the hippocampus. CUMS was performed for four consecutive weeks. Depressive-like behavior, locomotor activity, anxiety-like behavior, and pain threshold were also evaluated using forced swim test (FST), open field test (OFT), and the hot plate (HP), respectively. Real-time PCR was used to evaluate BDNF and GSK3-β expression levels. The results showed that CUMS rats can be classified as two clusters: affected and non-affected (depressed and non-depressed). Affected rats showed depressive- and anxiety-like behaviors, decreased locomotor activity, and increased pain threshold. However, non-affected rats were similar to controls. In addition, there was a downregulation of BDNF and upregulation of GSK3-β in affected rats. Spearman correlation analysis also showed a relationship between BDNF and GSK3-β expression levels with individual differences. In conclusion, the present study showed that BDNF and GSK3-β may be involved in individual differences in CUMS rats.
Collapse
Affiliation(s)
- Nastaran Talaee
- Department of Psychology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Azad Yekta
- Department of Psychology, Faculty of Educational Sciences and Psychology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran.
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| |
Collapse
|
2
|
Brown RE. Measuring the replicability of our own research. J Neurosci Methods 2024; 406:110111. [PMID: 38521128 DOI: 10.1016/j.jneumeth.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In the study of transgenic mouse models of neurodevelopmental and neurodegenerative disorders, we use batteries of tests to measure deficits in behaviour and from the results of these tests, we make inferences about the mental states of the mice that we interpret as deficits in "learning", "memory", "anxiety", "depression", etc. This paper discusses the problems of determining whether a particular transgenic mouse is a valid mouse model of disease X, the problem of background strains, and the question of whether our behavioural tests are measuring what we say they are. The problem of the reliability of results is then discussed: are they replicable between labs and can we replicate our results in our own lab? This involves the study of intra- and inter- experimenter reliability. The variables that influence replicability and the importance of conducting a complete behavioural phenotype: sensory, motor, cognitive and social emotional behaviour are discussed. Then the thorny question of failure to replicate is examined: Is it a curse or a blessing? Finally, the role of failure in research and what it tells us about our research paradigms is examined.
Collapse
Affiliation(s)
- Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
3
|
de Oliveira-Júnior BA, Marques DB, Rossignoli MT, Prizon T, Leite JP, Ruggiero RN. Multidimensional behavioral profiles associated with resilience and susceptibility after inescapable stress. Sci Rep 2024; 14:9699. [PMID: 38678053 PMCID: PMC11055923 DOI: 10.1038/s41598-024-59984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
Clinical depression is characterized by multiple concurrent symptoms, manifesting as a complex heterogeneous condition. Although some well-established classical behavioral assessments are widespread in rodent models, it remains uncertain whether rats also display stress-induced depression-related phenotypes in a multidimensional manner, i.e., simultaneous alterations in multiple behavioral tests. Here, we investigated multivariate patterns and profiles of depression-related behavioral traits in male Wistar rats subjected to inescapable footshocks (IS) or no-shocks (NS), followed by a comprehensive battery of behavioral tests and ethological characterization. We observed generalized stronger intra-test but weaker inter-test correlations. However, feature clustering of behavioral measures successfully delineated variables linked to resilience and susceptibility to stress. Accordingly, a noteworthy covariation pattern emerged, characterized by increased open field locomotion, reduced time in the elevated plus maze open arms, lower sucrose preference, and increased shuttle box escape failures that consistently differentiated IS from NS. Surprisingly there is little contribution from forced swim. In addition, individual clustering revealed a diversity of behavioral profiles, naturally separating NS and IS, including subpopulations entirely characterized by resilience or susceptibility. In conclusion, our study elucidates intricate relationships among classical depression-related behavioral measures, highlighting multidimensional individual variability. Our work emphasizes the importance of a multivariate framework for behavioral assessment in animal models to understand stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Benedito Alves de Oliveira-Júnior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
4
|
Löscher W. Of Mice and Men: The Inter-individual Variability of the Brain's Response to Drugs. eNeuro 2024; 11:ENEURO.0518-23.2024. [PMID: 38355298 PMCID: PMC10867552 DOI: 10.1523/eneuro.0518-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Biological variation is ubiquitous in nature. Despite highly standardized breeding and husbandry under controlled environmental conditions, phenotypic diversity exists in laboratory mice and rats just as it does in humans. The resulting inter-individual variability affects various characteristics of animal disease models, including the responsiveness to drugs. Thus, the common practice of averaging data within an experimental group can lead to misinterpretations in neuroscience and other research fields. In this commentary, the impact of inter-individual variation in drug responsiveness is illustrated by examples from the testing of antiseizure medications in rodent temporal lobe epilepsy models. Individual mice and rats rendered epileptic by treatment according to standardized protocols fall into groups that either do or do not respond to antiseizure medications, thus mimicking the clinical situation in patients with epilepsy. Population responses are not normally distributed, and divergent responding is concealed in averages subjected to parametric statistical tests. Genetic, epigenetic, and environmental factors are believed to contribute to inter-individual variation in drug response but the specific molecular and physiological causes are not well understood. Being aware of inter-individual variability in rodents allows an improved interpretation of both behavioral phenotypes and drug effects in a pharmacological experiment.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
5
|
Gonzales EL, Jeon SJ, Han KM, Yang SJ, Kim Y, Remonde CG, Ahn TJ, Ham BJ, Shin CY. Correlation between immune-related genes and depression-like features in an animal model and in humans. Brain Behav Immun 2023; 113:29-43. [PMID: 37379963 DOI: 10.1016/j.bbi.2023.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
A growing body of evidence suggests that immune-related genes play pivotal roles in the pathophysiology of depression. In the present study, we investigated a plausible connection between gene expression, DNA methylation, and brain structural changes in the pathophysiology of depression using a combined approach of murine and human studies. We ranked the immobility behaviors of 30 outbred Crl:CD1 (ICR) mice in the forced swim test (FST) and harvested their prefrontal cortices for RNA sequencing. Of the 24,532 analyzed genes, 141 showed significant correlations with FST immobility time, as determined through linear regression analysis with p ≤ 0.01. The identified genes were mostly involved in immune responses, especially interferon signaling pathways. Moreover, induction of virus-like neuroinflammation in the brains of two separate mouse cohorts (n = 30 each) using intracerebroventricular polyinosinic:polycytidylic acid injection resulted in increased immobility during FST and similar expression of top immobility-correlated genes. In human blood samples, candidate gene (top 5%) expression profiling using DNA methylation analysis found the interferon-related USP18 (cg25484698, p = 7.04 × 10-11, Δβ = 1.57 × 10-2; cg02518889, p = 2.92 × 10-3, Δβ = - 8.20 × 10-3) and IFI44 (cg07107453, p = 3.76 × 10-3, Δβ = - 4.94 × 10-3) genes to be differentially methylated between patients with major depressive disorder (n = 350) and healthy controls (n = 161). Furthermore, cortical thickness analyses using T1-weighted images revealed that the DNA methylation scores for USP18 were negatively correlated with the thicknesses of several cortical regions, including the prefrontal cortex. Our results reveal the important role of the interferon pathway in depression and suggest USP18 as a potential candidate target. The results of the correlation analysis between transcriptomic data and animal behavior carried out in this study provide insights that could enhance our understanding of depression in humans.
Collapse
Affiliation(s)
- Edson Luck Gonzales
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea; Department of Integrative Biotechnology, College of Science and Technology, Sahmyook University, Seoul 01795, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Seung Jin Yang
- Department of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Yujeong Kim
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Chilly Gay Remonde
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae Jin Ahn
- Department of Life Science, Handong Global University, Pohang 37554, Republic of Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
6
|
Sanchís-Ollé M, Belda X, Gagliano H, Visa J, Nadal R, Armario A. Animal models of PTSD: Comparison of the neuroendocrine and behavioral sequelae of immobilization and a modified single prolonged stress procedure that includes immobilization. J Psychiatr Res 2023; 160:195-203. [PMID: 36842332 DOI: 10.1016/j.jpsychires.2023.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
A single exposure to some stressors results in long-lasting consequences reminiscent of those found in post-traumatic stress disorder (PTSD), but results are very often controversial. Although there is no consensus regarding the best animal models of PTSD, the single prolonged stress (SPS) model, consisting of sequential exposure within the same day to various stressors (typically restraint, forced swim, and ether), has gained acceptance. However, results, particularly those related to the hypothalamic-pituitary-adrenal (HPA) axis, are inconsistent and there is no evidence that SPS is clearly distinct from models using a single severe stressor. In the present study, we compared in male rats the behavioral and neuroendocrine (HPA) consequences of exposure to immobilization on boards (IMO) with a SPS-like model (SPSi) in which IMO and isoflurane were substituted for restraint and ether, respectively. Both procedures caused a similar impact on food intake and body weight as well as on sensitization of the HPA response to a novel environment (hole-board) on the following day. Reduction of activity/exploration in the hole-board was also similar with both stressors, although the impact of sudden noise was higher in SPSi than IMO. Neither IMO nor SPSi significantly affected contextual fear conditioning acquisition, although a similar trend for impaired fear extinction was observed compared to controls. Exposure to additional stressors in the SPSi did not interfere with homotypic adaptation of the HPA axis to IMO. Thus, only modest neuroendocrine and behavioral differences were observed between IMO and SPSi and more studies comparing putative PTSD models are needed.
Collapse
Affiliation(s)
- María Sanchís-Ollé
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Xavier Belda
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Joan Visa
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Roser Nadal
- Unitat Mixta Translacional, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain
| | - Antonio Armario
- Unitat Mixta Translacional, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
7
|
Barroca NCB, Della Santa G, Suchecki D, García-Cairasco N, Umeoka EHDL. Challenges in the use of animal models and perspectives for a translational view of stress and psychopathologies. Neurosci Biobehav Rev 2022; 140:104771. [PMID: 35817171 DOI: 10.1016/j.neubiorev.2022.104771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
The neurobiology and development of treatments for stress-related neuropsychiatric disorders rely heavily on animal models. However, the complexity of these disorders makes it difficult to model them entirely, so only specific features of human psychopathology are emulated and these models should be used with great caution. Importantly, the effects of stress depend on multiple factors, like duration, context of exposure, and individual variability. Here we present a review on pre-clinical studies of stress-related disorders, especially those developed to model posttraumatic stress disorder, major depression, and anxiety. Animal models provide relevant evidence of the underpinnings of these disorders, as long as face, construct, and predictive validities are fulfilled. The translational challenges faced by scholars include reductionism and anthropomorphic/anthropocentric interpretation of the results instead of a more naturalistic and evolutionary understanding of animal behavior that must be overcome to offer a meaningful model. Other limitations are low statistical power of analysis, poor evaluation of individual variability, sex differences, and possible conflicting effects of stressors depending on specific windows in the lifespan.
Collapse
Affiliation(s)
- Nayara Cobra Barreiro Barroca
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Giovanna Della Santa
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Deborah Suchecki
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Norberto García-Cairasco
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; School of Medicine, University Center UniCerrado, Goiatuba, GO, Brazil
| |
Collapse
|
8
|
Variability in Behavioral Phenotypes after Forced Swimming-Induced Stress in Rats Is Associated with Expression of the Glucocorticoid Receptor, Nurr1, and IL-1β in the Hippocampus. Int J Mol Sci 2021; 22:ijms222312700. [PMID: 34884503 PMCID: PMC8657438 DOI: 10.3390/ijms222312700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/05/2022] Open
Abstract
Individual differences in coping with stress may determine either a vulnerable or resilient phenotype. Therefore, it is important to better understand the biology underlying the behavioral phenotype. We assessed whether individual behavioral phenotype to acute stress is related with the hippocampal expression of glucocorticoid receptor (GR), Nurr1, interleukin-1 beta (IL-1β) or brain-derived neurotrophic factor (BDNF). Wistar male rats were exposed to forced swimming for 15 min and sacrificed at different times. Behavioral response was analyzed, and it was compared with the gene and protein expression of GR, Nurr1, IL-1β and BDNF in the hippocampus for each time point. Behavioral phenotyping showed a group with high immobility (vulnerable) while another had low immobility (resilient). No significant differences were found in the Nurr1, IL-1β and BDNF mRNA levels between resilient and vulnerable rats at different recovery times except for Nr3c1 (gene for GR). However, exposure to stress caused significantly higher levels of GR, Nurr1 and IL-1β proteins of vulnerable compared to resilient rats. This variability of behavioral phenotypes is associated with a differential molecular response to stress that involves GR, Nurr1, and IL-1β as mediators in coping with stress. This contributes to identifying biomarkers of susceptibility to stress.
Collapse
|
9
|
van der Goot MH, Kooij M, Stolte S, Baars A, Arndt SS, van Lith HA. Incorporating inter-individual variability in experimental design improves the quality of results of animal experiments. PLoS One 2021; 16:e0255521. [PMID: 34351958 PMCID: PMC8341614 DOI: 10.1371/journal.pone.0255521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022] Open
Abstract
Inter-individual variability in quantitative traits is believed to potentially inflate the quality of results in animal experimentation. Yet, to our knowledge this effect has not been empirically tested. Here we test whether inter-individual variability in emotional response within mouse inbred strains affects the outcome of a pharmacological experiment. Three mouse inbred strains (BALB/c, C57BL/6 and 129S2) were behaviorally characterized through repeated exposure to a mild aversive stimulus (modified Hole Board, five consecutive trials). A multivariate clustering procedure yielded two multidimensional response types which were displayed by individuals of all three strains. We show that systematic incorporation of these individual response types in the design of a pharmacological experiment produces different results from an experimental pool in which this variation was not accounted for. To our knowledge, this is the first study that empirically confirms that inter-individual variability affects the interpretation of behavioral phenotypes and may obscure experimental results in a pharmacological experiment.
Collapse
Affiliation(s)
- Marloes H. van der Goot
- Faculty of Veterinary Medicine, Department Population Health Sciences, Section Animals in Science and Society, Utrecht University, Utrecht, the Netherlands
| | - Marieke Kooij
- Faculty of Veterinary Medicine, Department Population Health Sciences, Section Animals in Science and Society, Utrecht University, Utrecht, the Netherlands
| | - Suzanne Stolte
- Faculty of Veterinary Medicine, Department Population Health Sciences, Section Animals in Science and Society, Utrecht University, Utrecht, the Netherlands
| | - Annemarie Baars
- Faculty of Veterinary Medicine, Department Population Health Sciences, Section Animals in Science and Society, Utrecht University, Utrecht, the Netherlands
| | - Saskia S. Arndt
- Faculty of Veterinary Medicine, Department Population Health Sciences, Section Animals in Science and Society, Utrecht University, Utrecht, the Netherlands
| | - Hein A. van Lith
- Faculty of Veterinary Medicine, Department Population Health Sciences, Section Animals in Science and Society, Utrecht University, Utrecht, the Netherlands
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
10
|
van der Goot MH, Keijsper M, Baars A, Drost L, Hendriks J, Kirchhoff S, Lozeman-van T Klooster JG, van Lith HA, Arndt SS. Inter-individual variability in habituation of anxiety-related responses within three mouse inbred strains. Physiol Behav 2021; 239:113503. [PMID: 34153326 DOI: 10.1016/j.physbeh.2021.113503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/26/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
Inter-individual variability in behavioral and physiological response has become a well-established phenomenon in animal models of anxiety and other disorders. Such variability is even demonstrated within mouse inbred strains. A recent study showed that adaptive and non-adaptive anxiety phenotypes (measured as habituation and/or sensitization of anxiety responses) may differ within cohorts of 129 mice. This variability was expressed across both anxiety- and activity-related behavioral dimensions. These findings were based however on re-analysis of previously published data. The present study therefore aimed to empirically validate these findings in 129 mice. In addition, we assessed such inter-individuality in two other strains: BALB/c and C57BL/6. Males of three mouse inbred strains (BALB/c, C57BL/6 and 129S2) were behaviorally characterized through repeated exposure to a mild aversive stimulus (modified Hole Board, 4 consecutive trials). Behavioral observations were supplemented with assessment of circulating corticosterone levels. Clustering the individual response trajectories of behavioral and endocrine responses yielded two multidimensional response types of different adaptive value. Interestingly, these response types were displayed by individuals of all three strains. The response types differed significantly on anxiety and activity related behavioral dimensions but not on corticosterone concentrations. This study empirically confirms that adaptive capacities may differ within 129 cohorts. In addition, it extends this inter-individual variability in behavioral profiles to BALB/c and C57BL/6. Whether these two sub-types constitute differential anxiety phenotypes may differ per strain and requires further study.
Collapse
Affiliation(s)
- Marloes H van der Goot
- Section Animals in Science and Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Melissa Keijsper
- Section Animals in Science and Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Annemarie Baars
- Section Animals in Science and Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Lisa Drost
- Section Animals in Science and Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Judith Hendriks
- Section Animals in Science and Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Susanne Kirchhoff
- Section Animals in Science and Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - José G Lozeman-van T Klooster
- Section Animals in Science and Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Hein A van Lith
- Section Animals in Science and Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Saskia S Arndt
- Section Animals in Science and Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
11
|
Male long-Evans rats: An outbred model of marked hypothalamic-pituitary-adrenal hyperactivity. Neurobiol Stress 2021; 15:100355. [PMID: 34307794 PMCID: PMC8283147 DOI: 10.1016/j.ynstr.2021.100355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 11/21/2022] Open
Abstract
Rat and mouse strains differ in behavioral and physiological characteristics, and such differences can contribute to explain discrepant results between laboratories and better select the most appropriate strain for a particular purpose. Differences in the activity of the hypothalamic-pituitary-adrenal (HPA) axis are particularly important given the pivotal role of this system in determining consequences of exposure to stressors. In this regard, Long-Evans (LE) rats are widely used in stress research, but there is no specific study aiming at thoroughly characterizing HPA activity in LE versus other extensively used strains. In a first experiment, LE showed higher resting ACTH and corticosterone levels only at certain points of the circadian rhythm, but much greater ACTH responsiveness to stressors (novel environment and forced swim) than Sprague-Dawley (SD) rats. Accordingly, enhanced corticotropin-releasing hormone (CRH) expression in the paraventricular nucleus of the hypothalamus and reduced expression of glucocorticoid receptors were observed in the hippocampal formation. Additionally, they are hyperactive in novel environments, and prone to adopt passive-like behavior when compared to SD rats. Supporting that altered HPA function has a marked physiological impact, we observed in another set of animals much lower thymus weight in LE than SD rats. Finally, to demonstrate that LE rats are likely to have higher HPA responsiveness to stressors than most strains, we studied resting and stress levels of HPA hormones in LE versus Wistar and Fischer rats, the latter considered an example of high HPA responsiveness. Again, LE showed higher resting and stress levels of ACTH than both Wistar and Fischer rats. As ACTH responsiveness to stressors in LE rats is stronger than that previously reported when comparing other rat strains and they are commercially available, they could be an appropriate model for studying the behavioral and physiological implications of a hyper-active HPA axis under normal and pathological conditions. Strain differences in hypothalamic-pituitary-adrenal (HPA) function were studied. Long-Evans (LE) rats show greater HPA response to stressors than other strains. CRH expression in critical brain areas is greater in LE than Sprague-Dawley (SD) rats. Glucocorticoid receptor expression was lower in the hippocampal formation of LE rats. LE rats are more active in novel environments but showed more passive coping.
Collapse
|
12
|
Armario A. The forced swim test: Historical, conceptual and methodological considerations and its relationship with individual behavioral traits. Neurosci Biobehav Rev 2021; 128:74-86. [PMID: 34118295 DOI: 10.1016/j.neubiorev.2021.06.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/13/2021] [Accepted: 06/06/2021] [Indexed: 01/14/2023]
Abstract
The forced swim test (FST), developed by Porsolt and collaborators in 1977 to evaluate antidepressant (AD) treatments in rodents, has become extensively used for this purpose and to evaluate depression-like states. Despite its popularity, studies have raised important concerns regarding its theoretical and predictive validity. In my view and that of others, the FST mainly evaluates coping strategies in an inescapable situation. Although it is reasonable to assume that ADs act favoring active coping whereas negative affective states would favor passive coping, this does not mean that only ADs should enhance active coping or that a depression state has developed, respectively. Given its simplicity, proper interpretation of the FST behavior is critically dependent on how FST behavior relates to other behavioral traits. Unfortunately, this issue has been poorly discussed previously. Then, the present review, using a historical perspective, offers information needed to better understand the meaning and limitations of the FST, discusses critical methodological aspects and analyzes the relationship of FST behavior with classical behavioral traits in rodents.
Collapse
Affiliation(s)
- Antonio Armario
- Institut de Neurociències, Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, CIBERSAM, Campus Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.
| |
Collapse
|
13
|
Nadal R, Gabriel-Salazar M, Sanchís-Ollé M, Gagliano H, Belda X, Armario A. Individual differences in the neuroendocrine response of male rats to emotional stressors are not trait-like and strongly depend on the intensity of the stressors. Psychoneuroendocrinology 2021; 125:105127. [PMID: 33453596 DOI: 10.1016/j.psyneuen.2021.105127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/18/2020] [Accepted: 01/03/2021] [Indexed: 10/22/2022]
Abstract
Biological response to stressors is critical to understand stress-related pathologies and vulnerability to psychiatric diseases. It is assumed that we can identify trait-like characteristics in biological responsiveness by testing subjects in a particular stressful situation, but there is scarce information on this issue. We then studied, in a normal outbred population of adult male rats (n = 32), the response of well-characterized stress markers (ACTH, corticosterone and prolactin) to different types of stressors: two novel environments (open-field, OF1 and OF2), an elevated platform (EP), forced swim (SWIM) and immobilization (IMO). Based on both plasma ACTH and prolactin levels, the OF1 was the lowest intensity situation, followed by the OF2 and the EP, then SWIM and finally IMO. When correlations between the individual responses to the different stressors were studied, the magnitude of the correlations was most dependent on the similarities in intensity rather than on other characteristics of stressors, with good correlations between similar intensity stressors and no correlations at all were found between stressors markedly differing in intensity. In two additional confirmatory experiments (n = 37 and n = 20) with HPA hormones, we observed good correlation between the response to restraint and IMO, which were close in intensity, and no correlation between OF1 and SWIM. The present results suggest that individual neuroendocrine response to a particular stressor does not predict the response to another stressor greatly differing in intensity, thus precluding characterization of low or high responsive individuals to any stressor in a normal population. The present data have important implications for human studies.
Collapse
Affiliation(s)
- Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Psychobiology Unit, Faculty of Psychology, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Spain
| | - Marina Gabriel-Salazar
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - María Sanchís-Ollé
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Xavier Belda
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Spain.
| |
Collapse
|
14
|
Albrecht A, Ben-Yishay E, Richter-Levin G. Behavioral profiling reveals an enhancement of dentate gyrus paired pulse inhibition in a rat model of PTSD. Mol Cell Neurosci 2021; 111:103601. [PMID: 33545324 DOI: 10.1016/j.mcn.2021.103601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/02/2020] [Accepted: 01/28/2021] [Indexed: 11/27/2022] Open
Abstract
We recently introduced behavioral profiling as a translational approach to increase the validity of animal models of posttraumatic stress disorder (PTSD). Behavioral profiling utilizes the response of a 'normal population' of control animals and compares the performance of animals with a history of traumatic stress in different behavioral tests that can capture PTSD-like symptoms. Thus, affected, PTSD-like individuals can be subdivided from resilient trauma-exposed animals. While in our recent study we focused mainly on tests for activity and anxiety, we now expand the behavioral tests battery and include also fear memory and extinction tasks as well as a spatial object recognition test in our behavioral profiling approach. Utilizing underwater trauma as the traumatic event, we found that only a small subset of animals exposed to underwater trauma showed lasting increases in anxiety-like behavior and heightened emotional memory formation. Adding juvenile stress as a model for childhood adversity increased the prevalence of such affected animals and furthermore and induced additional cognitive deficits in a subgroup of such emotionally affected individuals. In addition, multiple affected individual rats displayed increased local circuit activity in the dorsal dentate gyrus, as measured in vivo with paired pulse protocols in anesthetized animals. Together, our findings highlight behavioral profiling, refined by including multiple behavioral tests, as a valid tool to identify PTSD-like vs. resilient individual animals and further suggest that enhanced local inhibition in specific circuits of the dorsal dentate gyrus may be associated with the observed symptoms.
Collapse
Affiliation(s)
- Anne Albrecht
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; Institute of Anatomy, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Elhanan Ben-Yishay
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), 199 Aba-Hushi Avenue, 3498838 Haifa, Israel
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; Department of Psychology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel
| |
Collapse
|
15
|
Carratalá-Ros C, Olivares-García R, Martínez-Verdú A, Arias-Sandoval E, Salamone JD, Correa M. Energizing effects of bupropion on effortful behaviors in mice under positive and negative test conditions: modulation of DARPP-32 phosphorylation patterns. Psychopharmacology (Berl) 2021; 238:3357-3373. [PMID: 34498115 PMCID: PMC8629809 DOI: 10.1007/s00213-021-05950-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
Motivational symptoms such as anergia, fatigue, and reduced exertion of effort are seen in depressed people. To model this, nucleus accumbens (Nacb) dopamine (DA) depletions are used to induce a low-effort bias in rodents tested on effort-based decision-making. We evaluated the effect of the catecholamine uptake blocker bupropion on its own, and after administration of tetrabenazine (TBZ), which blocks vesicular storage, depletes DA, and induces depressive symptoms in humans. Male CD1 mice were tested on a 3-choice-T-maze task that assessed preference between a reinforcer involving voluntary physical activity (running wheel, RW) vs. sedentary activities (sweet food pellet intake or a neutral non-social odor). Mice also were tested on the forced swim test (FST), two anxiety-related measures (dark-light box (DL), and elevated plus maze (EPM)). Expression of phosphorylated DARPP-32 (Thr34 and Thr75) was evaluated by immunohistochemistry as a marker of DA-related signal transduction. Bupropion increased selection of RW activity on the T-maze. TBZ reduced time running, but increased time-consuming sucrose, indicating an induction of a low-effort bias, but not an effect on primary sucrose motivation. In the FST, bupropion reduced immobility, increasing swimming and climbing, and TBZ produced the opposite effects. Bupropion reversed the effects of TBZ on the T-maze and the FST, and also on pDARPP32-Thr34 expression in Nacb core. None of these manipulations affected anxiety-related parameters. Thus, bupropion improved active behaviors, which were negatively motivated in the FST, and active behaviors that were positively motivated in the T-maze task, which has implications for using catecholamine uptake inhibitors for treating anergia and fatigue-like symptoms.
Collapse
Affiliation(s)
- Carla Carratalá-Ros
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071 Castelló, Spain
| | | | - Andrea Martínez-Verdú
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071 Castelló, Spain
| | - Edgar Arias-Sandoval
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071 Castelló, Spain
| | - John D. Salamone
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT 06269-1020 USA
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071, Castelló, Spain.
| |
Collapse
|
16
|
Barroca NCB, Baes CVW, Martins-Monteverde CMS, Bosaipo NB, Santos da Silva Umeoka M, Tejada J, Antunes-Rodrigues J, de Castro M, Juruena MF, Garcia-Cairasco N, Umeoka EHDL. Evaluation of the HPA Axis' Response to Pharmacological Challenges in Experimental and Clinical Early-Life Stress-Associated Depression. eNeuro 2021; 8:ENEURO.0222-20.2020. [PMID: 33318074 PMCID: PMC7814478 DOI: 10.1523/eneuro.0222-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/27/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
Early-life stress (ELS) is associated with a higher risk of psychopathologies in adulthood, such as depression, which may be related to persistent changes in the hypothalamic-pituitary-adrenal (HPA) axis. This study aimed to evaluate the effects of ELS on the functioning of the HPA axis in clinical and experimental situations. Clinically, patients with current depressive episodes, with and without ELS, and healthy controls, composed the sample. Subjects took a capsule containing placebo, fludrocortisone, prednisolone, dexamethasone or spironolactone followed by an assessment of plasma cortisol the morning after. Experimentally, male Wistar rats were submitted to ELS protocol based on variable, unpredictable stressors from postnatal day (PND)1 to PND21. On PND65 animals were behaviorally evaluated through the forced-swimming test (FST). At PND68, pharmacological challenges started, using mifepristone, dexamethasone, spironolactone, or fludrocortisone, and corticosterone levels were determined 3 h after injections. Cortisol response of the patients did not differ significantly from healthy subjects, regardless of their ELS history, and it was lower after fludrocortisone, prednisolone, and dexamethasone compared with placebo, indicating the suppression of plasma cortisol by all these treatments. Animals exposed to ELS presented altered phenotype as indicated by an increased immobility time in the FST when compared with control, but no significant long-lasting effects of ELS were observed on the HPA axis response. Limitations on the way the volunteers were sampled may have contributed to the lack of ELS effects on the HPA axis, pointing out the need for further research to understand these complex phenomena.
Collapse
Affiliation(s)
- Nayara Cobra Barreiro Barroca
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
| | - Cristiane Von Werne Baes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
| | | | - Nayanne Beckmann Bosaipo
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
| | - Marcia Santos da Silva Umeoka
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
- Research Group on Neurobiology of Behavior, Cognition and Emotions, Faculty of Medicine, University Center Unicerrado, Goiatuba, 75600-000, Brazil
| | - Julian Tejada
- Psychology Department, Federal University of Sergipe, São Cristóvão, 49100-000, Brazil
| | - José Antunes-Rodrigues
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
| | - Margaret de Castro
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
| | - Mario Francisco Juruena
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
- Department of Psychological Medicine, Kings College London, London, SE5 8AF, United Kingdom
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
- Research Group on Neurobiology of Behavior, Cognition and Emotions, Faculty of Medicine, University Center Unicerrado, Goiatuba, 75600-000, Brazil
| |
Collapse
|
17
|
van der Goot MH, Boleij H, van den Broek J, Salomons AR, Arndt SS, van Lith HA. An individual based, multidimensional approach to identify emotional reactivity profiles in inbred mice. J Neurosci Methods 2020; 343:108810. [PMID: 32574640 DOI: 10.1016/j.jneumeth.2020.108810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Despite extensive environmental standardization and the use of genetically and microbiologically defined mice of similar age and sex, individuals of the same mouse inbred strain commonly differ in quantitative traits. This is a major issue as it affects the quality of experimental results. Standard analysis practices summarize numerical data by means and associated measures of dispersion, while individual values are ignored. Perhaps taking individual values into account in statistical analysis may improve the quality of results. NEW METHOD The present study re-inspected existing data on emotional reactivity profiles in 125 BALB/cJ and 129 mice, which displayed contrasting patterns of habituation and sensitization when repeatedly exposed to a novel environment (modified Hole Board). Behaviors were re-analyzed on an individual level, using a multivariate approach, in order to explore whether this yielded new information regarding subtypes of response, and their expression between and within strains. RESULTS Clustering individual mice across multiple behavioral dimensions identified two response profiles: a habituation and a sensitization cluster. COMPARISON WITH EXISTING METHOD(S) These retrospect analyses identified habituation and sensitization profiles that were similar to those observed in the original data but also yielded new information such as a more pronounced sensitization response. Also, it allowed for the identification of individuals that deviated from the predominant response profile within a strain. CONCLUSIONS The present approach allows for the behavioral characterization of experimental animals on an individual level and as such provides a valuable contribution to existing approaches that take individual variation into account in statistical analysis.
Collapse
Affiliation(s)
- Marloes H van der Goot
- Department Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Hetty Boleij
- Department Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jan van den Broek
- Department Population Health Sciences, Unit Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Amber R Salomons
- Department Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Saskia S Arndt
- Department Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Hein A van Lith
- Department Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
18
|
Regev-Tsur S, Demiray YE, Tripathi K, Stork O, Richter-Levin G, Albrecht A. Region-specific involvement of interneuron subpopulations in trauma-related pathology and resilience. Neurobiol Dis 2020; 143:104974. [PMID: 32561495 DOI: 10.1016/j.nbd.2020.104974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/12/2020] [Accepted: 06/13/2020] [Indexed: 01/22/2023] Open
Abstract
Only a minority of trauma-exposed individuals develops Posttraumatic stress disorder (PTSD) and active processes may support trauma resilience. Individual behavioral profiling allows investigating neurobiological alterations related to resilience or pathology in animal models of PTSD and is utilized here to examine the activation of different interneuron subpopulations of the dentate gyrus-amygdala system associated with trauma resilience or pathology. To model PTSD, rats were exposed to juvenile stress combined with underwater trauma (UWT) in adulthood. Four weeks later, individual anxiety levels were assessed in the elevated plus maze test for classifying rats as highly anxious 'affected' vs. 'non-affected', i.e. behaving as control animals. Analyzing the activation of specific interneuron subpopulations in the dorsal and ventral dentate gyrus (DG), the basolateral (BLA) and central amygdala by immunohistochemical double-labeling for cFos and different interneuron markers, revealed an increased activation of cholecystokinin (CCK)-positive interneurons in the ventral DG, together with increased activation of parvalbumin- and CCK-positive interneurons in the BLA of affected trauma-exposed rats. By contrast, increased activation of neuropeptide Y (NPY)-positive interneurons was observed in the dorsal DG of trauma-exposed, but non-affected rats. To test for a direct contribution of NPY in the dorsal DG to trauma resilience, a local shRNA-mediated knock down was performed after UWT. Such a treatment significantly reduced the prevalence of resilient animals. Our results suggest that distinct interneuron populations are associated with resilience or pathology in PTSD with high regional specificity. NPY within the dorsal DG was found to significantly contribute to trauma resilience.
Collapse
Affiliation(s)
- Stav Regev-Tsur
- Sagol Department of Neurobiology, University of Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Israel; Psychology Department, University of Haifa, Israel
| | - Yunus Emre Demiray
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Germany
| | | | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Germany; Center for Behavioral Brain Science, Magdeburg, Germany.
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Israel; Psychology Department, University of Haifa, Israel.
| | - Anne Albrecht
- Sagol Department of Neurobiology, University of Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Israel; Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Germany; Center for Behavioral Brain Science, Magdeburg, Germany
| |
Collapse
|
19
|
Kanemoto M, Nakamura T, Sasahara M, Ichijo H. Stress-Related Neuronal Clusters in Sublenticular Extended Amygdala of Basal Forebrain Show Individual Differences of Positions. Front Neural Circuits 2020; 14:29. [PMID: 32547372 PMCID: PMC7270356 DOI: 10.3389/fncir.2020.00029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/23/2020] [Indexed: 12/02/2022] Open
Abstract
To understand functional neuronal circuits for emotion in the basal forebrain, patterns of neuronal activation were examined in mice by immunohistochemistry of immediate-early gene products (Zif268/Egr1 and c-Fos). In all mice examined, clusters of 30–50 neurons expressing Zif268 were found on both sides in the area between the extended amygdala (EA) and globus pallidus (GP), generally designated as sublenticular extended amygdala (SLEA). The clusters consisted of 79.9 ± 3.0% of GABAergic neurons in GAD65-mCherry mice. The expression of the cholinergic marker choline acetyltransferase and the GP markers parvalbumin, proenkephalin, and FoxP2 indicated that these neurons were different from known types of neurons in the EA and GP; therefore, we named them the sublenticular extended amygdalar Zif268/Egr1-expressing neuronal cluster (SLEA-zNC). Sublenticular extended amygdalar Zif268/Egr1-expressing neuronal clusters participated in stress processing because increasing numbers of cells were observed in SLEA-zNCs after exposure to restraint stress (RS), the induction of which was suppressed by diazepam treatment. Mapping SLEA-zNCs showed that their positions and arrangement varied individually; SLEA-zNCs were distributed asymmetrically and tended to be situated mainly in the middle region between the anterior commissure (AC) and posterior end of the GP. However, the total cell number in SLEA-zNCs was compatible between the right and left hemispheres after activation by RS. Therefore, SLEA-zNCs were distributed asymmetrically but were not lateralized. Because time courses of activation differed between the Zif268 and c-Fos, the sequential dual treatment of RSs enabled us to differentiate SLEA-zNCs activated by the first and second RS. The results supported that the same SLEA-zNCs responded to both the first and second RS, and this also applied for all SLEA-zNCs. Thus, we concluded that the cluster positions were invariable under RS in each mouse but were distributed differently between individual mice. We name these newly identified neuronal clusters as stress-related neuronal clusters, SLEA-zNCs, which are considered to be novel functional units of “islands of activation.” Moreover, SLEA-zNCs were situated at different positions in all mice examined, showing individual differences in their positions.
Collapse
Affiliation(s)
- Munenori Kanemoto
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomoya Nakamura
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Masakiyo Sasahara
- Department of Pathology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hiroyuki Ichijo
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
20
|
Carratalá-Ros C, López-Cruz L, SanMiguel N, Ibáñez-Marín P, Martínez-Verdú A, Salamone JD, Correa M. Preference for Exercise vs. More Sedentary Reinforcers: Validation of an Animal Model of Tetrabenazine-Induced Anergia. Front Behav Neurosci 2020; 13:289. [PMID: 32082126 PMCID: PMC7002319 DOI: 10.3389/fnbeh.2019.00289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/19/2019] [Indexed: 11/13/2022] Open
Abstract
Physical activities can have intrinsic motivational or reinforcing properties. The choice to engage in voluntary physical activity is undertaken in relation to the selection of other alternatives, such as sedentary behaviors, drugs, or food intake. The mesolimbic dopamine (DA) system plays a critical role in behavioral activation or exertion of effort, and DA antagonism or depletion induces anergia in effort-based decision-making tasks. However, little is known about the neural mechanisms underlying the decision-making processes that establish preferences for sedentary vs. activity-based reinforcers. In the present work with male CD1 mice, we evaluated the effect of tetrabenazine (TBZ), a DA-depleting agent, on a three-choice T-maze task developed to assess preference between reinforcers with different behavioral activation requirements and sensory properties [i.e., a running wheel (RW) vs. sweet pellets or a neutral nonsocial odor]. We also studied the effects of TBZ on the forced swim test (FST), which measures climbing and swimming in a stressful setting, and on anxiety tests [dark-light (DL) box and elevated plus maze (EPM)]. In the three-choice task, TBZ reduced time running in the wheel but increased time spent consuming sucrose, thus indicating reduced activation but relatively intact sucrose reinforcement. The effect of TBZ was not mimicked by motivational manipulations that change the value of the reinforcers, such as making the RW aversive or harder to move, food-restricting the animals, inducing a binge-like eating pattern, or introducing social odors. In the FST, TBZ decreased time climbing (most active behavior) and increased immobility but did not affect anxiety in the DL or EPM. These results indicate that the three-choice T-maze task could be useful for assessing DA modulation of preferences for exercise based on activation and effort requirements, differentiating those effects from changes in preference produced by altering physical requirements, food restriction state, and stress during testing.
Collapse
Affiliation(s)
- Carla Carratalá-Ros
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, Castelló de la Plana, Spain
| | - Laura López-Cruz
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, Castelló de la Plana, Spain
| | - Noemí SanMiguel
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, Castelló de la Plana, Spain
| | - Patricia Ibáñez-Marín
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, Castelló de la Plana, Spain
| | - Andrea Martínez-Verdú
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, Castelló de la Plana, Spain
| | - John D Salamone
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| | - Mercè Correa
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, Castelló de la Plana, Spain
| |
Collapse
|
21
|
Yu Z, Chen N, Hu D, Chen W, Yuan Y, Meng S, Zhang W, Lu L, Han Y, Shi J. Decreased Density of Perineuronal Net in Prelimbic Cortex Is Linked to Depressive-Like Behavior in Young-Aged Rats. Front Mol Neurosci 2020; 13:4. [PMID: 32116542 PMCID: PMC7025547 DOI: 10.3389/fnmol.2020.00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures regulating developmental plasticity and protecting neurons against oxidative stress. PNN abnormalities have been observed in various psychiatric disorders such as schizophrenia and bipolar disorder, but the relationship between PNN density and depression still remains unclear. In the present study, we examined the density and components of PNNs including aggrecan, neurocan and Tenascin-R in the prelimbic cortex (PrL) after chronic unpredictable mild stress (CUMS). We found that depressive-like behaviors were induced after 30 days of CUMS accompanied by decreases in PNN+ cell density and aggrecan expression in the PrL. In addition, rats subjected to 20 days of CUMS were separated into vulnerable and resilient subpopulations that differ along several behavioral domains. Consistently, the density of PNNs and the expression level of neurocan in the vulnerable group were decreased compared to control and resilient groups. Finally, we examined individual differences based on locomotion in a novel context and classified rats as high responding (HR) and low responding (LR) phenotypes. The density of PNNs and the expression level of neurocan in the LR group were lower than the HR group. Moreover, the LR rats were more susceptible to depressive-like behaviors compared with HR rats. Altogether, these results suggest that the density of PNNs in the PrL is associated with depressive-like behaviors in young-aged rats, and it may serve as a potential endophenotype or therapeutic target for depression.
Collapse
Affiliation(s)
- Zhoulong Yu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Na Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Die Hu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenxi Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi Yuan
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, China
| |
Collapse
|
22
|
Nam H, Chandra R, Francis TC, Dias C, Cheer JF, Lobo MK. Reduced nucleus accumbens enkephalins underlie vulnerability to social defeat stress. Neuropsychopharmacology 2019; 44:1876-1885. [PMID: 31132785 PMCID: PMC6784997 DOI: 10.1038/s41386-019-0422-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/24/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Enkephalins, endogenous ligands for delta opioid receptors (DORs), are highly enriched in the nucleus accumbens (NAc). They are implicated in depression but their role in the NAc, a critical brain region for motivated behavior, is not fully investigated. To provide insight into enkephalin function we used a chronic social defeat stress paradigm, where animals are either categorized as susceptible or resilient to stress based on their performance in a social interaction test. Compared to controls, susceptible animals showed reduced enkephalin levels in the NAc. Such decrease in enkephalin levels is not due to a change in mRNA of its precursor protein, proenkephalin, in susceptible mice but is consistent with increased mRNA levels of enkephalinases in the NAc of susceptible animals. Systemic administration of enkephalinase inhibitors or NAc infusion of the DOR agonist, SNC80, caused a resilient outcome to CSDS. Both treatments increased phosphorylation of ERK, which was downregulated by social defeat stress. To further validate these results, we also used Q175 knock-in mice, an animal model of Huntington's disease in which enkephalin levels are reduced in striatum and comorbidity with mood disorders is common. Consistent with data in wild-type mice, Q175 animals showed reduced enkephalin levels in the NAc and enhanced susceptibility to a social defeat stress. Overall, our data implicate that depression-like behavior induced by social defeat stress arises from disrupted DOR signaling resulting from lowered levels of enkephalins, which is partly mediated through elevated expression of enkephalinases.
Collapse
Affiliation(s)
- Hyungwoo Nam
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - T Chase Francis
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Synaptic Plasticity Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Caroline Dias
- Department of Neuroscience, ICAHN School of Medicine at Mount Sinai, New York, NY, USA
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Individual variability in female and male mice in a test-retest protocol of the forced swim test. J Pharmacol Toxicol Methods 2019; 95:12-15. [DOI: 10.1016/j.vascn.2018.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/17/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
|
24
|
Carnevali L, Statello R, Sgoifo A. The Utility of Rodent Models of Stress for Disentangling Individual Vulnerability to Depression and Cardiovascular Comorbidity. Curr Cardiol Rep 2018; 20:111. [DOI: 10.1007/s11886-018-1064-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Larrieu T, Sandi C. Stress-Induced Depression: Is Social Rank a Predictive Risk Factor? Bioessays 2018; 40:e1800012. [PMID: 29869396 DOI: 10.1002/bies.201800012] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/27/2018] [Indexed: 12/17/2022]
Abstract
An intriguing question in the field of stress is what makes an individual more likely to be susceptible or resilient to stress-induced depression. Predisposition to stress susceptibility is believed to be influenced by genetic factors and early adversity. However, beyond genetics and life experiences, recent evidence has highlighted social rank as a key determinant of susceptibility to stress, underscoring dominant individuals as the vulnerable ones. This evidence is in conflict with epidemiological, clinical, and animal work pointing at a link between social subordination and depression. Here, we review and analyze rodent protocols addressing the relevance of social rank to predict vulnerability to chronic social stress. We also discuss whether a specific social status (i.e., dominance or subordination) is the appropriate predictor of vulnerability to develop stress-induced depression or rather, the loss of social rank and resources.
Collapse
Affiliation(s)
- Thomas Larrieu
- Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Carmen Sandi
- Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| |
Collapse
|
26
|
López-Cruz L, Salamone JD, Correa M. Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression. Front Pharmacol 2018; 9:526. [PMID: 29910727 PMCID: PMC5992708 DOI: 10.3389/fphar.2018.00526] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/01/2018] [Indexed: 01/06/2023] Open
Abstract
Major depressive disorder is one of the most common and debilitating psychiatric disorders. Some of the motivational symptoms of depression, such anergia (lack of self-reported energy) and fatigue are relatively resistant to traditional treatments such as serotonin uptake inhibitors. Thus, new pharmacological targets are being investigated. Epidemiological data suggest that caffeine consumption can have an impact on aspects of depressive symptomatology. Caffeine is a non-selective adenosine antagonist for A1/A2A receptors, and has been demonstrated to modulate behavior in classical animal models of depression. Moreover, selective adenosine receptor antagonists are being assessed for their antidepressant effects in animal studies. This review focuses on how caffeine and selective adenosine antagonists can improve different aspects of depression in humans, as well as in animal models. The effects on motivational symptoms of depression such as anergia, fatigue, and psychomotor slowing receive particular attention. Thus, the ability of adenosine receptor antagonists to reverse the anergia induced by dopamine antagonism or depletion is of special interest. In conclusion, although further studies are needed, it appears that caffeine and selective adenosine receptor antagonists could be therapeutic agents for the treatment of motivational dysfunction in depression.
Collapse
Affiliation(s)
- Laura López-Cruz
- Àrea de Psicobiologia, Universitat Jaume I, Castellón de la Plana, Spain
| | - John D. Salamone
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Castellón de la Plana, Spain
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
27
|
Al-Noori S, Cimpan A, Maltzer Z, Kaiyala KJ, Ramsay DS. Plasma corticosterone, epinephrine, and norepinephrine levels increase during administration of nitrous oxide in rats. Stress 2018; 21:274-278. [PMID: 29145764 PMCID: PMC6310116 DOI: 10.1080/10253890.2017.1402175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nitrous oxide (N2O) is a gaseous drug with abuse potential. Despite its common clinical use, little is known about whether N2O administration activates the HPA axis and/or the sympathetic adrenomedullary system. The goal of this study was to determine whether 60% N2O alters plasma concentrations of corticosterone (CORT), epinephrine (EPI), and norepinephrine (NE) in male Long-Evans rats. A gas-tight swivel assembly in the lid of a gas administration chamber allowed the remote collection of blood samples from an indwelling jugular vein catheter at four time-points: baseline and at 30, 60, and 120 min during a two-hour administration of 60% N2O. Relative to baseline, plasma CORT (n = 9) was significantly elevated at all three time-points during N2O inhalation (mixed model analysis, p = .001) and plasma EPI and NE levels were each significantly elevated (n = 8, p ≤ .001) at the 30 min assessment. EPI then declined and did not differ from baseline at the 60 and 120 min assessments (p > .05) whereas NE remained elevated (120 min, p = .001). Administration of 60% N2O increases circulating CORT, EPI, and NE, supporting N2O as a physiological stressor. An N2O-induced increase in CORT is consistent with the observation that addictive drugs typically activate the HPA axis causing increased plasma levels of glucocorticoids. Allostatic models of drug addiction typically involve stress systems and the possible role of stress hormones in N2O-induced allostatic dysregulation is discussed.
Collapse
Affiliation(s)
- Salwa Al-Noori
- Department of Oral Health Sciences at the University of Washington, Seattle, WA, USA
- Division of Biological Sciences, School of STEM, University of Washington, Bothell, WA, USA
| | - Andreas Cimpan
- Division of Biological Sciences, School of STEM, University of Washington, Bothell, WA, USA
| | - Zoe Maltzer
- Department of Oral Health Sciences at the University of Washington, Seattle, WA, USA
| | - Karl J. Kaiyala
- Department of Oral Health Sciences at the University of Washington, Seattle, WA, USA
| | - Douglas S. Ramsay
- Department of Oral Health Sciences at the University of Washington, Seattle, WA, USA
| |
Collapse
|
28
|
Stepanichev M, Manolova A, Peregud D, Onufriev M, Freiman S, Aniol V, Moiseeva Y, Novikova M, Lazareva N, Gulyaeva N. Specific Activity Features in the Forced Swim Test: Brain Neurotrophins and Development of Stress-induced Depressive-like Behavior in Rats. Neuroscience 2018; 375:49-61. [DOI: 10.1016/j.neuroscience.2018.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/14/2022]
|
29
|
D'Souza D, Sadananda M. Estrous Cycle Phase-Dependent Changes in Anxiety- and Depression-Like Profiles in the Late Adolescent Wistar-Kyoto Rat. Ann Neurosci 2017; 24:136-145. [PMID: 28867895 DOI: 10.1159/000477151] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/23/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Depression often manifests during adolescence when the development and networking of social and emotional brain areas is being influenced by hormones. The Wistar Kyoto (WKY) rat has been proposed as an animal model of adolescent depression with various face, construct, and predictive validities for clinical depression having been established. PURPOSE The influence of the estrous cycle on anxiety- and depression-like behaviors in female adolescents may be tested out further using this model. METHODS Female adolescent WKY rats were tested for anxiety- and depression-like behaviors in the elevated plus maze and forced swim test (FST) during different phases of the estrous cycle with inbred, age-, and phase-matched Wistar rats as controls. RESULTS Wistars in proestrus-estrus demonstrated reduced anxiety levels. WKY also demonstrated increased open arm time and entries and closed arm time, but less than Wistars, and as closed arm entries remained unaffected, it did not translate into a lowering of the anxiety levels. Risk taking and risk assessment behaviors were not affected by estrous phases in WKY, though exploratory behavior was reduced in proestrus-estrus. In Wistars, increased risk taking and decreased risk assessment behaviors were observed during proestrus-estrus. Increased immobility in the FST, indicative of learned helplessness was not influenced by phase in the WKY, which was at variance with Wistars that demonstrated phase-specific differences. CONCLUSION Results indicate a masking effect of indicative hormones in this putative model of adolescent depression, with implications for an unravelling of the steroid milieu in predisposed adolescent depression and for taking phase-specific time windows into account for therapeutic interventions.
Collapse
Affiliation(s)
- Deepthi D'Souza
- Brain Research Laboratory, Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri, India
| | - Monika Sadananda
- Brain Research Laboratory, Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri, India
| |
Collapse
|
30
|
Ebner K, Singewald N. Individual differences in stress susceptibility and stress inhibitory mechanisms. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2016.11.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
D'Souza D, Sadananda M. Anxiety- and depressive-like profiles during early- and mid-adolescence in the female Wistar Kyoto rat. Int J Dev Neurosci 2016; 56:18-26. [PMID: 27845188 DOI: 10.1016/j.ijdevneu.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/14/2016] [Accepted: 11/10/2016] [Indexed: 01/12/2023] Open
Abstract
Approaches for the development of preclinical models of depression extensively use adult and male animals owing to the discrepancies arising out of the hormonal flux in adult females and adolescents during attainment of puberty. Thus the increased vulnerability of females towards clinical depression and anxiety-related disorders remains incompletely understood. Development of clinical models of depression in adolescent females is essential in order to evolve effective treatment strategies for adolescent depression. In the present study, we have examined the anxiety and depressive-like profiles in a putative animal model of childhood depression, the Wistar Kyoto (WKY) rat, during early adolescence (∼postnatal day 30) and mid-adolescence (∼postnatal day 40). Female adolescent WKY rats, tested on a series of behavioural tests modelling anxiety- and depressive-like behaviours with age-matched Wistars as controls, demonstrated marked differences during early adolescence in a strain- and age-specific manner. Anxiety indices were obtained from exposure to the elevated plus maze, where social communication vide 50-kHz ultrasonic vocalizations was also assessed, while immobility and other parameters in the forced swim test were screened for depressive-like profiles. Sucrose preference, used as a measure of anhedonia in animals, was lower in WKYs at both ages tested and decreased with age. Anxiety-related behaviours were prominent in WKY rats only during early adolescence. WKY female rats are anxious during early adolescence and exhibit anhedonia as a core symptom of depression during early- and mid-adolescence, thus indicating that inclusion of female animals in preclinical trials is essential and will contribute to gender-based approaches to diagnosis and treatment of adolescent depression in females.
Collapse
Affiliation(s)
- Deepthi D'Souza
- Brain Research Laboratory, Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri 574 199, Karnataka, India
| | - Monika Sadananda
- Brain Research Laboratory, Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri 574 199, Karnataka, India.
| |
Collapse
|
32
|
Middle-range exploratory activity in adult rats suggests higher resilience to chronic social defeat. Acta Neuropsychiatr 2016; 28:125-40. [PMID: 26669552 DOI: 10.1017/neu.2015.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Stressful life events play an important role in the aetiology of human mood disorders and are frequently modelled by chronic social defeat (SD) in rodents. Exploratory phenotype in rats is a stable trait that is likely related to inter-individual differences in reactivity to stress. The aim of the study was to confirm that low levels of exploratory activity (LE) are, in rodents, a risk factor for passive stress coping, and to clarify the role of medium (ME) and high (HE) exploratory disposition in the sensitivity to SD. METHODS We examined the effect of SD on male Wistar rats with LE, ME, and HE activity levels as measured in the exploration box. After SD, the rats were evaluated in social preference, elevated zero maze, and open-field tests. Brain tissue levels of monoamines were measured by high-performance liquid chromatography. RESULTS Rats submitted to SD exhibited lower weight gain, higher sucrose consumption, showed larger stress-induced hyperthermia, lower levels of homovanillic acid in the frontal cortex, and higher levels of noradrenaline in the amygdala and hippocampus. Open-field, elevated zero maze, and social preference tests revealed the interaction between stress and phenotype, as only LE-rats were further inhibited by SD. ME-rats exhibited the least reactivity to stress in terms of changes in body weight, stress-induced hyperthermia, and sucrose intake. CONCLUSION Both low and high novelty-related activity, especially the former, are associated with elevated sensitivity to social stress. This study shows that both tails of a behavioural dimension can produce stress-related vulnerability.
Collapse
|
33
|
Ardi Z, Albrecht A, Richter-Levin A, Saha R, Richter-Levin G. Behavioral profiling as a translational approach in an animal model of posttraumatic stress disorder. Neurobiol Dis 2016; 88:139-47. [PMID: 26804028 DOI: 10.1016/j.nbd.2016.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 12/28/2022] Open
Abstract
Diagnosis of psychiatric disorders in humans is based on comparing individuals to the normal population. However, many animal models analyze averaged group effects, thus compromising their translational power. This discrepancy is particularly relevant in posttraumatic stress disorder (PTSD), where only a minority develop the disorder following a traumatic experience. In our PTSD rat model, we utilize a novel behavioral profiling approach that allows the classification of affected and unaffected individuals in a trauma-exposed population. Rats were exposed to underwater trauma (UWT) and four weeks later their individual performances in the open field and elevated plus maze were compared to those of the control group, allowing the identification of affected and resilient UWT-exposed rats. Behavioral profiling revealed that only a subset of the UWT-exposed rats developed long-lasting behavioral symptoms. The proportion of affected rats was further enhanced by pre-exposure to juvenile stress, a well-described risk factor of PTSD. For a biochemical proof of concept we analyzed the expression levels of the GABAA receptor subunits α1 and α2 in the ventral, dorsal hippocampus and basolateral amygdala. Increased expression, mainly of α1, was observed in ventral but not dorsal hippocampus of exposed animals, which would traditionally be interpreted as being associated with the exposure-resultant psychopathology. However, behavioral profiling revealed that this increased expression was confined to exposed-unaffected individuals, suggesting a resilience-associated expression regulation. The results provide evidence for the importance of employing behavioral profiling in animal models of PTSD, in order to better understand the neural basis of stress vulnerability and resilience.
Collapse
Affiliation(s)
- Ziv Ardi
- Sagol Department of Neurobiology, University of Haifa, Israel; The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa, Israel.
| | - Anne Albrecht
- Sagol Department of Neurobiology, University of Haifa, Israel; The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa, Israel
| | - Alon Richter-Levin
- The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa, Israel
| | - Rinki Saha
- Sagol Department of Neurobiology, University of Haifa, Israel; The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa, Israel
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Israel; The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa, Israel; Psychology Department, University of Haifa, Israel
| |
Collapse
|
34
|
Ketcha Wanda GJM, Ngitedem SG, Njamen D. Botanicals for mood disorders with a focus on epilepsy. Epilepsy Behav 2015; 52:319-28. [PMID: 26409901 DOI: 10.1016/j.yebeh.2015.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 01/11/2023]
Abstract
Mood disorders are among the major health problems that exist worldwide. They are highly prevalent in the general population and cause significant disturbance of life quality and social functioning of the affected persons. The two major classes of mood disorders are bipolar disorders and depression. The latter is assumed to be the most frequent psychiatric comorbidity in epilepsy. Studies published during the second half of the 20th century recognized that certain patients with epilepsy present a depressed mood. Synthesized pharmaceuticals have been in use for decades to treat both mood disorders and epilepsy, but despite their efficiency, their use is limited by numerous side effects. On the other hand, animal models have been developed to deeply study potential botanicals which have an effect on mood disorders. Studies to investigate the potential effects of medicinal plants acting on the nervous system and used to treat seizures and anxiety are increasingly growing. However, these studies discuss the two conditions separately without association. In this review, we present animal models of depression and investigative models (methods of assessing depression) of depression and anxiety in animals. Other classical test models for prediction of clinical antidepressant activity are presented. Finally, this review also highlights antidepressant activities of herbals focusing specially on depression-like behaviors associated with epilepsy. The pharmacological properties and active principles of cited medicinal plants are emphasized. This review, therefore, provides an overview of the work done on botanicals for mood disorders, potential mechanisms of action of botanicals, and the major compounds. This article is part of a Special Issue entitled "Botanicals for Epilepsy".
Collapse
Affiliation(s)
| | - Steve Guemnang Ngitedem
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Dieudonné Njamen
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| |
Collapse
|
35
|
Luo YW, Xu Y, Cao WY, Zhong XL, Duan J, Wang XQ, Hu ZL, Li F, Zhang JY, Zhou M, Dai RP, Li CQ. Insulin-like growth factor 2 mitigates depressive behavior in a rat model of chronic stress. Neuropharmacology 2015; 89:318-24. [PMID: 25446675 DOI: 10.1016/j.neuropharm.2014.10.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 10/04/2014] [Accepted: 10/08/2014] [Indexed: 12/27/2022]
Abstract
Depression is a common psychiatric disorder associated with chronic stress. Insulin-like growth factor 2 (IGF2) is a growth factor that serves important roles in the brain during development and at adulthood. Here, the role of IGF2 expression in the hippocampus was investigated in a rat model of depression. A chronic restraint stress (CRS) model of depression was established in rats, exhibiting depression-like behavior as assessed with the sucrose preference test (SPT) and forced swimming test (FST), and with evaluation of the corticosterone levels. Hippocampal IGF2 levels were significantly lower in rats suffering CRS than in controls, as were levels of pERK1/2 and GluR1. Lentivirus-mediated hippocampal IGF2 overexpression alleviated depressive behavior in restrained rats, elevated the levels of pERK1/2 and GluR1 proteins, but it did not affect the expression of pGSK3β, GluR2, NMDAR1, and NMDAR2A. These results suggest the chronic restraint stress induces depressive behavior, which may be mediated by ERK-dependent IGF2 signaling, pointing to an antidepressant role for this molecular pathway.
Collapse
Affiliation(s)
- Yan-Wei Luo
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, 410013, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bruzos-Cidón C, Llamosas N, Ugedo L, Torrecilla M. Dysfunctional inhibitory mechanisms in locus coeruleus neurons of the wistar kyoto rat. Int J Neuropsychopharmacol 2015; 18:pyu122. [PMID: 25586927 PMCID: PMC4540101 DOI: 10.1093/ijnp/pyu122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/30/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The noradrenergic nucleus locus coeruleus (LC) has functional relevance in several psychopathologies such as stress, anxiety, and depression. In addition to glutamatergic and GABAergic synaptic inputs, the activation of somatodendritic α2-adrenoceptors is the main responsible for LC activity regulation. The Wistar Kyoto (WKY) rat exhibits depressive- and anxiety-like behaviors and hyperresponse to stressors. Thus, the goal of the present study was to investigate in vitro the sensitivity of α2-adrenoceptors, as well as the glutamatergic and GABAergic synaptic activity on LC neurons of the WKY strain. METHODS For that purpose patch-clamp whole-cell recordings were done in LC slices. RESULTS The α2-adrenoceptors of LC neurons from WKY rats were less sensitive to the effect induced by the agonist UK 14 304 as compared to that recorded in the Wistar (Wis) control strain. In addition, the GABAergic input to LC neurons of WKY rats was significantly modified compared to that in Wis rats, since the amplitude of spontaneous GABAergic postsynaptic currents was reduced and the half-width increased. On the contrary, no significant alterations were detected regarding glutamatergic input to LC neurons between rat strains. CONCLUSIONS These results point out that in WKY rats the inhibitory control exerted by α2-adrenoceptors and GABAergic input onto LC neurons is dysregulated. Overall, this study supports in this animal model the hypothesis that claims an imbalance between the glutamatergic-GABAergic systems as a key factor in the pathophysiology of depression.
Collapse
Affiliation(s)
| | | | | | - M Torrecilla
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain (Drs Bruzos-Cidón, Ugedo, and Torrecilla, and Llamosas).
| |
Collapse
|
37
|
Filali M, Lalonde R. Motor activity in young APPswe + PS1/A246E bigenic mice as a predicting variable for memory decline. J Neurosci Res 2015; 93:948-53. [PMID: 25594937 DOI: 10.1002/jnr.23552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/27/2014] [Accepted: 12/02/2014] [Indexed: 12/19/2022]
Abstract
Reports of individuality in rodent species have been a subject of debate in pharmacology and other fields. In the current study, APPswe + PS1/A246E bigenic mice with Alzheimer's-like pathogenesis and wild-type controls were subdivided at 3 months of age into low, intermediate, and high responders in open-field activity. The mice were then evaluated longitudinally at 3 and 9 months for object recognition. Irrespective of genotype, mice with a high level of motor activity had better scores in object recognition. However, a significant correlation was established between open-field activity measured at 3 months of age and recognition memory measured at 9 months of age in the bigenic group only. These results indicate that motor activity in young mice with amyloid neuropathology may serve as a predicting variable for cognitive dysfunction in more mature mice.
Collapse
Affiliation(s)
- Mohammed Filali
- Functional Analysis of Animal Behavior Platform, CHU de Québec Research Center, and Department of Molecular Medicine, Laval University, Québec City, Québec, Canada
| | | |
Collapse
|
38
|
Gagliano H, Nadal R, Armario A. Sex differences in the long-lasting effects of a single exposure to immobilization stress in rats. Horm Behav 2014; 66:793-801. [PMID: 25461973 DOI: 10.1016/j.yhbeh.2014.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 10/21/2014] [Accepted: 11/08/2014] [Indexed: 12/28/2022]
Abstract
In male rats, a single exposure to a severe stressor such as immobilization (IMO) results in marked activation of the HPA axis and reduction of body weight gain. In addition, the HPA response to the same (homotypic) stressor is reduced, whereas the response to a different (heterotypic) stressor is enhanced for days. Although sex differences in the responsiveness of the HPA axis have been described, there are few studies about the influence of sex on long-lasting effects of stress. Thus, we have compared the consequences of a single exposure to IMO in male and female rats. Females showed a similar ACTH response to the first IMO associated with higher corticosterone, but they were more resistant than males to stress-induced loss of body weight. Unstressed females showed higher resting levels of ACTH and corticosterone, but they did not show the increase in the resting levels of HPA hormones observed in males on the day after IMO. During exposure to a different stressor (open-field) two days after IMO, enhanced corticosterone response and hypoactivity was observed in males, but not in females. Finally, a second exposure to IMO 8 days after the first one resulted in a reduction of the HPA response and of the negative impact on body weight as compared to the first exposure, and this protective effect was greater in females. In sum, IMO-exposed females showed a greater reduction of the response to a second IMO and appear to be more resistant than males to some of the negative impacts of IMO.
Collapse
Affiliation(s)
- Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit (Faculty of Biosciences), Universitat Autònoma de Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Psychobiology Unit (Faculty of Psychology), Universitat Autònoma de Barcelona, Spain.
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit (Faculty of Biosciences), Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
39
|
Daviu N, Andero R, Armario A, Nadal R. Sex differences in the behavioural and hypothalamic-pituitary-adrenal response to contextual fear conditioning in rats. Horm Behav 2014; 66:713-23. [PMID: 25311689 DOI: 10.1016/j.yhbeh.2014.09.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/02/2014] [Accepted: 09/30/2014] [Indexed: 12/17/2022]
Abstract
In recent years, special attention is being paid to sex differences in susceptibility to disease. In this regard, there is evidence that male rats present higher levels of both cued and contextual fear conditioning than females. However, little is known about the concomitant hypothalamic-pituitary-adrenal (HPA) axis response to those situations which are critical in emotional memories. Here, we studied the behavioural and HPA responses of male and female Wistar rats to context fear conditioning using electric footshock as the aversive stimulus. Fear-conditioned rats showed a much greater ACTH and corticosterone response than those merely exposed to the fear conditioning chamber without receiving shocks. Moreover, males presented higher levels of freezing whereas HPA axis response was greater in females. Accordingly, during the fear extinction tests, female rats consistently showed less freezing and higher extinction rate, but greater HPA activation than males. Exposure to an open-field resulted in lower activity/exploration in fear-conditioned males, but not in females, suggesting greater conditioned cognitive generalization in males than females. It can be concluded that important sex differences in fear conditioning are observed in both freezing and HPA activation, but the two sets of variables are affected in the opposite direction: enhanced behavioural impact in males, but enhanced HPA responsiveness in females. Thus, the role of sex differences on fear-related stimuli may depend on the variables chosen to evaluate it, the greater responsiveness of the HPA axis in females perhaps being an important factor to be further explored.
Collapse
Affiliation(s)
- Núria Daviu
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Raül Andero
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Antonio Armario
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| | - Roser Nadal
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Psychobiology (School of Psychology), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| |
Collapse
|
40
|
Renoir T. New frontiers in the neuropsychopharmacology of mental illness. Front Pharmacol 2014; 5:212. [PMID: 25278898 PMCID: PMC4166207 DOI: 10.3389/fphar.2014.00212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/15/2022] Open
Affiliation(s)
- Thibault Renoir
- Behavioural Neuroscience, Florey Institute of Neuroscience and Mental Health, University of Melbourne Melbourne, VIC, Australia ; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
41
|
Fuentes S, Carrasco J, Armario A, Nadal R. Behavioral and neuroendocrine consequences of juvenile stress combined with adult immobilization in male rats. Horm Behav 2014; 66:475-86. [PMID: 25036868 DOI: 10.1016/j.yhbeh.2014.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/06/2014] [Accepted: 07/09/2014] [Indexed: 12/19/2022]
Abstract
Exposure to stress during childhood and adolescence increases vulnerability to developing several psychopathologies in adulthood and alters the activity of the hypothalamic-pituitary-adrenal (HPA) axis, the prototypical stress system. Rodent models of juvenile stress appear to support this hypothesis because juvenile stress can result in reduced activity/exploration and enhanced anxiety, although results are not always consistent. Moreover, an in-depth characterization of changes in the HPA axis is lacking. In the present study, the long-lasting effects of juvenile stress on adult behavior and HPA function were evaluated in male rats. The juvenile stress consisted of a combination of stressors (cat odor, forced swim and footshock) during postnatal days 23-28. Juvenile stress reduced the maximum amplitude of the adrenocorticotropic hormone (ACTH) levels (reduced peak at lights off), without affecting the circadian corticosterone rhythm, but other aspects of the HPA function (negative glucocorticoid feedback, responsiveness to further stressors and brain gene expression of corticotrophin-releasing hormone and corticosteroid receptors) remained unaltered. The behavioral effects of juvenile stress itself at adulthood were modest (decreased activity in the circular corridor) with no evidence of enhanced anxiety. Imposition of an acute severe stressor (immobilization on boards, IMO) did not increase anxiety in control animals, as evaluated one week later in the elevated-plus maze (EPM), but it potentiated the acoustic startle response (ASR). However, acute IMO did enhance anxiety in the EPM, in juvenile stressed rats, thereby suggesting that juvenile stress sensitizes rats to the effects of additional stressors.
Collapse
Affiliation(s)
- Silvia Fuentes
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - Javier Carrasco
- Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Psychobiology Unit (School of Psychology), Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|