1
|
Azimizonuzi H, Ghayourvahdat A, Ahmed MH, Kareem RA, Zrzor AJ, Mansoor AS, Athab ZH, Kalavi S. A state-of-the-art review of the recent advances of theranostic liposome hybrid nanoparticles in cancer treatment and diagnosis. Cancer Cell Int 2025; 25:26. [PMID: 39871316 PMCID: PMC11773959 DOI: 10.1186/s12935-024-03610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025] Open
Abstract
Theranostics is a way of treating illness that blends medicine with testing. Specific characteristics should be present in the best theranostic agents for cancer: (1) the drugs should be safe and non-toxic; (2) they should be able to treat cancer selectively; and (3) they should be able to build up only in the cancerous tissue. Liposomes (LPs) are one of the most efficient drug delivery methods based on nanotechnology. Stealth LPs and commercial LPs have recently had an impact on cancer treatment. Using the valuable information from each imaging technique, along with the multimodality imaging functionality of liposomal therapeutic agents, makes them very appealing for personalized monitoring of how well therapeutic drugs are working against cancer in vivo and for predicting how well therapies will work. On the other hand, their use as nanoparticle delivery systems is currently in the research and development phase. Nanoscale delivery system innovation has made LP-nanoparticle hybrid structures very useful for combining therapeutic and imaging methods. LP-hybrid nanoparticles are better at killing cancer cells than their LP counterparts, making them excellent options for in vivo and in vitro drug delivery applications. Hybrid liposomes (HLs) could be used in the future as theranostic carriers to find and treat cancer targets. This would combine the best features of synthetic and biological drug delivery systems. Overarchingly, this article provided a comprehensive overview of the many LP types used in cancer detection, therapy, and theranostic analysis. An evaluation of the pros and cons of the many HLs types used in cancer detection and treatment has also been conducted. The study also included recent and significant research on HLs for cancer theranostic applications. We conclude by outlining the potential benefits and drawbacks of this theranostic approach to the concurrent detection and treatment of different malignancies, as well as its prospects.
Collapse
Affiliation(s)
- Hannaneh Azimizonuzi
- Inventor Member of International Federation of Inventors Associations, Geneva, Switzerland
| | - Arman Ghayourvahdat
- Inventor Member of International Federation of Inventors Associations, Geneva, Switzerland
| | | | | | - Athmar Jaber Zrzor
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Silva RO, Haddad M, Counil H, Zaouter C, Patten SA, Fulop T, Ramassamy C. Exploring the potential of plasma and adipose mesenchymal stem cell-derived extracellular vesicles as novel platforms for neuroinflammation therapy. J Control Release 2025; 377:880-898. [PMID: 39617173 DOI: 10.1016/j.jconrel.2024.11.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Persistent reactive oxygen species (ROS) and neuroinflammation contribute to the onset and progression of neurodegenerative diseases, underscoring the need for targeted therapeutic strategies to mitigate these effects. Extracellular vesicles (EVs) show promise in drug delivery due to their biocompatibility, ability to cross biological barriers, and specific interactions with cell and tissue receptors. In this study, we demonstrated that human plasma-derived EVs (pEVs) exhibit higher brain-targeting specificity, while adipose-derived mesenchymal stem cells EVs (ADMSC-EVs) offer regenerative and immunomodulatory properties. We further investigated the potential of these EVs as therapeutic carriers for brain-targeted drug delivery, using Donepezil (DNZ) as the model drug. DNZ, a cholinesterase inhibitor commonly used for Alzheimer's disease (AD), also has neuroprotective and anti-inflammatory properties. The size of EVs used ranged from 50 to 300 nm with a surface charge below -30 mV. Both formulations showed rapid cellular internalization, without toxicity, and the ability to cross the blood-brain barrier (BBB) in a zebrafish model. The have analyzed the anti-inflammatory and antioxidant actions of pEVs-DNZ and ADMSC-EVs-DNZ in the presence of lipopolysaccharide (LPS). ADMSC-EVs significantly reduced the inflammatory mediators released by HMC3 microglial cells while treatment with pEVs-DNZ and ADMSC-EVs-DNZ lowered both phagocytic activity and ROS levels in these cells. In vivo experiments using zebrafish larvae revealed that both EV formulations reduced microglial proliferation and exhibited antioxidant effects. Overall, this study highlights the potential of EVs loaded with DNZ as a novel approach for treating neuroinflammation underlying various neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Mohamed Haddad
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Hermine Counil
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Charlotte Zaouter
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Shunmoogum A Patten
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, University Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Charles Ramassamy
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
3
|
Ebrahimi F, Kumari A, Ghadami S, Al Abdullah S, Dellinger K. The Potential for Extracellular Vesicles in Nanomedicine: A Review of Recent Advancements and Challenges Ahead. Adv Biol (Weinh) 2024:e2400623. [PMID: 39739455 DOI: 10.1002/adbi.202400623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Indexed: 01/02/2025]
Abstract
Extracellular vesicles (EVs) have emerged as promising tools in diagnostics and therapy for chronic diseases, including cancer and Alzheimer's. Small EVs, also called exosomes, are lipid-bound particles (≈30-150 nm) that play a role in healthy and pathophysiological interactions, including intercellular communication, by transporting bioactive molecules, including proteins, lipids, and nucleic acids. Their ability to cross biological barriers, such as the blood-brain barrier, makes them ideal candidates for targeted therapeutic interventions. In the context of chronic diseases, exosomes can be engineered to deliver active agents, including small molecules and siRNAs to specific target cells, providing a novel approach to precision medicine. Moreover, exosomes show great promise as repositories for diagnostic biomarkers. Their cargo can reflect the physiological and pathological status of the parent cells, making them valuable indicators of disease progression and response to treatment. This paper presents a comprehensive review of the application of exosomes in four chronic diseases: cancer, cardiovascular disease, neurodegenerative disease, and orthopedic disease, which significantly impact global public health due to their high prevalence and associated morbidity and mortality rates. Furthermore, the potential of exosomes as valuable tools for theranostics and disease management is highlighted. Finally, the challenges associated with exosomes and their demonstrated potential for advancing future nanomedicine applications are discussed.
Collapse
Affiliation(s)
- Farbod Ebrahimi
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Anjali Kumari
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Samaneh Ghadami
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Saqer Al Abdullah
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| |
Collapse
|
4
|
Martinez J, Ingram N, Kapur N, Jayne DG, Beales PA. Vesicle-based formulations for pain treatment: a narrative review. Pain Rep 2024; 9:e1196. [PMID: 39399306 PMCID: PMC11469894 DOI: 10.1097/pr9.0000000000001196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 10/15/2024] Open
Abstract
Pain, a complex and debilitating condition, necessitates innovative therapeutic strategies to alleviate suffering and enhance patients' quality of life. Vesicular systems hold the potential to enhance precision of drug localisation and release, prolong the duration of therapeutic action and mitigate adverse events associated with long-term pharmacotherapy. This review critically assesses the current state-of-the-art in vesicle-based formulations (liposomes, polymersomes, ethosomes, and niosomes) for pain management applications. We highlight formulation engineering strategies used to optimise drug pharmacokinetics, present preclinical findings of experimental delivery systems, and discuss the clinical evidence for the benefits of clinically approved formulations. We present the challenges and outlook for future improvements in long-acting anaesthetic and analgesic formulation development.
Collapse
Affiliation(s)
- Juan Martinez
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
- Leeds Institute for Medical Research, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Nicola Ingram
- Leeds Institute for Medical Research, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Nikil Kapur
- School of Mechanical Engineering, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - David G. Jayne
- Leeds Institute for Medical Research, University of Leeds, Leeds, West Yorkshire, United Kingdom
- The John Goligher Colorectal Surgery Unit, St. James's University Hospital, Leeds Teaching Hospital Trust, Leeds, West Yorkshire, United Kingdom
| | - Paul A. Beales
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
| |
Collapse
|
5
|
Berger B, Vietor HM, Scott DW, Lee H, Hashemipour S, Im W, Wittenberg NJ, Glover KJ. Physicochemical Properties of Seed Oil Blends and Their Potential for the Creation of Synthetic Oleosomes with Modulated Polarities. ACS OMEGA 2024; 9:43193-43202. [PMID: 39464465 PMCID: PMC11500134 DOI: 10.1021/acsomega.4c07512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
There is an increasing demand within the pharmaceutical and cosmetic industries for biofriendly lipid-based active ingredient delivery systems. Micelles, liposomes, and lipid nanoparticles are currently the most used systems despite their limitations. Oleosomes, also known as lipid droplets, are promising alternatives to the existing strategies. Oleosomes are typically found in plant cells and are characterized by a nonpolar triacylglycerol core surrounded by a phospholipid monolayer punctuated with the protein oleosin. Producing oleosomes synthetically allows the customization of their lipid content, size, protein content, and oil core characteristics, expanding their versatility. Herein we demonstrate a proof of concept for the use of synthetic oleosomes to sequester polar molecules by modulating their core polarity with blends of sunflower and castor oils. The physical properties (density, refractive index, and permittivity) of the oil blends are characterized and demonstrate ideal mixing of the oils, which is supported by molecular dynamics simulations. Spectroscopic examination of the oil blends using fluorescent probes shows that the polarity of oil blends increases as the fraction of castor oil increases. Finally, we show that the uptake of a polar fluorescent probe (NBD-glucose) into synthetic oleosomes is enhanced by increasing the polarity of the oil core, but large charged molecules are excluded from the core regardless of polarity. These experiments show that synthetic oleosomes with tunable oil cores can expand the range of molecules that can be loaded into a biofriendly package as desired for biotechnology applications.
Collapse
Affiliation(s)
- Brett
A. Berger
- Department
of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| | - Henry M. Vietor
- Department
of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| | - Dane W. Scott
- Department
of Chemistry, East Tennessee State University, P.O. Box 70695, Johnson City, Tennessee 37614, United States
| | - Hwayoung Lee
- Department
of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Sanaz Hashemipour
- Department
of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments
of Biological Sciences and Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J. Wittenberg
- Department
of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| | - Kerney Jebrell Glover
- Department
of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
6
|
Patias NS, Sinhorin VDG, Ferneda AJLB, Ferneda JMA, Sugui MM, Ferrarini SR, Bomfim GF, Lopes JW, Antoniassi NAB, Cavalheiro L, Domingues NLDC, Sinhorin AP. Study of Liposomes Containing Extract from the Leaves of Protium heptaphyllum (Aubl.) March in Animals Submitted to a Mutagenic Model Induced by Cyclophosphamide. BIOLOGY 2024; 13:706. [PMID: 39336133 PMCID: PMC11428719 DOI: 10.3390/biology13090706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
Cyclophosphamide (CPA) is an alkylating agent used as a chemotherapy agent in the treatment of cancer, but it has immunosuppressive effects. Protium heptaphyllum (P. heptaphyllum) is a plant rich in triterpenes and flavonoids, with some bioactive and therapeutic properties presented in the literature. Thus, the present study aimed to investigate the chemoprotective potential of P. heptaphyllum extract inserted into liposomes against oxidative damage chemically induced by CPA. Male Swiss mice received 1.5 mg/kg of P. heptaphyllum liposomes as a pre-treatment for 14 consecutive days (via gavage) and 100 mg/kg of CPA in a single dose (via intraperitoneal) on the 15th day. After the experimental period, blood and organ samples were collected for histopathological and biochemical analyses, including superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione S-transferase (GST), reduced glutathione (GSH), thiobarbituric acid reactive substances (TBARS), ascorbic acid (ASA), carbonyl protein, cytokine measurement, and micronucleus testing. The results showed that liposomes containing P. heptaphyllum extract have an antimutagenic effect against damage induced to DNA by CPA, and that they also protect against oxidative stress, as verified by the increase in the antioxidant enzymes SOD and GPx. The improvement in alkaline phosphatase and creatinine markers suggests a beneficial effect on the liver and kidneys, respectively. However, the depletion of GSH in the liver and brain suggests the use of antioxidants for the metabolism of molecules generated in these tissues. In general, these data show good prospects for the use of P. heptaphyllum liposomes as a cancer chemoprotective agent, as well as possible antioxidant action, conceivably attributed to the flavonoids present in the plant extract.
Collapse
Affiliation(s)
- Naiéle Sartori Patias
- Postgraduate Program in Biotechnology and Biodiversity of the Pro Centro-Oeste Network, Federal University of Mato Grosso, Sinop 78550-728, Brazil; (N.S.P.); (N.L.d.C.D.)
| | - Valéria Dornelles Gindri Sinhorin
- Postgraduate Program in Biotechnology and Biodiversity of the Pro Centro-Oeste Network, Federal University of Mato Grosso, Sinop 78550-728, Brazil; (N.S.P.); (N.L.d.C.D.)
- Department of Chemistry, Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Cuiabá 78060-719, Brazil
| | - Ana Júlia Lopes Braga Ferneda
- Postgraduate Program in Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil; (A.J.L.B.F.); (S.R.F.); (G.F.B.)
| | - João Maurício Andrade Ferneda
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil; (J.M.A.F.); (M.M.S.); (J.W.L.); (N.A.B.A.)
| | - Marina Mariko Sugui
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil; (J.M.A.F.); (M.M.S.); (J.W.L.); (N.A.B.A.)
| | - Stela Regina Ferrarini
- Postgraduate Program in Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil; (A.J.L.B.F.); (S.R.F.); (G.F.B.)
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil; (J.M.A.F.); (M.M.S.); (J.W.L.); (N.A.B.A.)
| | - Gisele Facholi Bomfim
- Postgraduate Program in Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil; (A.J.L.B.F.); (S.R.F.); (G.F.B.)
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil; (J.M.A.F.); (M.M.S.); (J.W.L.); (N.A.B.A.)
| | - Joaz Wellington Lopes
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil; (J.M.A.F.); (M.M.S.); (J.W.L.); (N.A.B.A.)
| | - Nadia Aline Bobbi Antoniassi
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil; (J.M.A.F.); (M.M.S.); (J.W.L.); (N.A.B.A.)
- Animal Pathology Laboratory, Federal University of Mato Grosso, Sinop 78550-728, Brazil
| | - Larissa Cavalheiro
- Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil
| | - Nelson Luís de Campos Domingues
- Postgraduate Program in Biotechnology and Biodiversity of the Pro Centro-Oeste Network, Federal University of Mato Grosso, Sinop 78550-728, Brazil; (N.S.P.); (N.L.d.C.D.)
| | - Adilson Paulo Sinhorin
- Postgraduate Program in Biotechnology and Biodiversity of the Pro Centro-Oeste Network, Federal University of Mato Grosso, Sinop 78550-728, Brazil; (N.S.P.); (N.L.d.C.D.)
- Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil
| |
Collapse
|
7
|
Setyawati DR, Sekaringtyas FC, Pratiwi RD, Rosyidah A, Azhar R, Gustini N, Syahputra G, Rosidah I, Mardliyati E, Tarwadi, El Muttaqien S. Recent updates in applications of nanomedicine for the treatment of hepatic fibrosis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1105-1116. [PMID: 39188757 PMCID: PMC11346304 DOI: 10.3762/bjnano.15.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Over recent decades, nanomedicine has played an important role in the enhancement of therapeutic outcomes compared to those of conventional therapy. At the same time, nanoparticle drug delivery systems offer a significant reduction in side effects of treatments by lowering the off-target biodistribution of the active pharmaceutical ingredients. Cancer nanomedicine represents the most extensively studied nanotechnology application in the field of pharmaceutics and pharmacology since the first nanodrug for cancer treatment, liposomal doxorubicin (Doxil®), has been approved by the FDA. The advancement of cancer nanomedicine and its enormous technological success also included various other target diseases, including hepatic fibrosis. This confirms the versatility of nanomedicine for improving therapeutic activity. In this review, we summarize recent updates of nanomedicine platforms for improving therapeutic efficacy regarding liver fibrosis. We first emphasize the challenges of conventional drugs for penetrating the biological barriers of the liver. After that, we highlight design principles of nanocarriers for achieving improved drug delivery of antifibrosis drugs through passive and active targeting strategies.
Collapse
Affiliation(s)
- Damai Ria Setyawati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Fransiska Christydira Sekaringtyas
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Riyona Desvy Pratiwi
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - A’liyatur Rosyidah
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Rohimmahtunnissa Azhar
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Nunik Gustini
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Gita Syahputra
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Idah Rosidah
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Tarwadi
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Sjaikhurrizal El Muttaqien
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| |
Collapse
|
8
|
Peddinti V, Rout B, Agnihotri TG, Gomte SS, Jain A. Functionalized liposomes: an enticing nanocarrier for management of glioma. J Liposome Res 2024; 34:349-367. [PMID: 37855432 DOI: 10.1080/08982104.2023.2270060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023]
Abstract
Glioma is one of the most severe central nervous systems (CNS)-specific tumors, with rapidly growing malignant glial cells accounting for roughly half of all brain tumors and having a poor survival rate ranging from 12 to 15 months. Despite being the most often used technique for glioma therapy, conventional chemotherapy suffers from low permeability of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) to anticancer drugs. When it comes to nanocarriers, liposomes are thought of as one of the most promising nanocarrier systems for glioma treatment. However, owing to BBB tight junctions, non-targeted liposomes, which passively accumulate in most cancer cells primarily via the increased permeability and retention effect (EPR), would not be suitable for glioma treatment. The surface modification of liposomes with various active targeting ligands has shown encouraging outcomes in the recent times by allowing various chemotherapy drugs to pass across the BBB and BBTB and enter glioma cells. This review article introduces by briefly outlining the landscape of glioma, its classification, and some of the pathogenic causes. Further, it discusses major barriers for delivering drugs to glioma such as the BBB, BBTB, and tumor microenvironment. It further discusses modified liposomes such as long-acting circulating liposomes, actively targeted liposomes, stimuli responsive liposomes. Finally, it highlighted the limitations of liposomes in the treatment of glioma and the various actively targeted liposomes undergoing clinical trials for the treatment of glioma.
Collapse
Affiliation(s)
- Vasu Peddinti
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Biswajit Rout
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
9
|
Paramshetti S, Angolkar M, Talath S, Osmani RAM, Spandana A, Al Fatease A, Hani U, Ramesh KVRNS, Singh E. Unravelling the in vivo dynamics of liposomes: Insights into biodistribution and cellular membrane interactions. Life Sci 2024; 346:122616. [PMID: 38599316 DOI: 10.1016/j.lfs.2024.122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Liposomes, as a colloidal drug delivery system dating back to the 1960s, remain a focal point of extensive research and stand as a highly efficient drug delivery method. The amalgamation of technological and biological advancements has propelled their evolution, elevating them to their current status. The key attributes of biodegradability and biocompatibility have been instrumental in driving substantial progress in liposome development. Demonstrating a remarkable ability to surmount barriers in drug absorption, enhance stability, and achieve targeted distribution within the body, liposomes have become pivotal in pharmaceutical research. In this comprehensive review, we delve into the intricate details of liposomal drug delivery systems, focusing specifically on their pharmacokinetics and cell membrane interactions via fusion, lipid exchange, endocytosis etc. Emphasizing the nuanced impact of various liposomal characteristics, we explore factors such as lipid composition, particle size, surface modifications, charge, dosage, and administration routes. By dissecting the multifaceted interactions between liposomes and biological barriers, including the reticuloendothelial system (RES), opsonization, enhanced permeability and retention (EPR) effect, ATP-binding cassette (ABC) phenomenon, and Complement Activation-Related Pseudoallergy (CARPA) effect, we provide a deeper understanding of liposomal behaviour in vivo. Furthermore, this review addresses the intricate challenges associated with translating liposomal technology into practical applications, offering insights into overcoming these hurdles. Additionally, we provide a comprehensive analysis of the clinical adoption and patent landscape of liposomes across diverse biomedical domains, shedding light on their potential implications for future research and therapeutic developments.
Collapse
Affiliation(s)
- Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
10
|
Petrovic S, Bita B, Barbinta-Patrascu ME. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int J Mol Sci 2024; 25:5842. [PMID: 38892030 PMCID: PMC11172476 DOI: 10.3390/ijms25115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.
Collapse
Affiliation(s)
- Sanja Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| |
Collapse
|
11
|
Dacos M, Immordino B, Diroff E, Sicard G, Kosta A, Rodallec A, Giacometti S, Ciccolini J, Fanciullino R. Pegylated liposome encapsulating docetaxel using microfluidic mixing technique: Process optimization and results in breast cancer models. Int J Pharm 2024; 656:124091. [PMID: 38588758 DOI: 10.1016/j.ijpharm.2024.124091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
The development of nanoparticles could help to improve the efficacy/toxicity balance of drugs. This project aimed to develop liposomes and immunoliposomes using microfluidic mixing technology.Various formulation tests were carried out to obtain liposomes that met the established specifications. The liposomes were then characterized in terms of size, polydispersity index (PDI), docetaxel encapsulation rate and lamellarity. Antiproliferative activity was tested in human breast cancer models ranging from near-negative (MDA-MB-231), positive (MDA-MB-453) to HER2 positive. Pharmacokinetic studies were performed in C57BL/6 mice.Numerous batches of liposomes were synthesised using identical molar ratios and by varying the microfluidic parameters TFR, FRR and buffer. All synthesized liposomes have a size < 200 nm, but only Lipo-1, Lipo-6, Lipo-7, Lipo-8 have a PDI < 0.2, which meets our initial requirements. The size of the liposomes was correlated with the total FRR, for a 1:1 FRR the size is 122.2 ± 12.3 nm, whereas for a 1:3 FRR the size obtained is 163.4 ± 34.0 nm (p = 0.019. Three batches of liposomes were obtained with high docetaxel encapsulation rates > 80 %. Furthermore, in vitro studies on breast cancer cell lines demonstrated the efficacy of liposomes obtained by microfluidic mixing technique. These liposomes also showed improved pharmacokinetics compared to free docetaxel, with a longer half-life and higher AUC (3-fold and 3.5-fold increase for the immunoliposome, respectively).This suggests that switching to the microfluidic process will produce batches of liposomes with the same characteristics in terms of in vitro properties and efficacy, as well as the ability to release the encapsulated drug over time in vivo. This time-efficiency of the microfluidic technique is critical, especially in the early stages of development.
Collapse
Affiliation(s)
- Mathilde Dacos
- COMPO, SMARTc. CRCM: UMR Inserm 1068, CNRS UMR 7258, AMU U105, IPC, Marseille, France; Assitance Publique des Hôpitaux de Marseille, Marseille, France.
| | - Benoît Immordino
- Fondazione Pisana per La Scienza, 56017 San Giuliano, Pisa, Italy
| | - Erwan Diroff
- COMPO, SMARTc. CRCM: UMR Inserm 1068, CNRS UMR 7258, AMU U105, IPC, Marseille, France
| | - Guillaume Sicard
- COMPO, SMARTc. CRCM: UMR Inserm 1068, CNRS UMR 7258, AMU U105, IPC, Marseille, France; Assitance Publique des Hôpitaux de Marseille, Marseille, France
| | - Artemis Kosta
- Microscopy Core Facility, Institut de Microbiologie de la Méditerranée (FR3479), CNRS, Aix-Marseille Université, Marseille, France
| | - Anne Rodallec
- COMPO, SMARTc. CRCM: UMR Inserm 1068, CNRS UMR 7258, AMU U105, IPC, Marseille, France
| | - Sarah Giacometti
- COMPO, SMARTc. CRCM: UMR Inserm 1068, CNRS UMR 7258, AMU U105, IPC, Marseille, France
| | - Joseph Ciccolini
- COMPO, SMARTc. CRCM: UMR Inserm 1068, CNRS UMR 7258, AMU U105, IPC, Marseille, France; Assitance Publique des Hôpitaux de Marseille, Marseille, France
| | - Raphaëlle Fanciullino
- COMPO, SMARTc. CRCM: UMR Inserm 1068, CNRS UMR 7258, AMU U105, IPC, Marseille, France; Assitance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
12
|
Duman G, Gucu E, Utku FS, Uner B, Macit M, Sarialtin S, Ozilgen M. Kinetic assessment of iontophoretic delivery efficiency of niosomal tetracycline hydrochloride incorporated in electroconductive gel. Drug Deliv Transl Res 2024; 14:1206-1217. [PMID: 37867180 DOI: 10.1007/s13346-023-01452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
The purpose of this study was to conduct the kinetic assessment of iontophoretic delivery of niosomal tetracycline-HCl formulated in an electroconductive gel. Tween-80 and Span-80 were used to obtain tetracycline-HCl niosomes with an average diameter of 101.9 ± 3.3 nm, a polydispersity index of 0.247 ± 0.004, a zeta potential of - 34.1 mV, and an entrapment efficiency of 70.08 ± 0.16%. Four different gel preparations, two of which contained niosomal tetracycline-HCl, were transdermally delivered using Franz diffusion cells under the trigger effect of iontophoresis, applied at 0.2, 0.5, and 1 mA/cm2 current density. The control group was the passive diffusion results of the preparation made using a tetracycline-HCl-based drug marketed in Turkey. The control group was compared with the groups that contained (a) tetracycline-HCl in an electroconductive gel, (b) the niosomal tetracycline-HCl formulation in water, and (c) the niosomal tetracycline-HCl formulation in the electroconductive gel. The group with the niosomal formulation in the electroconductive gel displayed the highest increase in iontophoretic transdermal delivery relative to the control group, displaying a 2-, 2.1-, and 2.2-fold increase, respectively, by current density. The experimental results of transdermal delivery using the synergistic effect of niosomal formulation in electroconductive gel and the trigger effect of iontophoresis appeared to divert slightly from zero-order kinetics, demonstrating a statistically significant increase in the rate of controlled transdermal drug delivery. Considering that about 20% of the formulation is transdermally delivered in the first half-hour, the iontophoretic transdermal delivery of niosomal tetracycline-HCl can be efficiently used in local iontophoretic therapy.
Collapse
Affiliation(s)
- Gulengul Duman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Ecem Gucu
- Department of Biomedical Engineering, Yeditepe University, Istanbul, Turkey
| | - Feride Sermin Utku
- Department of Biomedical Engineering, Yeditepe University, Istanbul, Turkey
| | - Burcu Uner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey.
- Department of Pharmaceutical and Administrative Sciences, Faculty of Pharmacy, University of Health Science and Pharmacy in St. Louis, St. Louis, MO, USA.
| | - Meltem Macit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Sevval Sarialtin
- Department of Biomedical Engineering, Yeditepe University, Istanbul, Turkey
| | - Mustafa Ozilgen
- Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
13
|
Jayaraj S, Jiang W, Mudalige T. An Automated Capillary Electrophoresis Based Method for Drug Release Profiling of Liposomal Doxorubicin. J Pharm Sci 2024; 113:1088-1093. [PMID: 38135054 DOI: 10.1016/j.xphs.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Liposomal doxorubicin hydrochloride is an antineoplastic agent widely used against human cancers. The data from in vitro drug release test (IVRT) is essential for quality and/or bioequivalence evaluation in drug approval and post-approval regulation of liposomal drug products. However, most of the currently available IVRT methods for liposomal doxorubicin hydrochloride have experimental deficiencies associated with liposomal rupture during the separation process which is needed for selective quantification of released drug from liposomal-bound drug. In addition, many of the methods are time consuming, requiring bulk quantities of liposomal drug product, and lack of automation. We have developed a selective, sensitive, and automated capillary electrophoresis (CE)-based IVRT method, measuring released doxorubicin without additional sampling and separation steps. This method requires a small volume of sample compared to currently available methods. The IVRT release study with liposomal doxorubicin was conducted at different temperatures and pH conditions. It was observed that the release profiles obtained for five formulations including the reference listed drug were similar at pH 6.50 and 47.0 °C. The drug release increased with the increase of media pH and temperature. Complete doxorubicin release (100 %) was obtained in 7 h at pH 6.50 and 47.0 °C, and in less than 3 h at pH 6.50 and 52.0 °C. This CE-based method can be extended for determination of the IVRT profiling of other liposomal drug products.
Collapse
Affiliation(s)
- Savithra Jayaraj
- Arkansas Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Thilak Mudalige
- Arkansas Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
14
|
Peng C, Chen J, Wu R, Jiang H, Li J. Unraveling the complex roles of macrophages in obese adipose tissue: an overview. Front Med 2024; 18:205-236. [PMID: 38165533 DOI: 10.1007/s11684-023-1033-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/15/2023] [Indexed: 01/03/2024]
Abstract
Macrophages, a heterogeneous population of innate immune cells, exhibit remarkable plasticity and play pivotal roles in coordinating immune responses and maintaining tissue homeostasis within the context of metabolic diseases. The activation of inflammatory macrophages in obese adipose tissue leads to detrimental effects, inducing insulin resistance through increased inflammation, impaired thermogenesis, and adipose tissue fibrosis. Meanwhile, adipose tissue macrophages also play a beneficial role in maintaining adipose tissue homeostasis by regulating angiogenesis, facilitating the clearance of dead adipocytes, and promoting mitochondrial transfer. Exploring the heterogeneity of macrophages in obese adipose tissue is crucial for unraveling the pathogenesis of obesity and holds significant potential for targeted therapeutic interventions. Recently, the dual effects and some potential regulatory mechanisms of macrophages in adipose tissue have been elucidated using single-cell technology. In this review, we present a comprehensive overview of the intricate activation mechanisms and diverse functions of macrophages in adipose tissue during obesity, as well as explore the potential of drug delivery systems targeting macrophages, aiming to enhance the understanding of current regulatory mechanisms that may be potentially targeted for treating obesity or metabolic diseases.
Collapse
Affiliation(s)
- Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rui Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
15
|
Mandal S, Mallik S, Bhoumick A, Bhattacharya A, Sen P. Synthesis of Amino Acid-Based Cationic Lipids and Study of the Role of the Cationic Head Group for Enhanced Drug and Nucleic Acid Delivery. Chembiochem 2024; 25:e202300834. [PMID: 38284327 DOI: 10.1002/cbic.202300834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
Leveraging liposomes for drug and nucleic acid delivery, though promising due to reduced toxicity and ease of preparation, faces challenges in stability and efficiency. To address this, we synthesized cationic amphiphiles from amino acids (arginine, lysine, and histidine). Histidine emerged as the superior candidate, leading to the development of three histidine-rich cationic amphiphiles for liposomes. Using the hydration method, we have prepared the liposomes and determined the optimal N/P ratios for lipoplex formation via gel electrophoresis. In vitro transfection assays compared the efficacy of our lipids to Fugene, while MTT assays gauged biocompatibility across cancer cell lines (MDA-MB 231 and MCF-7). The histidine-based lipid demonstrated marked potential in enhancing drug and nucleic acid delivery. This improvement stemmed from increased zeta potential, enhancing electrostatic interactions with nucleic acids and cellular uptake. Our findings underscore histidine's crucial role over lysine and arginine for effective delivery, revealing a significant correlation between histidine abundance and optimal performance. This study paves the way for histidine-enriched lipids as promising candidates for efficient drug and nucleic acid delivery, addressing key challenges in the field.
Collapse
Affiliation(s)
- Subhasis Mandal
- Indian Association for the Cultivation of Science, School of Biological Sciences, 2 A & 2B Raja S C Mullick Road, Kolkata, 700032
| | - Suman Mallik
- Indian Association for the Cultivation of Science, School of Biological Sciences, 2 A & 2B Raja S C Mullick Road, Kolkata, 700032
| | - Avinandan Bhoumick
- Indian Association for the Cultivation of Science, School of Biological Sciences, 2 A & 2B Raja S C Mullick Road, Kolkata, 700032
| | | | - Prosenjit Sen
- Indian Association for the Cultivation of Science, School of Biological Sciences, 2 A & 2B Raja S C Mullick Road, Kolkata, 700032
| |
Collapse
|
16
|
Afsharzadeh M, Varshosaz J, Mirian M, Hasanzadeh F. Targeted delivery of liposomal Ribociclib to SLC7A5 transporters in breast cancer cells. Invest New Drugs 2024; 42:89-105. [PMID: 38127209 DOI: 10.1007/s10637-023-01409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
This study aimed to prepare SLC7A5 transporters targeted liposomes of Ribociclib (RB) by stear(o)yl conjugation of Phe, Asp, Glu amino acids to liposomes as targeting moieties. The liposomes were optimized for their formulations. Cell analysis on two cell lines of MCF-7 and NIH-3T3 were done including; cell viability test by MTT assay, cellular uptake, and cell cycle arrest by flow cytometry. The optimal liposomes showed the particle size of 123.6 ± 1.3 nm, drug loading efficiency and release efficiency of 83.87% ± 1.33% and 60.55% ± 0.46%, respectively. The RB loaded liposomes showed no hemolysis activity. Targeted liposomes increased cytotoxicity on MCF-7 cells more significantly than NIH-3T3 cells. Cell flow cytometry indicated that targeted liposomes uptake was superior to plain (non-targted) liposomes and free drug. Free drug and RB-loaded liposomes interrupted cell cycle in G1. However, amino acid-targeted liposomes arrested cells more than the free drug at this stage. Targeted liposomes reduced cell cycle with more interruption in the G2/M phase compared to the negative control.
Collapse
Affiliation(s)
- Mahtab Afsharzadeh
- Novel Drug Delivery Systems Research Centre and Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, PO Box 81745-359, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre and Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, PO Box 81745-359, Isfahan, Iran.
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshid Hasanzadeh
- Novel Drug Delivery Systems Research Centre and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Shahzad N, Alzahrani AR, Aziz Ibrahim IA, Shahid I, Alanazi IM, Falemban AH, Imam MT, Mohsin N, Azlina MFN, Arulselvan P. Therapeutic strategy of biological macromolecules based natural bioactive compounds of diabetes mellitus and future perspectives: A systematic review. Heliyon 2024; 10:e24207. [PMID: 38298622 PMCID: PMC10828662 DOI: 10.1016/j.heliyon.2024.e24207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
High blood glucose levels are a hallmark of the metabolic syndrome known as diabetes mellitus. More than 600 million people will have diabetes by 2045 as the global prevalence of the disease continues to rise. Contemporary antidiabetic drugs reduce hyperglycemia and its consequences. However, these drugs come with undesirable side effects, so it's encouraging that research into plant extracts and bioactive substances with antidiabetic characteristics is on the rise. Natural remedies are preferable to conventional anti-diabetic drugs since they are safer for the body, more affordable and have fewer potential adverse effects. Biological macromolecules such as liposomes, niosomes, polymeric nanoparticles, solid lipid nanoparticles, nanoemulsions and metallic nanoparticles are explored in this review. Current drug restrictions have been addressed, and the effectiveness of plant-based antidiabetic therapies has enhanced the merits of these methods. Plant extracts' loading capacity and the carriers' stability are the primary obstacles in developing plant-based nanocarriers. Hydrophilic, hydrophobic, and amphiphilic drugs are covered, and a brief overview of the amphipathic features of liposomes, phospholipids, and lipid nanocarriers is provided. Metallic nanoparticles' benefits and attendant risks are highlighted to emphasize their efficiency in treating hyperglycemia. Researchers interested in the potential of nanoparticles loaded with plant extracts as antidiabetic therapeutics may find the current helpful review.
Collapse
Affiliation(s)
- Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim M. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nehal Mohsin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Najran University, Najran, Saudi Arabia
| | | | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| |
Collapse
|
18
|
Alaa Hadi-al-Ward N, Ebrahimi M, Zare Karizi S. Investigation of the Cytotoxic and Antiproliferative Effects of Liposomal Daunorubicin on Human Colorectal Cancer (HCT116) Cell Line. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e144287. [PMID: 39830658 PMCID: PMC11742377 DOI: 10.5812/ijpr-144287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 01/22/2025]
Abstract
Background The incidence of colorectal cancer is increasing globally. Daunorubicin (DNR), an anthracycline antibiotic, is effective against various cancers. The PI3K/AKT/mTOR signaling pathway is crucial in regulating cell growth and cancer growth. Objectives This study aims to evaluate the effects of liposomal daunorubicin (Lip-DNR) on cell proliferation and cell death induction in HCT116 cells compared to free daunorubicin. Methods Lip-DNR was synthesized, and its shape and size were analyzed using FE-SEM imaging. HCT116 cells were treated with Lip-DNR concentrations of 0 (control), 0.125, 0.25, 0.5, 1, and 2 μm for 48 hours to determine the IC50. The effects of free (0.5 μm) and liposomal DNR (IC50 of 0.43 μm) on PI3K mRNA levels were assessed using real-time PCR. The cell cycle was analyzed by flow cytometry. Results FE-SEM imaging showed that the liposomes are spherical and range from 50 - 100 nm in size. Lip-DNR induced cell death in HCT116 cells in a dose-dependent manner, with 0.5 μm Lip-DNR causing more cell death than an equivalent concentration of free DNR. Analysis of PI3K gene expression showed that DNR decreases PI3K gene transcription in HCT116 cells, with Lip-DNR having a more substantial effect than the free form. Both forms reduced the proportion of G2/M phase cells, but Lip-DNR was more effective at inhibiting cell proliferation in HCT116 cells. Conclusions DNR inhibits the proliferation of HCT116 cells by downregulating PI3K gene expression and enhancing cell death, with the liposomal form demonstrating stronger effects than the free form.
Collapse
Affiliation(s)
- Noorulhuda Alaa Hadi-al-Ward
- Department of Genetics, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Ebrahimi
- Department of Biochemistry and Biophysics, College of Biological Sciences, Varamin-Pishva branch, Islamic Azad University, Pishva, Iran
| | - Shohre Zare Karizi
- Department of Genetics, Faculty of Biological Sciences, Varamin-Pishva branch, Islamic Azad University, Pishva, Iran
| |
Collapse
|
19
|
Lukhele BS, Bassey K, Witika BA. The Utilization of Plant-Material-Loaded Vesicular Drug Delivery Systems in the Management of Pulmonary Diseases. Curr Issues Mol Biol 2023; 45:9985-10017. [PMID: 38132470 PMCID: PMC10742082 DOI: 10.3390/cimb45120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Medicinal plants have been utilized to treat a variety of conditions on account of the bioactive properties that they contain. Most bioactive constituents from plants are of limited effectiveness, due to poor solubility, limited permeability, first-pass metabolism, efflux transporters, chemical instability, and food-drug interactions However, when combined with vesicular drug delivery systems (VDDS), herbal medicines can be delivered at a predetermined rate and can exhibit site-specific action. Vesicular drug delivery systems are novel pharmaceutical formulations that make use of vesicles as a means of encapsulating and transporting drugs to various locations within the body; they are a cutting-edge method of medication delivery that combats the drawbacks of conventional drug delivery methods. Drug delivery systems offer promising strategies to overcome the bioavailability limitations of bioactive phytochemicals. By improving their solubility, protecting them from degradation, enabling targeted delivery, and facilitating controlled release, drug delivery systems can enhance the therapeutic efficacy of phytochemicals and unlock their full potential in various health conditions. This review explores and collates the application of plant-based VDDS with the potential to exhibit protective effects against lung function loss in the interest of innovative and effective treatment and management of respiratory illnesses.
Collapse
Affiliation(s)
| | - Kokoette Bassey
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa;
| | - Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa;
| |
Collapse
|
20
|
Sauer N, Oślizło M, Brzostek M, Wolska J, Lubaszka K, Karłowicz-Bodalska K. The multiple uses of azelaic acid in dermatology: mechanism of action, preparations, and potential therapeutic applications. Postepy Dermatol Alergol 2023; 40:716-724. [PMID: 38282869 PMCID: PMC10809820 DOI: 10.5114/ada.2023.133955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/27/2023] [Indexed: 01/30/2024] Open
Abstract
Azelaic acid (AZA) is a naturally occurring saturated dicarboxylic acid whose topical application has found multiple uses in dermatology. Its anti-inflammatory, antioxidant and antimicrobial properties against Propionibacterium acne are currently used in the treatment of various types of acne such as rosacea and acne vulgaris. AZA is an inhibitor of tyrosinase, mitochondrial respiratory chain enzymes and DNA synthesis, and is a scavenger of harmful free radicals and inhibits the production of reactive oxygen species by neutrophils. Interestingly, AZA also has anti-proliferative and cytotoxic effects on various cancer cells. To date, its inhibitory effect on melanocytes has been mainly used, making it widely used in the treatment of hyperpigmentation disorders such as melasma and post-inflammatory hyperpigmentation. Commercially available topical formulations with cosmetic and drug status contain 5% to 20% AZA in the form of gels and creams. The use of liposomal technology allows greater control over the pharmacokinetics and pharmacodynamics of the formulations. When applied topically, AZA is well tolerated, and side effects are limited to generally mild and transient local skin irritation. Importantly, liposomal technology has enabled the drug to penetrate all layers of the skin while maintaining a very high accumulation of the active ingredient. This solution could be revolutionary for the treatment of skin cancer, where until now the main obstacle was poor absorption through the skin, making the treatment require multiple applications to maintain long-term activity levels. In this review, we will present the mechanism of action and pharmacokinetics of AZA. We will summarize its use in the treatment of dermatoses and its potential in skin cancer therapy. We will provide an overview of the preparations available on the market, taking into consideration technologies used.
Collapse
Affiliation(s)
- Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | | | - Marta Brzostek
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Julianna Wolska
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | | | | |
Collapse
|
21
|
Pradhan SP, Sahu PK, Behera A. New insights toward molecular and nanotechnological approaches to antidiabetic agents for Alzheimer's disease. Mol Cell Biochem 2023; 478:2739-2762. [PMID: 36949264 DOI: 10.1007/s11010-023-04696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder affecting a major class of silver citizens. The disorder shares a mutual relationship on account of its cellular and molecular pathophysiology with type-II diabetes mellitus (DM). Chronic DM increases the risk for AD. Emerging evidence recommended that resistance in insulin production develops cognitive dysfunction, which generally leads to AD. Repurposing of antidiabetic drugs can be effective in preventing and treatment of the neurodegenerative disorder. Limitations of antidiabetic drugs restrict the repurposing of the drugs for other disorders. Therefore, nanotechnological intervention plays a significant role in the treatment of neurological disorders. In this review, we discuss the common cellular and molecular pathophysiologies between AD and type-II DM, the relevance of in vivo models of type II DM in the study of AD, and the repurposing of antidiabetic drugs and the nanodelivery systems of antidiabetic drugs against AD.
Collapse
Affiliation(s)
- Sweta Priyadarshini Pradhan
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus-II, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus-II, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Anindita Behera
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus-II, Kalinga Nagar, Bhubaneswar, Odisha, India.
| |
Collapse
|
22
|
Adekiya TA, Owoseni O. Emerging frontiers in nanomedicine targeted therapy for prostate cancer. Cancer Treat Res Commun 2023; 37:100778. [PMID: 37992539 DOI: 10.1016/j.ctarc.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Prostate cancer is a prevalent cancer in men, often treated with chemotherapy. However, it tumor cells are clinically grows slowly and is heterogeneous, leading to treatment resistance and recurrence. Nanomedicines, through targeted delivery using nanocarriers, can enhance drug accumulation at the tumor site, sustain drug release, and counteract drug resistance. In addition, combination therapy using nanomedicines can target multiple cancer pathways, improving effectiveness and addressing tumor heterogeneity. The application of nanomedicine in prostate cancer treatment would be an important strategy in controlling tumor dynamic process as well as improve survival. Thus, this review highlights therapeutic nanoparticles as a solution for prostate cancer chemotherapy, exploring targeting strategies and approaches to combat drug resistance.
Collapse
Affiliation(s)
- Tayo Alex Adekiya
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, United States.
| | - Oluwanifemi Owoseni
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, United States
| |
Collapse
|
23
|
Ashique S, Garg A, Hussain A, Farid A, Kumar P, Taghizadeh‐Hesary F. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers. Cancer Med 2023; 12:18797-18825. [PMID: 37668041 PMCID: PMC10557914 DOI: 10.1002/cam4.6502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Cancer treatment is still a global health challenge. Nowadays, chemotherapy is widely applied for treating cancer and reducing its burden. However, its application might be in accordance with various adverse effects by exposing the healthy tissues and multidrug resistance (MDR), leading to disease relapse or metastasis. In addition, due to tumor heterogeneity and the varied pharmacokinetic features of prescribed drugs, combination therapy has only shown modestly improved results in MDR malignancies. Nanotechnology has been explored as a potential tool for cancer treatment, due to the efficiency of nanoparticles to function as a vehicle for drug delivery. METHODS With this viewpoint, functionalized nanosystems have been investigated as a potential strategy to overcome drug resistance. RESULTS This approach aims to improve the efficacy of anticancer medicines while decreasing their associated side effects through a range of mechanisms, such as bypassing drug efflux, controlling drug release, and disrupting metabolism. This review discusses the MDR mechanisms contributing to therapeutic failure, the most cutting-edge approaches used in nanomedicine to create and assess nanocarriers, and designed nanomedicine to counteract MDR with emphasis on recent developments, their potential, and limitations. CONCLUSIONS Studies have shown that nanoparticle-mediated drug delivery confers distinct benefits over traditional pharmaceuticals, including improved biocompatibility, stability, permeability, retention effect, and targeting capabilities.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of PharmaceuticsPandaveswar School of PharmacyPandaveswarIndia
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, PharmacyJabalpurIndia
| | - Afzal Hussain
- Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Arshad Farid
- Gomal Center of Biochemistry and BiotechnologyGomal UniversityDera Ismail KhanPakistan
| | - Prashant Kumar
- Teerthanker Mahaveer College of PharmacyTeerthanker Mahaveer UniversityMoradabadIndia
- Department of Pharmaceutics, Amity Institute of PharmacyAmity University Madhya Pradesh (AUMP)GwaliorIndia
| | - Farzad Taghizadeh‐Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of MedicineIran University of Medical SciencesTehranIran
- Clinical Oncology DepartmentIran University of Medical SciencesTehranIran
| |
Collapse
|
24
|
Zhu Y, Yao Y, Kuang R, Chen Z, Du Z, Qu S. Global research trends of nanotechnology for pain management. Front Bioeng Biotechnol 2023; 11:1249667. [PMID: 37701493 PMCID: PMC10494532 DOI: 10.3389/fbioe.2023.1249667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Background: Nanotechnology has been increasingly used in healthcare during recent years. However, the systematic evaluation of research on nanotechnology for pain management is lacking. In this study, we employed a bibliometric approach to examine the status of the research and global trends of nanotechnology in relation to pain management. Methods: We selected relevant papers published in the Web of Science Core Collection database between 2013 and 2022 using search terms related to nanotechnology and pain management. Subsequently, the following bibliographic information was collected: publication year, originating country/region, affiliated authors and institutions, published journal, references cited, citation frequency, and keywords. The bibliometric software programs VOSViewer and CiteSpace were employed to obtain bibliometric statistics and perform visual analysis. Results: A total of 2680 papers were retrieved. The number of publications in the field of nanotechnology for pain management has been increasing annually since 2013. China had the highest number of published papers, whereas the United States led in total citations. The Chinese Academy of Sciences was the most prolific institution, while the Tehran University of Medical Sciences had the highest overall citations. Furthermore, De Paula was the most prolific author. Papers associated with nanotechnology for pain management were mainly published in the International Journal of Pharmaceutics, Pharmaceutics, and the International Journal of Nanomedicine. Keyword analysis showed that "in-vitro" and "drug-delivery" appeared most frequently, with the top 10 common keywords comprising nanoparticles, pain, in-vitro, drug-delivery, delivery, release, inflammation, neuropathic pain, formulation, and expression. Lastly, the latest emerging keyword was "electrochemical sensor". Conclusion: Research on applying nanotechnology for pain management is growing steadily. China is the top country in terms of number of publications, with institutions under the Chinese Academy of Sciences making significant contributions to this field. "In-vitro" and "drug-delivery" are the current hotspots in this area, with "electrochemical sensor" as the latest topic at the research forefront. However, national and inter-institutional collaborations should be strengthened to enable patients with pain disorders to benefit from nanotechnology implementation in pain management.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Anesthesiology, Hunan Children’s Hospital, Changsha, China
| | | | | | | | | | | |
Collapse
|
25
|
Rahman A, Roy KJ, Deb GK, Ha T, Rahman S, Aktar MK, Ali MI, Kafi MA, Choi JW. Nano-Enabled Antivirals for Overcoming Antibody Escaped Mutations Based SARS-CoV-2 Waves. Int J Mol Sci 2023; 24:13130. [PMID: 37685938 PMCID: PMC10488153 DOI: 10.3390/ijms241713130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
This review discusses receptor-binding domain (RBD) mutations related to the emergence of various SARS-CoV-2 variants, which have been highlighted as a major cause of repetitive clinical waves of COVID-19. Our perusal of the literature reveals that most variants were able to escape neutralizing antibodies developed after immunization or natural exposure, pointing to the need for a sustainable technological solution to overcome this crisis. This review, therefore, focuses on nanotechnology and the development of antiviral nanomaterials with physical antagonistic features of viral replication checkpoints as such a solution. Our detailed discussion of SARS-CoV-2 replication and pathogenesis highlights four distinct checkpoints, the S protein (ACE2 receptor coupling), the RBD motif (ACE2 receptor coupling), ACE2 coupling, and the S protein cleavage site, as targets for the development of nano-enabled solutions that, for example, prevent viral attachment and fusion with the host cell by either blocking viral RBD/spike proteins or cellular ACE2 receptors. As proof of this concept, we highlight applications of several nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanoparticles, carbon nanotubes, fullerene, carbon dots, quantum dots, polymeric nanoparticles, lipid-based, polymer-based, lipid-polymer hybrid-based, surface-modified nanoparticles that have already been employed to control viral infections. These nanoparticles were developed to inhibit receptor-mediated host-virus attachments and cell fusion, the uncoating of the virus, viral gene expression, protein synthesis, the assembly of progeny viral particles, and the release of the virion. Moreover, nanomaterials have been used as antiviral drug carriers and vaccines, and nano-enabled sensors have already been shown to enable fast, sensitive, and label-free real-time diagnosis of viral infections. Nano-biosensors could, therefore, also be useful in the remote testing and tracking of patients, while nanocarriers probed with target tissue could facilitate the targeted delivery of antiviral drugs to infected cells, tissues, organs, or systems while avoiding unwanted exposure of non-target tissues. Antiviral nanoparticles can also be applied to sanitizers, clothing, facemasks, and other personal protective equipment to minimize horizontal spread. We believe that the nanotechnology-enabled solutions described in this review will enable us to control repeated SAR-CoV-2 waves caused by antibody escape mutations.
Collapse
Affiliation(s)
- Aminur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Kumar Jyotirmoy Roy
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Gautam Kumar Deb
- Department of Biotechnology, Bangladesh Livestock Research Institute, Dhaka 1341, Bangladesh;
| | - Taehyeong Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| | - Saifur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Mst. Khudishta Aktar
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Isahak Ali
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| |
Collapse
|
26
|
Lee D, Song S, Kim S, Lee M, Kim E, Yoon S, Kim HU, Son S, Jung HS, Huh YS, Kim SM, Jeon TJ. Multicomponent-Loaded Vesosomal Drug Carrier for Controlled and Sustained Compound Release. Biomacromolecules 2023; 24:3898-3907. [PMID: 37435976 DOI: 10.1021/acs.biomac.3c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Liposomes have been extensively adopted in drug delivery systems with clinically approved formulations. However, hurdles remain in terms of loading multiple components and precisely controlling their release. Herein, we report a vesosomal carrier composed of liposomes encapsulated inside the core of another liposome for the controlled and sustained release of multiple contents. The inner liposomes are made of lipids with different compositions and are co-encapsulated with a photosensitizer. Upon induction of reactive oxygen species (ROS), the contents of the liposomes are released, with each type of liposome displaying distinct kinetics due to the variance in lipid peroxidation for differential structural deformation. In vitro experiments demonstrated immediate content release from ROS-vulnerable liposomes, followed by sustained release from ROS-nonvulnerable liposomes. Moreover, the release trigger was validated at the organismal level using Caenorhabditis elegans. This study demonstrates a promising platform for more precisely controlling the release of multiple components.
Collapse
Affiliation(s)
- Deborah Lee
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Seoyoon Song
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Suheon Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Mina Lee
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Eunsu Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Sunhee Yoon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Han-Ul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Sejin Son
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Sun Min Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
27
|
Shahout F, Vanharen M, Saafane A, Gillard J, Girard D, LaPlante SR. Drug Self-Aggregation into Nano-Entities Has the Potential to Induce Immune Responses. Mol Pharm 2023; 20:4031-4040. [PMID: 37421372 DOI: 10.1021/acs.molpharmaceut.3c00196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
The free-state solution behaviors of small molecules profoundly affect their respective properties. It is becoming more obvious that compounds can adopt a three-phase equilibrium when placed in an aqueous solution, among soluble-lone molecule form, self-assembled aggregate form (nano-entities), and solid precipitate form. Recently, correlations have emerged between the existence of self-assemblies into drug nano-entities and unintended side effects. This report describes our pilot study involving a selection of drugs and dyes to explore if there may be a correlation between the existence of drug nano-entities and immune responses. We first implement practical strategies for detecting the drug self-assemblies using a combination of nuclear magnetic resonance (NMR), dynamic light scattering (DLS), transmission electron microscopy (TEM), and confocal microscopy. We then used enzyme-linked immunosorbent assays (ELISA) to monitor the modulation of immune responses on two cellular models, murine macrophage and human neutrophils, upon exposure to the drugs and dyes. The results suggest that exposure to some aggregates correlated with an increase in IL-8 and TNF-α in these model systems. Given this pilot study, further correlations merit pursuing on a larger scale given the importance and potential impact of drug-induced immune-related side effects.
Collapse
Affiliation(s)
- Fatma Shahout
- Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Marion Vanharen
- Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Abdelaziz Saafane
- Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - James Gillard
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, 2950 Chem. de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Denis Girard
- Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Steven R LaPlante
- Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
- NMX Research and Solutions, Inc., 500 Boulevard Cartier Ouest, Laval, Québec H7V 5B7, Canada
| |
Collapse
|
28
|
Farouk AE, Fahmy SR, Soliman AM, Ibrahim SA, Sadek SA. A nano-Liposomal formulation potentiates antioxidant, anti-inflammatory, and fibrinolytic activities of Allolobophora caliginosa coelomic fluid: formulation and characterization. BMC Biotechnol 2023; 23:28. [PMID: 37537554 PMCID: PMC10401763 DOI: 10.1186/s12896-023-00795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Coelomic fluid, a pharmacologically active compound in earthworms, exhibits a range of biological activities, including antioxidant, anti-inflammatory, and anticancer. However, the biological activities exerted by the coelomic fluid can be restrained by its low bioavailability and stability. Liposomes are progressively utilized as an entrapment system for natural bioactive compounds with poor bioavailability and stability, which could be appropriate for coelomic fluid. Thus, the present study was designed to fabricate, characterize, and evaluate the stability of liposomal formulation for Allolobophora caliginosa coelomic fluid (ACCF) as a natural antioxidant compound. METHODS The ACCF-liposomes were developed with a subsequent characterization of their physicochemical attributes. The physical stability, ACCF release behavior, and gastrointestinal stability were evaluated in vitro. The biological activities of ACCF and its liposomal formulation were also determined. RESULTS The liposomal formulation of ACCF had a steady characteristic absorption band at 201 nm and a transmittance of 99.20 ± 0.10%. Its average hydrodynamic particle size was 98 nm, with a PDI of 0.29 ± 0.04 and a negative zeta potential (-38.66 ± 0.33mV). TEM further confirmed the formation of vesicular, spherical nano-liposomes with unilamellar configuration. Additionally, a remarkable entrapment efficiency percent (77.58 ± 0.82%) with a permeability rate equal to 3.20 ± 0.31% and a high retention rate (54.16 ± 2.20%) for ACCF-liposomes were observed. The Fourier transform infrared spectroscopy (FTIR) result demonstrated that ACCF successfully entrapped inside liposomes. The ACCF-liposomes exhibited a slow and controlled ACCF release in vitro. Regarding stability studies, the liposomal formulation enhanced the stability of ACCF during storage and at different pH. Furthermore, ACCF-liposomes are highly stable in intestinal digestion conditions comparable to gastric digestion. The current study disclosed that liposomal formulation potentiates the biological activities of ACCF, especially antioxidant, anti-inflammatory, and thrombolytic activities. CONCLUSION These promising results offer a novel approach to increasing the bioaccessibility of ACCF, which may be crucial for the development of pharmaceuticals and nutraceutical-enriched functional foods.
Collapse
Affiliation(s)
- Asmaa E Farouk
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Sohair R Fahmy
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amel M Soliman
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Shimaa A Sadek
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
29
|
Kumar M, Keshwania P, Chopra S, Mahmood S, Bhatia A. Therapeutic Potential of Nanocarrier-Mediated Delivery of Phytoconstituents for Wound Healing: Their Current Status and Future Perspective. AAPS PharmSciTech 2023; 24:155. [PMID: 37468691 DOI: 10.1208/s12249-023-02616-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023] Open
Abstract
The treatment of wounds is a serious problem all over the world and imposes a huge financial burden on each and every nation. For a long time, researchers have explored wound dressing that speeds up wound healing. Traditional wound dressing does not respond effectively to the wound-healing process as expected. Therapeutic active derived from plant extracts and extracted bioactive components have been employed in various regions of the globe since ancient times for the purpose of illness, prevention, and therapy. About 200 years ago, most medical treatments were based on herbal remedies. Especially in the West, the usage of herbal treatments began to wane in the 1960s as a result of the rise of allopathic medicine. In recent years, however, there has been a resurgence of interest in and demand for herbal medicines for a number of reasons, including claims about their efficacy, shifting consumer preferences toward natural medicines, high costs and negative side effects of modern medicines, and advancements in herbal medicines brought about by scientific research and technological innovation. The exploration of medicinal plants and their typical uses could potentially result in advanced pharmaceuticals that exhibit reduced adverse effects. This review aims to present an overview of the utilization of nanocarriers in plant-based therapeutics, including its current status, recent advancements, challenges, and future prospects. The objective is to equip researchers with a comprehensive understanding of the historical background, current state, and potential future developments in this emerging field. In light of this, the advantages of nanocarriers based delivery of natural wound healing treatments have been discussed, with a focus on nanofibers, nanoparticles, nano-emulsion, and nanogels.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Puja Keshwania
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, Ambala, Haryana, 133207, India
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
30
|
Sonkawade SD, Xu S, Kim M, Nepali S, Karambizi VG, Sexton S, Turowski SG, Li K, Spernyak JA, Lovell JF, George A, Suwal S, Sharma UC, Pokharel S. Phospholipid Encapsulation of an Anti-Fibrotic Endopeptide to Enhance Cellular Uptake and Myocardial Retention. Cells 2023; 12:1589. [PMID: 37371059 PMCID: PMC10296995 DOI: 10.3390/cells12121589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Cardioprotective effects of N-acetyl-ser-asp-lys-pro (Ac-SDKP) have been reported in preclinical models of myocardial remodeling. However, the rapid degradation of this endogenous peptide in vivo limits its clinical use. METHOD To prolong its bioavailability, Ac-SDKP was encapsulated by phosphocholine lipid bilayers (liposomes) similar to mammalian cell membranes. The physical properties of the liposome structures were assessed by dynamic light scattering and scanning electron microscopy. The uptake of Ac-SDKP by RAW 264.7 macrophages and human and murine primary cardiac fibroblasts was confirmed by fluorescence microscopy and flow cytometry. Spectrum computerized tomography and competitive enzyme-linked immunoassays were performed to measure the ex vivo cardiac biodistribution of Ac-SDKP. The biological effects of this novel synthetic compound were examined in cultured macrophages and cardiac fibroblasts and in a murine model of acute myocardial infarction induced by permanent coronary artery ligation. RESULTS A liposome formulation resulted in the greater uptake of Ac-SDKP than the naked peptide by cultured RAW 264.7 macrophages and cardiac fibroblasts. Liposome-delivered Ac-SDKP decreased fibroinflammatory genes in cultured cardiac fibroblasts co-treated with TGF-β1 and macrophages stimulated with LPS. Serial tissue and serum immunoassays showed the high bioavailability of Ac-SDKP in mouse myocardium and in circulation. Liposome-delivered Ac-SDKP improved cardiac function and reduced myocardial fibroinflammatory responses in mice with acute myocardial infarction. CONCLUSION Encapsulation of Ac-SDKP in a cell membrane-like phospholipid bilayer enhances its plasma and tissue bioavailability and offers cardioprotection against ischemic myocardial injury. Future clinical trials can use this novel approach to test small protective endogenous peptides in myocardial remodeling.
Collapse
Affiliation(s)
- Swati D. Sonkawade
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.D.S.)
- Laboratory Medicine, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Shirley Xu
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.D.S.)
- Laboratory Medicine, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Minhyung Kim
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Sarmila Nepali
- Laboratory Medicine, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Victoire-Grace Karambizi
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.D.S.)
- Laboratory Medicine, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Sandra Sexton
- Laboratory Animal Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Steven G. Turowski
- Translational Imaging Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Kunpeng Li
- Department of Physiology and Biophysics, Case Western Reserve School of Medicine, Cleveland, OH 44106, USA
| | - Joseph A. Spernyak
- Translational Imaging Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Anthony George
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Sujit Suwal
- Department of Chemistry, Buffalo State University, Buffalo, NY 14222, USA
| | - Umesh C. Sharma
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.D.S.)
| | - Saraswati Pokharel
- Laboratory Medicine, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
31
|
Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Vidic J, Raj VS, Chang CM, Priyadarshini A. Therapeutic applications of nanobiotechnology. J Nanobiotechnology 2023; 21:148. [PMID: 37149615 PMCID: PMC10163736 DOI: 10.1186/s12951-023-01909-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023] Open
Abstract
Nanobiotechnology, as a novel and more specialized branch of science, has provided a number of nanostructures such as nanoparticles, by utilizing the methods, techniques, and protocols of other branches of science. Due to the unique features and physiobiological characteristics, these nanostructures or nanocarriers have provided vast methods and therapeutic techniques, against microbial infections and cancers and for tissue regeneration, tissue engineering, and immunotherapies, and for gene therapies, through drug delivery systems. However, reduced carrying capacity, abrupt and non-targeted delivery, and solubility of therapeutic agents, can affect the therapeutic applications of these biotechnological products. In this article, we explored and discussed the prominent nanobiotechnological methods and products such as nanocarriers, highlighted the features and challenges associated with these products, and attempted to conclude if available nanostructures offer any scope of improvement or enhancement. We aimed to identify and emphasize the nanobiotechnological methods and products, with greater prospect and capacity for therapeutic improvements and enhancements. We found that novel nanocarriers and nanostructures, such as nanocomposites, micelles, hydrogels, microneedles, and artificial cells, can address the associated challenges and inherited drawbacks, with help of conjugations, sustained and stimuli-responsive release, ligand binding, and targeted delivery. We recommend that nanobiotechnology, despite having few challenges and drawbacks, offers immense opportunities that can be harnessed in delivering quality therapeutics with precision and prediction. We also recommend that, by exploring the branched domains more rigorously, bottlenecks and obstacles can also be addressed and resolved in return.
Collapse
Affiliation(s)
- Yogesh Dutt
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India
| | - Ramendra Pati Pandey
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India.
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India.
| | - Mamta Dutt
- Mamta Dental Clinic, Opposite Sector 29, Main Badkhal Road, Faridabad, Haryana, 121002, India
| | - Archana Gupta
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India
| | - Jasmina Vidic
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - V Samuel Raj
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India
| | - Chung-Ming Chang
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33302, Taiwan (ROC).
| | - Anjali Priyadarshini
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India.
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India.
| |
Collapse
|
32
|
Chaurawal N, Kataria M, Kumar MV, Mishra NP, Goni VG, Raza K. Emerging Advances in Nanocarriers Approaches in the Effective Therapy of Pain Related Disorders: Recent Evidence and Futuristic Needs. AAPS PharmSciTech 2023; 24:111. [PMID: 37118029 DOI: 10.1208/s12249-023-02567-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023] Open
Abstract
Pain disorders are the primary cause of disability nowadays. These disorders, such as rheumatoid arthritis (RA) and osteoarthritis (OA), cause loss of function, joint pain and inflammation and deteriorate the quality of life. The treatment of these inflammatory diseases includes anti-inflammatory drugs administered via intra-articular, topical or oral routes, physical rehabilitation or surgery. Owing to the various side effects these drugs could offer, the novel approaches and nanomaterials have shown potential to manage inflammatory diseases, prolonged half-life of anti-inflammatory drugs, reduced systemic toxicity, provide specific targeting, and refined their bioavailability. This review discusses in brief about the pain pathophysiology and its types. The review summarizes the conventional therapies used to treat pain disorders and the need for novel strategies to overcome the adverse effects of conventional therapies. The review describes the recent advancements in nanotherapeutics for inflammatory diseases using several lipids, polymers and other materials and their excellent efficiency in improving the treatment over conventional therapies. The results of the nanotherapeutic studies inferred that the necessity to use nanocarriers is due to their controlled release, targeting drug delivery to inflamed tissues, low toxicity and biocompatibility. Therefore, it is possible to assert that nanotechnology will emerge as a great tool for advancing the treatment of pain disorders in the near future.
Collapse
Affiliation(s)
- Nishtha Chaurawal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Mohak Kataria
- Department of Orthopaedics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Muniramiah Vinod Kumar
- Professor of Orthopaedics, East Point College of Medical Sciences and Research Centre, Bangaluru, Karnataka, 560049, India
| | - Narayan Prasad Mishra
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, 751019, India
| | - Vijay G Goni
- Department of Orthopaedics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
33
|
Lim C, Shin Y, Kang K, Husni P, Lee D, Lee S, Choi HG, Lee ES, Youn YS, Oh KT. Effects of PEG-Linker Chain Length of Folate-Linked Liposomal Formulations on Targeting Ability and Antitumor Activity of Encapsulated Drug. Int J Nanomedicine 2023; 18:1615-1630. [PMID: 37020691 PMCID: PMC10069508 DOI: 10.2147/ijn.s402418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction Ligand-conjugated liposomes are promising for the treatment of specific receptor-overexpressing cancers. However, previous studies have shown inconsistent results because of the varying properties of the ligand, presence of a polyethylene glycol (PEG) coating on the liposome, length of the linker, and density of the ligand. Methods Here, we prepared PEGylated liposomes using PEG-linkers of various lengths conjugated with folate and evaluated the effect of the PEG-linker length on the nanoparticle distribution and pharmacological efficacy of the encapsulated drug both in vitro and in vivo. Results When folate was conjugated to the liposome surface, the cellular uptake efficiency in folate receptor overexpressed KB cells dramatically increased compared to that of the normal liposome. However, when comparing the effect of the PEG-linker length in vitro, no significant difference between the formulations was observed. In contrast, the level of tumor accumulation of particles in vivo significantly increased when the length of the PEG-linker was increased. The tumor size was reduced by >40% in the Dox/FL-10K-treated group compared to that in the Dox/FL-2K- or 5K-treated groups. Discussion Our study suggests that as the length of PEG-linker increases, the tumor-targeting ability can be enhanced under in vivo conditions, which can lead to an increase in the antitumor activity of the encapsulated drug.
Collapse
Affiliation(s)
- Chaemin Lim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yuseon Shin
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kioh Kang
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Patihul Husni
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dayoon Lee
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sehwa Lee
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan, 15588, South Korea
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
- Correspondence: Kyung Taek Oh, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, 06974, Republic of Korea, Tel +82-2-824-5617, Email
| |
Collapse
|
34
|
Abosalha AK, Ahmad W, Boyajian J, Islam P, Ghebretatios M, Schaly S, Thareja R, Arora K, Prakash S. A comprehensive update of siRNA delivery design strategies for targeted and effective gene silencing in gene therapy and other applications. Expert Opin Drug Discov 2023; 18:149-161. [PMID: 36514963 DOI: 10.1080/17460441.2022.2155630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION RNA interference (RNAi) using small interfering RNA (siRNA) is a promising strategy to control many genetic disorders by targeting the mRNA of underlying genes and degrade it. However, the delivery of siRNA to targeted organs is highly restricted by several intracellular and extracellular barriers. AREAS COVERED This review discusses various design strategies developed to overcome siRNA delivery obstacles. The applied techniques involve chemical modification, bioconjugation to specific ligands, and carrier-mediated strategies. Nanotechnology-based systems like liposomes, niosomes, solid lipid nanoparticles (SLNs), dendrimers, and polymeric nanoparticles (PNs) are also discussed. EXPERT OPINION Although the mechanism of siRNA as a gene silencer is well-established, only a few products are available as therapeutics. There is a great need to develop and establish siRNA delivery systems that protects siRNAs and delivers them efficiently to the desired sitesare efficient and capable of targeted delivery. Several diseases are reported to be controlled by siRNA at their early stages. However, their targeted delivery is a daunting challenge.
Collapse
Affiliation(s)
- Ahmed Khaled Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada.,Pharmaceutical Technology department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Merry Ghebretatios
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Langer D, Mlynarczyk DT, Dlugaszewska J, Tykarska E. Potential of glycyrrhizic and glycyrrhetinic acids against influenza type A and B viruses: A perspective to develop new anti-influenza compounds and drug delivery systems. Eur J Med Chem 2023; 246:114934. [PMID: 36455358 DOI: 10.1016/j.ejmech.2022.114934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Despite the recent dynamic development of medicine, influenza is still a significant epidemiological problem for people around the world. The growing resistance of influenza viruses to currently available antiviral drugs makes it necessary to search for new compounds or drug forms with potential high efficacy against human influenza A and B viruses. One of the methods of obtaining new active compounds is to chemically modify privileged structures occurring in the natural environment. The second solution, that is gaining more and more interest, is the use of modern drug carriers, which significantly improve physicochemical and pharmacokinetic parameters of the transported substances. Molecules known from the earliest times for their numerous therapeutic properties are glycyrrhizinic acid (GA) and glycyrrhetinic acid (GE). Both compounds constitute the main active agents of the licorice (Glycyrrhiza glabra, Leguminosae) root and, according to a number of scientific reports, show antiviral properties against both DNA and RNA viruses. The above information prompted many scientific teams around the world to obtain and test in vitro and/or in vivo new synthetic GA and GE derivatives against influenza A and B viruses. Similarly, in recent years, a significant amount of GA and GE-based drug delivery systems (DDS) such as nanoparticles, micelles, liposomes, nanocrystals, and carbon dots has been prepared and tested for antiviral activity, including those against influenza A and B viruses. This work systematizes the attempts undertaken to study the antiviral activity of new GA and GE analogs and modern DDS against clinically significant human influenza viruses, at the same time indicating the directions of their further development.
Collapse
Affiliation(s)
- Dominik Langer
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland.
| | - Dariusz T Mlynarczyk
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznań, Poland.
| | - Jolanta Dlugaszewska
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznań, Poland
| |
Collapse
|
36
|
Kuang H, Dou G, Cheng L, Wang X, Xu H, Liu X, Ding F, Yang X, Liu S, Bao L, Liu H, Liu Y, Li B, Jin Y, Liu S. Humoral regulation of iron metabolism by extracellular vesicles drives antibacterial response. Nat Metab 2023; 5:111-128. [PMID: 36658400 DOI: 10.1038/s42255-022-00723-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 12/07/2022] [Indexed: 01/21/2023]
Abstract
Immediate restriction of iron initiated by the host is a critical process to protect against bacterial infections and has been described in the liver and spleen, but it remains unclear whether this response also entails a humoral mechanism that would enable systemic sequestering of iron upon infection. Here we show that upon bacterial invasion, host macrophages immediately release extracellular vesicles (EVs) that capture circulating iron-containing proteins. Mechanistically, in a sepsis model in female mice, Salmonella enterica subsp. enterica serovar Typhimurium induces endoplasmic reticulum stress in macrophages and activates inositol-requiring enzyme 1α signaling, triggering lysosomal dysfunction and thereby promoting the release of EVs, which bear multiple receptors required for iron uptake. By binding to circulating iron-containing proteins, these EVs prevent bacteria from iron acquisition, which inhibits their growth and ultimately protects against infection and related tissue damage. Our findings reveal a humoral mechanism that can promptly regulate systemic iron metabolism during bacterial infection.
Collapse
Affiliation(s)
- Huijuan Kuang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Geng Dou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Linfeng Cheng
- Department of Medical Microbiology and Parasitology, The Fourth Military Medical University, Xi'an, PR China
| | - Xiangdong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Haokun Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Xuemei Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, PR China
| | - Feng Ding
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Xiaoshan Yang
- Stomatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Siying Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Lili Bao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Huan Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, PR China
| | - Yao Liu
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, PR China
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China.
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|
37
|
Pardeshi S, Tiwari A, Titame U, Singh PK, Yadav PK, Chourasia MK. Development of asolectin-based liposomal formulation for controlled and targeted delivery of erlotinib as a model drug for EGFR monotherapy. J Liposome Res 2022; 32:386-395. [PMID: 35225132 DOI: 10.1080/08982104.2022.2040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/22/2021] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
The present investigation was envisaged to develop liposomal formulation for efficacious and targeted delivery of epidermal growth factor receptor (EGFR) inhibitor (erlotinib) against pancreatic cancer. The marketed formulations bearing current EGFR inhibitors exhibit serious adverse effects including severe skin, hemolytic and gastrointestinal toxicity. To address the obstacles, we have developed the liposomal formulation, by ether injection method, comprising erlotinib, a tyrosine kinase EGFR inhibitor, proposed to be targeted through enhanced permeability and retention effect (EPR) effect against pancreatic cancer. On succeeding, the liposomes were characterized for various pharmaceutical attributes. The developed liposomes found to sustain a particle size of 121 ± 10.7 nm, whereas PDI of 0.22 ± 0.01 with the surface charge value of -33.7 ± 2.30 mV. The entrapment efficiency and drug loading were found to be 82.60 and 15.89 (%w/w), respectively. The hemolysis study suggested that the developed formulation was safer compared with native drug solution. The proof of concept for enhanced efficacy and decreased toxicity has been established through in vitro assays. The IC50 for free erlotinib and formulation was found to be 2.0 ± 0.3 µg/ml and 1.1 ± 0.1 µg/ml, respectively. The effectivity was evident by cellular uptake study and apoptosis, whereas cell cycle arrest study indicated that erlotinib arrests the G0/G1 phase of cell cycle. Further the erlotinib-asolectin liposomal formulation enhanced cytotoxicity in PANC-1 cells at relatively low dose, proving to be an alternative for current chemotherapeutics against pancreatic cancer.
Collapse
Affiliation(s)
- Snehal Pardeshi
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amrendra Tiwari
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Uday Titame
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Pankaj K Singh
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
- Department of Pharmaceutics, NIPER Hyderabad, Hyderabad, India
| | - Pavan Kumar Yadav
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Manish K Chourasia
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
38
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
39
|
Pourmadadi M, Abbasi P, Eshaghi MM, Bakhshi A, Ezra Manicum AL, Rahdar A, Pandey S, Jadoun S, Díez-Pascual AM. Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Sun K, Zheng X, Jin H, Yu F, Zhao W. Exosomes as CNS Drug Delivery Tools and Their Applications. Pharmaceutics 2022; 14:pharmaceutics14102252. [PMID: 36297688 PMCID: PMC9609403 DOI: 10.3390/pharmaceutics14102252] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Central nervous system (CNS) diseases threaten the health of people all over the world. However, due to the structural and functional particularities of the brain and spinal cord, CNS-targeted drug development is rather challenging. Exosomes are small cellular vesicles with lipid bilayers that can be secreted by almost all cells and play important roles in intercellular communication. The advantages of low immunogenicity, the ability to cross the blood-brain barrier, and the flexibility of drug encapsulation make them stand out among CNS drug delivery tools. Herein, we reviewed the research on exosomes in CNS drug delivery over the past decade and outlined the impact of the drug loading mode, administration route, and engineered modification on CNS targeting. Finally, we highlighted the problems and prospects of exosomes as CNS drug delivery tools.
Collapse
Affiliation(s)
- Ke Sun
- College of Pharmacy, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Xue Zheng
- College of Pharmacy, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Hongzhen Jin
- College of Pharmacy, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- Correspondence: (H.J.); (F.Y.)
| | - Fan Yu
- College of Life Sciences, Nankai University, Weijin Road, Nankai District, Tianjin 300350, China
- Correspondence: (H.J.); (F.Y.)
| | - Wei Zhao
- College of Pharmacy, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| |
Collapse
|
41
|
Alhaj-Suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Adv Drug Deliv Rev 2022; 189:114482. [PMID: 35944587 DOI: 10.1016/j.addr.2022.114482] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Over the past two decades, multidisciplinary investigations into the development of nanoparticles for medical applications have continually increased. However, nanoparticles are still subject to biological barriers and biodistribution challenges, which limit their overall clinical potential. This has motivated the implementation of innovational modifications to a range of nanoparticle formulations designed for cancer imaging and/or cancer treatment to overcome specific barriers and shift the accumulation of payloads toward the diseased tissues. In recent years, novel technological and chemical approaches have been employed to modify or functionalize the surface of nanoparticles or manipulate the characteristics of nanoparticles. Combining these approaches with the identification of critical biomarkers provides new strategies for enhancing nanoparticle specificity for both cancer diagnostic and therapeutic applications. This review discusses the most recent advances in the design and engineering of nanoparticles as well as future directions for developing the next generation of nanomedicines.
Collapse
Affiliation(s)
- Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States; Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, United States.
| |
Collapse
|
42
|
Bahutair WN, Abuwatfa WH, Husseini GA. Ultrasound Triggering of Liposomal Nanodrugs for Cancer Therapy: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12173051. [PMID: 36080088 PMCID: PMC9458162 DOI: 10.3390/nano12173051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 05/11/2023]
Abstract
Efficient conventional chemotherapy is limited by its nonspecific nature, which causes severe systemic toxicity that can lead to patient discomfort and low therapeutic efficacy. The emergence of smart drug delivery systems (SDDSs) utilizing nanoparticles as drug nanocarriers has shown great potential in enhancing the targetability of anticancer agents and limiting their side effects. Liposomes are among the most investigated nanoplatforms due to their promising capabilities of encapsulating hydrophilic, lipophilic, and amphiphilic drugs, biocompatibility, physicochemical and biophysical properties. Liposomal nanodrug systems have demonstrated the ability to alter drugs' biodistribution by sufficiently delivering the entrapped chemotherapeutics at the targeted diseased sites, sparing normal cells from undesired cytotoxic effects. Combining liposomal treatments with ultrasound, as an external drug release triggering modality, has been proven effective in spatially and temporally controlling and stimulating drug release. Therefore, this paper reviews recent literature pertaining to the therapeutic synergy of triggering nanodrugs from liposomes using ultrasound. It also highlights the effects of multiple physical and chemical factors on liposomes' sonosensetivity, several ultrasound-induced drug release mechanisms, and the efficacy of ultrasound-responsive liposomal systems in cancer therapy. Overall, liposomal nanodrug systems triggered by ultrasound are promising cancer therapy platforms that can potentially alleviate the detriments of conventional cancer treatments.
Collapse
Affiliation(s)
- Wafa N. Bahutair
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Correspondence:
| |
Collapse
|
43
|
Yang E, Jung HS, Chang PS. Preparation and Characterization of pH-Sensitive Capsosomes for Oral Delivery of Therapeutic Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9294-9300. [PMID: 35863074 DOI: 10.1021/acs.langmuir.2c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oral administration of therapeutic proteins is very challenging because of gastrointestinal instability and decomposition. In this study, we developed a system for oral delivery of superoxide dismutase (SOD) as one of the therapeutic proteins. SOD-loaded capsosomes (SOD-C) were formed by the assembly of chitosan-coated solid lipid nanoparticles and SOD-loaded liposomes (SOD-L). Unlike raw SOD activity decreases to 19.41% in SGF and 13.70% in SIF, the SOD-C in SGF (89.30%) condition retained its initial catalytic activity and decreased but exhibited a three-fold higher raw SOD activity even after incubation in SIF (41.63%). TEM analysis indicated that after intestinal digestion, the residual amount of intact liposomes affected the higher catalytic activity of SOD-C compared to raw SOD and SOD-L. Based on these results, significantly higher cellular uptake of SOD-C was observed compared to raw SOD. Also, SOD-C remarkably suppressed the cellular malondialdehyde (MDA) concentration by maintaining the antioxidative capacity of SOD to remove MDA produced in the oxidative stress-induced cells, thereby contributing to a significant five-fold difference with SOD-R (p < 0.05). This delivery system can facilitate the oral application of other therapeutic proteins, improving gastrointestinal stability.
Collapse
Affiliation(s)
- Eunhye Yang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Sup Jung
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
44
|
A Review on the Delivery of Plant-Based Antidiabetic Agents Using Nanocarriers: Current Status and Their Role in Combatting Hyperglycaemia. Polymers (Basel) 2022; 14:polym14152991. [PMID: 35893954 PMCID: PMC9330056 DOI: 10.3390/polym14152991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus is a prevalent metabolic syndrome that is associated with high blood glucose levels. The number of diabetic patients is increasing every year and the total number of cases is expected to reach more than 600 million worldwide by 2045. Modern antidiabetic drugs alleviate hyperglycaemia and complications that are caused by high blood glucose levels. However, due to the side effects of these drugs, plant extracts and bioactive compounds with antidiabetic properties have been gaining attention as alternative treatments for diabetes. Natural products are biocompatible, cheaper and expected to cause fewer side effects than the current antidiabetic drugs. In this review, various nanocarrier systems are discussed, such as liposomes, niosomes, polymeric nanoparticles, nanoemulsions, solid lipid nanoparticles and metallic nanoparticles. These systems have been applied to overcome the limitations of the current drugs and simultaneously improve the efficacy of plant-based antidiabetic drugs. The main challenges in the formulation of plant-based nanocarriers are the loading capacity of the plant extracts and the stability of the carriers. A brief review of lipid nanocarriers and the amphipathic properties of phospholipids and liposomes that encapsulate hydrophilic, hydrophobic and amphiphilic drugs is also described. A special emphasis is placed on metallic nanoparticles, with their advantages and associated complications being reported to highlight their effectiveness for treating hyperglycaemia. The present review could be an interesting paper for researchers who are working in the field of using plant extract-loaded nanoparticles as antidiabetic therapies.
Collapse
|
45
|
Azlyna ASN, Ahmad S, Husna SMN, Sarmiento ME, Acosta A, Norazmi MN, Mohamud R, Kadir R. Review: Liposomes in the prophylaxis and treatment of infectious diseases. Life Sci 2022; 305:120734. [PMID: 35760094 DOI: 10.1016/j.lfs.2022.120734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/15/2022]
Abstract
Infectious diseases remain as one of the major burdens among health communities as well as in the general public despite the advances in prevention and treatment. Although vaccination and vector eliminations have greatly prevented the transmission of these diseases, the effectiveness of these strategies is no longer guaranteed as new challenges such as drug resistance and toxicity as well as the missing effective therapeutics arise. Hence, the development of new tools to manage these challenges is anticipated, in which nano technology using liposomes as effective nanostructure is highly considered. In this review, we concentrate on the advantages of liposomes in the drug delivery system and the development of vaccine in the treatment of three major infectious diseases; tuberculosis (TB), malaria and HIV.
Collapse
Affiliation(s)
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Maria E Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
46
|
Babaie S, Taghvimi A, Hong JH, Hamishehkar H, An S, Kim KH. Recent advances in pain management based on nanoparticle technologies. J Nanobiotechnology 2022; 20:290. [PMID: 35717383 PMCID: PMC9206757 DOI: 10.1186/s12951-022-01473-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pain is a vital sense that indicates the risk of injury at a particular body part. Successful control of pain is the principal aspect in medical treatment. In recent years, the advances of nanotechnology in pain management have been remarkable. In this review, we focus on literature and published data that reveal various applications of nanotechnology in acute and chronic pain management. METHODS The presented content is based on information collected through pain management publications (227 articles up to April 2021) provided by Web of Science, PubMed, Scopus and Google Scholar services. RESULTS A comprehensive study of the articles revealed that nanotechnology-based drug delivery has provided acceptable results in pain control, limiting the side effects and increasing the efficacy of analgesic drugs. Besides the ability of nanotechnology to deliver drugs, sophisticated nanosystems have been designed to enhance imaging and diagnostics, which help in rapid diagnosis of diseases and have a significant impact on controlling pain. Furthermore, with the development of various tools, nanotechnology can accurately measure pain and use these measurements to display the efficiency of different interventions. CONCLUSIONS Nanotechnology has started a new era in the pain management and many promising results have been achieved in this regard. Nevertheless, there is still no substantial and adequate act of nanotechnology in this field. Therefore, efforts should be directed to broad investigations.
Collapse
Affiliation(s)
- Soraya Babaie
- Physical Medicine and Rehabilitation Research Center and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Taghvimi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Joo-Hyun Hong
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seongpil An
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| |
Collapse
|
47
|
Rahman MM, Islam MR, Akash S, Harun-Or-Rashid M, Ray TK, Rahaman MS, Islam M, Anika F, Hosain MK, Aovi FI, Hemeg HA, Rauf A, Wilairatana P. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance. Biomed Pharmacother 2022; 153:113305. [PMID: 35717779 DOI: 10.1016/j.biopha.2022.113305] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Nanoscale engineering is one of the innovative approaches to heal multitudes of ailments, such as varieties of malignancies, neurological problems, and infectious illnesses. Therapeutics for neurodegenerative diseases (NDs) may be modified in aspect because of their ability to stimulate physiological response while limiting negative consequences by interfacing and activating possible targets. Nanomaterials have been extensively studied and employed for cancerous therapeutic strategies since nanomaterials potentially play a significant role in medical transportation. When compared to conventional drug delivery, nanocarriers drug delivery offers various benefits, such as excellent reliability, bioactivity, improved penetration and retention impact, as well as precise targeting and administering. Upregulation of drug efflux transporters, dysfunctional apoptotic mechanisms, and a hypoxic atmosphere are all elements that lead to cancer treatment sensitivity in humans. It has been possible to target these pathways using nanoparticles and increase the effectiveness of multidrug resistance treatments. As innovative strategies of tumor chemoresistance are uncovered, nanomaterials are being developed to target specific pathways of tumor resilience. Scientists have recently begun investigating the function of nanoparticles in immunotherapy, a field that is becoming increasingly useful in the care of malignancies. Nanoscale therapeutics have been explored in this scientific literature and represent the most current approaches to neurodegenerative illnesses and cancer therapy. In addition, current findings and various biomedical nanomaterials' future promise for tissue regeneration, prospective medication design, and the synthesis of novel delivery approaches have been emphasized.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Tanmay Kumar Ray
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Mahfuzul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Fazilatunnesa Anika
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md Kawser Hosain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Farjana Islam Aovi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Monawra 41411, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
48
|
Di Giorgio E, Ferino A, Choudhary H, Löffler PMG, D'Este F, Rapozzi V, Tikhomirov A, Shchekotikhin A, Vogel S, Xodo LE. Photosensitization of pancreatic cancer cells by cationic alkyl-porphyrins in free form or engrafted into POPC liposomes: The relationship between delivery mode and mechanism of cell death. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 231:112449. [PMID: 35504235 DOI: 10.1016/j.jphotobiol.2022.112449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Cationic porphyrins bearing an alkyl side chain of 14 (2b) or 18 (2d) carbons dramatically inhibit proliferation of pancreatic cancer cells following treatment with light. We have compared two different ways of delivering porphyrin 2d: either in free form or engrafted into palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes (L-2d). Cell cytometry shows that while free 2d is taken up by pancreatic cancer cells by active (endocytosis) and passive (membrane fusion) transports, L-2d is internalized solely by endocytosis. Confocal microscopy showed that free 2d co-localizes with the cell membrane and lysosomes, whereas L-2d partly co-localizes with lysosomes and ER. It is found that free 2d inhibits the KRAS-Nrf2-GPX4 axis and strongly triggers lipid peroxidation, resulting in cell death by ferroptosis. By contrast, L-2d does not affect the KRAS-Nrf2-GPX4 axis and activates cell death mainly through apoptosis. Overall, our study demonstrates for the first time that cationic alkyl porphyrins, which have a IC50 ~ 23 nM, activate a dual mechanism of cell death, ferroptosis and apoptosis, where the predominant form depends on the delivery mode.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medicine, Laboratory of Biochemistry, University of Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Annalisa Ferino
- Department of Medicine, Laboratory of Biochemistry, University of Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Himanshi Choudhary
- Department of Medicine, Laboratory of Biochemistry, University of Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Phillip M G Löffler
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Francesca D'Este
- Department of Medicine, Laboratory of Biochemistry, University of Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Valentina Rapozzi
- Department of Medicine, Laboratory of Biochemistry, University of Udine, P.le Kolbe 4, 33100 Udine, Italy
| | | | | | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Luigi E Xodo
- Department of Medicine, Laboratory of Biochemistry, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
49
|
Jebastin K, Narayanasamy D. Rationale utilization of phospholipid excipients: a distinctive tool for progressing state of the art in research of emerging drug carriers. J Liposome Res 2022; 33:1-33. [PMID: 35543241 DOI: 10.1080/08982104.2022.2069809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phospholipids have a high degree of biocompatibility and are deemed ideal pharmaceutical excipients in the development of lipid-based drug delivery systems, because of their unique features (permeation, solubility enhancer, emulsion stabilizer, micelle forming agent, and the key excipients in solid dispersions) they can be used in a variety of pharmaceutical drug delivery systems, such as liposomes, phytosomes, solid lipid nanoparticles, etc. The primary usage of phospholipids in a colloidal pharmaceutical formulation is to enhance the drug's bioavailability with low aqueous solubility [i.e. Biopharmaceutical Classification System (BCS) Class II drugs], Membrane penetration (i.e. BCS Class III drugs), drug uptake and release enhancement or modification, protection of sensitive active pharmaceutical ingredients (APIs) from gastrointestinal degradation, a decrease of gastrointestinal adverse effects, and even masking of the bitter taste of orally delivered drugs are other uses. Phospholipid-based colloidal drug products can be tailored to address a wide variety of product requirements, including administration methods, cost, product stability, toxicity, and efficacy. Such formulations that are also a cost-effective method for developing medications for topical, oral, pulmonary, or parenteral administration. The originality of this review work is that we comprehensively evaluated the unique properties and special aspects of phospholipids and summarized how the individual phospholipids can be utilized in various types of lipid-based drug delivery systems, as well as listing newly marketed lipid-based products, patents, and continuing clinical trials of phospholipid-based therapeutic products. This review would be helpful for researchers responsible for formulation development and research into novel colloidal phospholipid-based drug delivery systems.
Collapse
Affiliation(s)
- Koilpillai Jebastin
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
50
|
Jadhav S, Yenorkar N, Bondre R, Karemore M, Bali N. Nanomedicines encountering HIV dementia: A guiding star for neurotherapeutics. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|