1
|
Stephen CD, de Gusmao CM, Srinivasan SR, Olsen A, Freua F, Kok F, Montes Garcia Barbosa R, Chen JY(H, Appleby BS, Prior T, Frosch MP, Schmahmann JD. Gerstmann-Sträussler-Scheinker Disease Presenting as Late-Onset Slowly Progressive Spinocerebellar Ataxia, and Comparative Case Series with Neuropathology. Mov Disord Clin Pract 2024; 11:411-423. [PMID: 38258626 PMCID: PMC10982592 DOI: 10.1002/mdc3.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Genetic prion diseases, including Gerstmann-Sträussler-Scheinker disease (GSS), are extremely rare, fatal neurodegenerative disorders, often associated with progressive ataxia and cognitive/neuropsychiatric symptoms. GSS typically presents as a rapidly progressive cerebellar ataxia, associated with cognitive decline. Late-onset cases are rare. OBJECTIVE To compare a novel GSS phenotype with six other cases and present pathological findings from a single case. METHODS Case series of seven GSS patients, one proceeding to autopsy. RESULTS Case 1 developed slowly progressive gait difficulties at age 71, mimicking a spinocerebellar ataxia, with a family history of balance problems in old age. Genome sequencing revealed a heterozygous c.392G > A (p.G131E) pathogenic variant and a c.395A > G resulting in p.129 M/V polymorphism in the PRNP gene. Probability analyses considering family history, phenotype, and a similar previously reported point mutation (p.G131V) suggest p.G131E as a new pathogenic variant. Clinical features and imaging of this case are compared with those six additional cases harboring p.P102L mutations. Autopsy findings of a case are described and were consistent with the prion pathology of GSS. CONCLUSIONS We describe a patient with GSS with a novel p.G131E mutation in the PRNP gene, presenting with a late-onset, slowly progressive phenotype, mimicking a spinocerebellar ataxia, and six additional cases with the typical P102L mutation.
Collapse
Affiliation(s)
- Christopher D. Stephen
- Ataxia Center, Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Cognitive Behavioral Neurology Unit, Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Claudio Melo de Gusmao
- Movement Disorders Division, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyUniversity of São PauloSão PauloBrazil
| | - Sharan R. Srinivasan
- Movement Disorders Division, Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Abby Olsen
- Movement Disorders Division, Department of NeurologyUniversity of Pittsburgh and UPMCPittsburghPennsylvaniaUSA
| | - Fernando Freua
- Movement Disorders Division, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Fernando Kok
- Movement Disorders Division, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Renata Montes Garcia Barbosa
- Movement Disorders Division, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jin Yun (Helen) Chen
- Neurogenetics Unit, Department of Neurology, Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- C.S. Kubik Laboratory of Neuropathology, Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Brian S. Appleby
- The National Prion Disease Pathology Surveillance CenterCase Western Reserve UniversityClevelandOhioUSA
| | - Thomas Prior
- The National Prion Disease Pathology Surveillance CenterCase Western Reserve UniversityClevelandOhioUSA
| | - Matthew P. Frosch
- C.S. Kubik Laboratory of Neuropathology, Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jeremy D. Schmahmann
- Ataxia Center, Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Cognitive Behavioral Neurology Unit, Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
2
|
Cellular prion protein offers neuroprotection in astrocytes submitted to amyloid β oligomer toxicity. Mol Cell Biochem 2022:10.1007/s11010-022-04631-w. [PMID: 36576715 DOI: 10.1007/s11010-022-04631-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
The cellular prion protein (PrPC), in its native conformation, performs numerous cellular and cognitive functions in brain tissue. However, despite the cellular prion research in recent years, there are still questions about its participation in oxidative and neurodegenerative processes. This study aims to elucidate the involvement of PrPC in the neuroprotection cascade in the presence of oxidative stressors. For that, astrocytes from wild-type mice and knockout to PrPC were subjected to the induction of oxidative stress with hydrogen peroxide (H2O2) and with the toxic oligomer of the amyloid β protein (AβO). We observed that the presence of PrPC showed resistance in the cell viability of astrocytes. It was also possible to monitor changes in basic levels of metals and associate them with an induced damage condition, indicating the precise role of PrPC in metal homeostasis, where the absence of PrPC leads to metallic unbalance, culminating in cellular vulnerability to oxidative stress. Increased caspase 3, p-Tau, p53, and Bcl2 may establish a relationship between a PrPC and an induced damage condition. Complementarily, it has been shown that PrPC prevents the internalization of AβO and promotes its degradation under oxidative stress induction, thus preventing protein aggregation in astrocytes. It was also observed that the presence of PrPC can be related to translocating SOD1 to cell nuclei under oxidative stress, probably controlling DNA damage. The results of this study suggest that PrPC acts against oxidative stress activating the cellular response and defense by displaying neuroprotection to neurons and ensuring the functionality of astrocytes.
Collapse
|
3
|
Lewis FW, Bird K, Navarro JP, El Fallah R, Brandel J, Hubscher-Bruder V, Tsatsanis A, Duce JA, Tétard D, Bourne S, Maina M, Pienaar IS. Synthesis, physicochemical characterization and neuroprotective evaluation of novel 1-hydroxypyrazin-2(1 H)-one iron chelators in an in vitro cell model of Parkinson's disease. Dalton Trans 2022; 51:3590-3603. [PMID: 35147617 PMCID: PMC8886574 DOI: 10.1039/d1dt02604f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022]
Abstract
Iron dysregulation, dopamine depletion, cellular oxidative stress and α-synuclein protein mis-folding are key neuronal pathological features seen in the progression of Parkinson's disease. Iron chelators endowed with one or more therapeutic modes of action have long been suggested as disease modifying therapies for its treatment. In this study, novel 1-hydroxypyrazin-2(1H)-one iron chelators were synthesized and their physicochemical properties, iron chelation abilities, antioxidant capacities and neuroprotective effects in a cell culture model of Parkinson's disease were evaluated. Physicochemical properties (log β, log D7.4, pL0.5) suggest that these ligands have a poorer ability to penetrate cell membranes and form weaker iron complexes than the closely related 1-hydroxypyridin-2(1H)-ones. Despite this, we show that levels of neuroprotection provided by these ligands against the catecholaminergic neurotoxin 6-hydroxydopamine in vitro were comparable to those seen previously with the 1-hydroxypyridin-2(1H)-ones and the clinically used iron chelator Deferiprone, with two of the ligands restoring cell viability to ≥89% compared to controls. Two of the ligands were endowed with additional phenol moieties in an attempt to derive multifunctional chelators with dual iron chelation/antioxidant activity. However, levels of neuroprotection with these ligands were no greater than ligands lacking this moiety, suggesting the neuroprotective properties of these ligands are due primarily to chelation and passivation of intracellular labile iron, preventing the generation of free radicals and reactive oxygen species that otherwise lead to the neuronal cell death seen in Parkinson's disease.
Collapse
Affiliation(s)
- Frank W Lewis
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, Tyne and Wear NE1 8ST, UK.
| | - Kathleen Bird
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, Tyne and Wear NE1 8ST, UK.
| | - Jean-Philippe Navarro
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, Tyne and Wear NE1 8ST, UK.
| | - Rawa El Fallah
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.
| | - Jeremy Brandel
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.
| | | | - Andrew Tsatsanis
- School of Biomedical Sciences, The Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
- Alzheimer's Research UK Cambridge Drug Discovery Institute, Cambridge Bio-medical Campus, University of Cambridge, Cambridge, UK.
| | - James A Duce
- School of Biomedical Sciences, The Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
- Alzheimer's Research UK Cambridge Drug Discovery Institute, Cambridge Bio-medical Campus, University of Cambridge, Cambridge, UK.
| | - David Tétard
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, Tyne and Wear NE1 8ST, UK.
| | - Samuel Bourne
- School of Life Sciences, University of Sussex, Falmer, Sussex BN1 9PH, UK.
| | - Mahmoud Maina
- School of Life Sciences, University of Sussex, Falmer, Sussex BN1 9PH, UK.
| | - Ilse S Pienaar
- School of Life Sciences, University of Sussex, Falmer, Sussex BN1 9PH, UK.
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
4
|
Fasae KD, Abolaji AO, Faloye TR, Odunsi AY, Oyetayo BO, Enya JI, Rotimi JA, Akinyemi RO, Whitworth AJ, Aschner M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer's disease: Limitations, and current and future perspectives. J Trace Elem Med Biol 2021; 67:126779. [PMID: 34034029 DOI: 10.1016/j.jtemb.2021.126779] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent cause of cognitive impairment and dementia worldwide. The pathobiology of the disease has been studied in the form of several hypotheses, ranging from oxidative stress, amyloid-beta (Aβ) aggregation, accumulation of tau forming neurofibrillary tangles (NFT) through metal dysregulation and homeostasis, dysfunction of the cholinergic system, and to inflammatory and autophagic mechanism. However, none of these hypotheses has led to confirmed diagnostics or approved cure for the disease. OBJECTIVE This review is aimed as a basic and an encyclopedic short course into metals in AD and discusses the advances in chelation strategies and developments adopted in the treatment of the disease. Since there is accumulating evidence of the role of both biometal dyshomeostasis (iron (Fe), copper (Cu), and zinc (Zn)) and metal-amyloid interactions that lead to the pathogenesis of AD, this review focuses on unraveling therapeutic chelation strategies that have been considered in the treatment of the disease, aiming to sequester free and protein-bound metal ions and reducing cerebral metal burden. Promising compounds possessing chemically modified moieties evolving as multi-target ligands used as anti-AD drug candidates are also covered. RESULTS AND CONCLUSION Several multidirectional and multifaceted studies on metal chelation therapeutics show the need for improved synthesis, screening, and analysis of compounds to be able to effectively present chelating anti-AD drugs. Most drug candidates studied have limitations in their physicochemical properties; some enhance redistribution of metal ions, while others indirectly activate signaling pathways in AD. The metal chelation process in vivo still needs to be established and the design of potential anti-AD compounds that bi-functionally sequester metal ions as well as inhibit the Aβ aggregation by competing with the metal ions and reducing metal-induced oxidative damage and neurotoxicity may signal a bright end in chelation-based therapeutics of AD.
Collapse
Affiliation(s)
- Kehinde D Fasae
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Amos O Abolaji
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria.
| | - Tolulope R Faloye
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Atinuke Y Odunsi
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Bolaji O Oyetayo
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Joseph I Enya
- Department of Anatomy, University of Ilorin, Kwara State, Nigeria
| | - Joshua A Rotimi
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
5
|
Ogłuszka M, Lipiński P, Starzyński RR. Interaction between iron and omega-3 fatty acids metabolisms: where is the cross-link? Crit Rev Food Sci Nutr 2020; 62:3002-3022. [DOI: 10.1080/10408398.2020.1862047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| |
Collapse
|
6
|
Dell’Acqua S, Massardi E, Monzani E, Di Natale G, Rizzarelli E, Casella L. Interaction between Hemin and Prion Peptides: Binding, Oxidative Reactivity and Aggregation. Int J Mol Sci 2020; 21:ijms21207553. [PMID: 33066163 PMCID: PMC7589926 DOI: 10.3390/ijms21207553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022] Open
Abstract
We investigate the interaction of hemin with four fragments of prion protein (PrP) containing from one to four histidines (PrP106-114, PrP95-114, PrP84-114, PrP76-114) for its potential relevance to prion diseases and possibly traumatic brain injury. The binding properties of hemin-PrP complexes have been evaluated by UV-visible spectrophotometric titration. PrP peptides form a 1:1 adduct with hemin with affinity that increases with the number of histidines and length of the peptide; the following log K1 binding constants have been calculated: 6.48 for PrP76-114, 6.1 for PrP84-114, 4.80 for PrP95-114, whereas for PrP106-114, the interaction is too weak to allow a reliable binding constant calculation. These constants are similar to that of amyloid-β (Aβ) for hemin, and similarly to hemin-Aβ, PrP peptides tend to form a six-coordinated low-spin complex. However, the concomitant aggregation of PrP induced by hemin prevents calculation of the K2 binding constant. The turbidimetry analysis of [hemin-PrP76-114] shows that, once aggregated, this complex is scarcely soluble and undergoes precipitation. Finally, a detailed study of the peroxidase-like activity of [hemin-(PrP)] shows a moderate increase of the reactivity with respect to free hemin, but considering the activity over long time, as for neurodegenerative pathologies, it might contribute to neuronal oxidative stress.
Collapse
Affiliation(s)
- Simone Dell’Acqua
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; (E.M.); (E.M.)
- Correspondence: (S.D.); (L.C.)
| | - Elisa Massardi
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; (E.M.); (E.M.)
| | - Enrico Monzani
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; (E.M.); (E.M.)
| | - Giuseppe Di Natale
- Istituto di Cristallografia, s.s. Catania, Consiglio Nazionale delle Ricerche, via Paolo Gaifami 18, 95126 Catania, Italy; (G.D.N.); (E.R.)
| | - Enrico Rizzarelli
- Istituto di Cristallografia, s.s. Catania, Consiglio Nazionale delle Ricerche, via Paolo Gaifami 18, 95126 Catania, Italy; (G.D.N.); (E.R.)
| | - Luigi Casella
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; (E.M.); (E.M.)
- Correspondence: (S.D.); (L.C.)
| |
Collapse
|
7
|
Micera A, Bruno L, Cacciamani A, Rongioletti M, Squitti R. Alzheimer's Disease and Retinal Degeneration: A Glimpse at Essential Trace Metals in Ocular Fluids and Tissues. Curr Alzheimer Res 2020; 16:1073-1083. [PMID: 31642780 DOI: 10.2174/1567205016666191023114015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/28/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Life expectancy is increasing all over the world, although neurodegenerative disorders might drastically affect the individual activity of aged people. Of those, Alzheimer's Disease (AD) is one of the most social-cost age-linked diseases of industrialized countries. To date, retinal diseases seem to be more common in the developing world and characterize principally aged people. Agerelated Macular Degeneration (AMD) is a late-onset, neurodegenerative retinal disease that shares several clinical and pathological features with AD, including stress stimuli such as oxidative stress, inflammation and amyloid formations. METHODS In both diseases, the detrimental intra/extra-cellular deposits have many similarities. Aging, hypercholesterolemia, hypertension, obesity, arteriosclerosis and smoking are risk factors to develop both diseases. Cellular aging routes have similar organelle and signaling patterns in retina and brain. The possibility to find out new research strategies represent a step forward to disclose potential treatment for both of them. Essential trace metals play critical roles in both physiological and pathological condition of retina, optic nerve and brain, by influencing metabolic processes chiefly upon complex multifactorial pathogenesis. CONCLUSION Hence, this review addresses current knowledge about some up-to-date investigated essential trace metals associated with AD and AMD. Changes in the levels of systemic and ocular fluid essential metals might reflect the early stages of AMD, possibly disclosing neurodegeneration pathways shared with AD, which might open to potential early detection.
Collapse
Affiliation(s)
- Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Luca Bruno
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Andrea Cacciamani
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Rosanna Squitti
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, BS, Italy
| |
Collapse
|
8
|
Rosito M, Testi C, Parisi G, Cortese B, Baiocco P, Di Angelantonio S. Exploring the Use of Dimethyl Fumarate as Microglia Modulator for Neurodegenerative Diseases Treatment. Antioxidants (Basel) 2020; 9:antiox9080700. [PMID: 32756501 PMCID: PMC7465338 DOI: 10.3390/antiox9080700] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
The maintenance of redox homeostasis in the brain is critical for the prevention of the development of neurodegenerative diseases. Drugs acting on brain redox balance can be promising for the treatment of neurodegeneration. For more than four decades, dimethyl fumarate (DMF) and other derivatives of fumaric acid ester compounds have been shown to mitigate a number of pathological mechanisms associated with psoriasis and relapsing forms of multiple sclerosis (MS). Recently, DMF has been shown to exert a neuroprotective effect on the central nervous system (CNS), possibly through the modulation of microglia detrimental actions, observed also in multiple brain injuries. In addition to the hypothesis that DMF is linked to the activation of NRF2 and NF-kB transcription factors, the neuroprotective action of DMF may be mediated by the activation of the glutathione (GSH) antioxidant pathway and the regulation of brain iron homeostasis. This review will focus on the role of DMF as an antioxidant modulator in microglia processes and on its mechanisms of action in the modulation of different pathways to attenuate neurodegenerative disease progression.
Collapse
Affiliation(s)
- Maria Rosito
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
| | - Claudia Testi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
| | - Giacomo Parisi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
| | - Barbara Cortese
- Nanotechnology Institute, CNR-Nanotechnology Institute, Sapienza University, 00185 Rome, Italy;
| | - Paola Baiocco
- Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University, 00185 Rome, Italy
- Correspondence: (P.B.); (S.D.A.)
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
- Correspondence: (P.B.); (S.D.A.)
| |
Collapse
|
9
|
Chen M, Zheng J, Liu G, Zeng C, Xu E, Zhu W, Anderson GJ, Chen H. High Dietary Iron Disrupts Iron Homeostasis and Induces Amyloid-β and Phospho-τ Expression in the Hippocampus of Adult Wild-Type and APP/PS1 Transgenic Mice. J Nutr 2019; 149:2247-2254. [PMID: 31373375 PMCID: PMC6887700 DOI: 10.1093/jn/nxz168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/21/2019] [Accepted: 06/25/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Brain iron deposition is a feature of Alzheimer disease and may contribute to its development. However, the relative contribution of dietary iron remains unclear. OBJECTIVES We investigated the impact of high dietary iron on brain pathological changes and cognitive function in adult wild-type (WT) mice and amyloid precursor protein/presenilin 1 (APP/PS1) double transgenic mice. METHODS Male WT mice and APP/PS1 mice aged 10 wk were fed either a control diet (66 mg Fe/kg) (WT-Ctrl and APP/PS1-Ctrl) or a high iron diet (14 g Fe/kg) (WT-High Fe and APP/PS1-High Fe) for 20 wk. Iron concentrations in brain regions were measured by atomic absorption spectrophotometry. Brain iron staining and amyloid-β (Aβ) immunostaining were performed. Protein expressions in the hippocampus were determined by immunoblotting. Superoxide dismutase (SOD) activity and malondialdehyde concentration were examined. Cognitive functions were tested with the Morris water maze system. RESULTS In the hippocampus, APP/PS1-High Fe mice had significantly higher iron concentration (2.5-fold) and ferritin (2.0-fold) than APP/PS1-Ctrl mice (P < 0.001), and WT-High Fe mice had significantly higher ferritin (2.0-fold) than WT-Ctrl mice (P < 0.001). Interestingly, APP/PS1 mice had significantly higher iron concentration (2-3-fold) and ferritin (2-2.5-fold) than WT mice fed either diet (P < 0.001). Histological analysis indicated that iron accumulated in the hippocampal dentate gyrus region in APP/PS1 mice, consistent with the pattern of Aβ deposition. For both mouse strains, iron treatment induced Aβ and phospho-τ expression (1.5-3-fold) in the hippocampus, but had little impact on oxidative stress and cognitive function. Furthermore, APP/PS1 mice had significantly lower SOD activity and higher malondialdehyde concentration than WT mice in the hippocampus (P < 0.0001), paralleled by apparent cognitive dysfunction. CONCLUSIONS Dietary iron overload induces iron disorder and Aβ and phospho-τ expression in the hippocampus of adult WT and APP/PS1 transgenic mice.
Collapse
Affiliation(s)
- Min Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China,Address correspondence to HC (e-mail: )
| | - Jiashuo Zheng
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Guohao Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Chong Zeng
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - En Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Wenjie Zhu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | | | - Huijun Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Iron Redox Chemistry and Implications in the Parkinson's Disease Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4609702. [PMID: 31687080 PMCID: PMC6803728 DOI: 10.1155/2019/4609702] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/13/2019] [Indexed: 01/05/2023]
Abstract
The etiology of Parkinson's disease (PD) is linked with cellular inclusions in the substantia nigra pars compacta region of the brain that are enriched in the misfolded presynaptic protein α-synuclein (αS) and death of the dopaminergic neurons. Brain iron homeostasis governs both neurotransmission and neurodegeneration; hence, the role of iron in PD progression and neuronal health is apparent. Elevated iron deposits become prevalent in the cerebral region upon aging and even more so in the PD brain. Structural as well as oxidative modifications can result from coordination of αS with redox active iron, which could have functional and/or pathological implications. In this review, we will discuss iron-mediated αS aggregation, alterations in iron metabolism, and the role of the iron-dopamine couple. Moreover, iron interactions with N-terminally acetylated αS, the physiologically relevant form of the human protein, will be addressed to shed light on the current understanding of protein dynamics and the physiological environment in the disease state. Oxidative pathways and biochemical alterations resulting from aberrant iron-induced chemistry are the principal focus of this review in order to highlight the plethora of research that has uncovered this emerging dichotomy of iron playing both functional and disruptive roles in PD pathology.
Collapse
|
11
|
Iron Pathophysiology in Alzheimer’s Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:67-104. [DOI: 10.1007/978-981-13-9589-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Owen MC, Gnutt D, Gao M, Wärmländer SKTS, Jarvet J, Gräslund A, Winter R, Ebbinghaus S, Strodel B. Effects of in vivo conditions on amyloid aggregation. Chem Soc Rev 2019; 48:3946-3996. [PMID: 31192324 DOI: 10.1039/c8cs00034d] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the grand challenges of biophysical chemistry is to understand the principles that govern protein misfolding and aggregation, which is a highly complex process that is sensitive to initial conditions, operates on a huge range of length- and timescales, and has products that range from protein dimers to macroscopic amyloid fibrils. Aberrant aggregation is associated with more than 25 diseases, which include Alzheimer's, Parkinson's, Huntington's, and type II diabetes. Amyloid aggregation has been extensively studied in the test tube, therefore under conditions that are far from physiological relevance. Hence, there is dire need to extend these investigations to in vivo conditions where amyloid formation is affected by a myriad of biochemical interactions. As a hallmark of neurodegenerative diseases, these interactions need to be understood in detail to develop novel therapeutic interventions, as millions of people globally suffer from neurodegenerative disorders and type II diabetes. The aim of this review is to document the progress in the research on amyloid formation from a physicochemical perspective with a special focus on the physiological factors influencing the aggregation of the amyloid-β peptide, the islet amyloid polypeptide, α-synuclein, and the hungingtin protein.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany and Lead Discovery Wuppertal, Bayer AG, 42096 Wuppertal, Germany
| | - Mimi Gao
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany and Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 42525 Jülich, Germany. and Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
13
|
Unraveling the Burden of Iron in Neurodegeneration: Intersections with Amyloid Beta Peptide Pathology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2850341. [PMID: 29581821 PMCID: PMC5831758 DOI: 10.1155/2018/2850341] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/17/2017] [Indexed: 12/14/2022]
Abstract
Iron overload is a hallmark of many neurodegenerative processes such as Alzheimer's, Parkinson's, and Huntington's diseases. Unbound iron accumulated as a consequence of brain aging is highly reactive with water and oxygen and produces reactive oxygen species (ROS) or free radicals. ROS are toxic compounds able to damage cell membranes, DNA, and mitochondria. Which are the mechanisms involved in neuronal iron homeostasis and in neuronal response to iron-induced oxidative stress constitutes a cutting-edge topic in metalloneurobiology. Increasing our knowledge about the underlying mechanisms that operate in iron accumulation and their consequences would shed light on the comprehension of the molecular events that participate in the pathophysiology of the abovementioned neurodegenerative diseases. In this review, current evidences about iron accumulation in the brain, the signaling mechanisms triggered by metal overload, as well as the interaction between amyloid β (Aβ) and iron, will be summarized.
Collapse
|
14
|
Song N, Wang J, Jiang H, Xie J. Astroglial and microglial contributions to iron metabolism disturbance in Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:967-973. [PMID: 29317336 DOI: 10.1016/j.bbadis.2018.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/24/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
Abstract
Understandings of the disturbed iron metabolism in Parkinson's disease (PD) are largely from the perspectives of neurons. Neurodegenerative processes in PD trigger universal and conserved astroglial dysfunction and microglial activation. In this review, we start with astroglia and microglia in PD with an emphasis on their roles in spreading α-synuclein pathology, and then focus on their contributions in iron metabolism under normal conditions and the diseased state of PD. Elevated iron in the brain regions affects glial features, meanwhile, glial effects on neuronal iron metabolism are largely dependent on their releasing factors. These advances might be valuable for better understanding and modulating iron metabolism disturbance in PD.
Collapse
Affiliation(s)
- Ning Song
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China.
| | - Jun Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
15
|
Diomede L, Romeo M, Rognoni P, Beeg M, Foray C, Ghibaudi E, Palladini G, Cherny RA, Verga L, Capello GL, Perfetti V, Fiordaliso F, Merlini G, Salmona M. Cardiac Light Chain Amyloidosis: The Role of Metal Ions in Oxidative Stress and Mitochondrial Damage. Antioxid Redox Signal 2017; 27:567-582. [PMID: 28132512 PMCID: PMC5567464 DOI: 10.1089/ars.2016.6848] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS The knowledge of the mechanism underlying the cardiac damage in immunoglobulin light chain (LC) amyloidosis (AL) is essential to develop novel therapies and improve patients' outcome. Although an active role of reactive oxygen species (ROS) in LC-induced cardiotoxicity has already been envisaged, the actual mechanisms behind their generation remain elusive. This study was aimed at further dissecting the action of ROS generated by cardiotoxic LC in vivo and investigating whether transition metal ions are involved in this process. In the absence of reliable vertebrate model of AL, we used the nematode Caenorhabditis elegans, whose pharynx is an "ancestral heart." RESULTS LC purified from patients with severe cardiac involvement intrinsically generated high levels of ROS and when administered to C. elegans induced ROS production, activation of the DAF-16/forkhead transcription factor (FOXO) pathway, and expression of proteins involved in stress resistance and survival. Profound functional and structural ROS-mediated mitochondrial damage, similar to that observed in amyloid-affected hearts from AL patients, was observed. All these effects were entirely dependent on the presence of metal ions since addition of metal chelator or metal-binding 8-hydroxyquinoline compounds (chelex, PBT2, and clioquinol) permanently blocked the ROS production and prevented the cardiotoxic effects of amyloid LC. Innovation and Conclusion: Our findings identify the key role of metal ions in driving the ROS-mediated toxic effects of LC. This is a novel conceptual advance that paves the way for new pharmacological strategies aimed at not only counteracting but also totally inhibiting the vicious cycle of redox damage. Antioxid. Redox Signal. 27, 567-582.
Collapse
Affiliation(s)
- Luisa Diomede
- 1 Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri ," Milan, Italy
| | - Margherita Romeo
- 1 Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri ," Milan, Italy
| | - Paola Rognoni
- 2 Amyloid Research and Treatment Center , Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marten Beeg
- 1 Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri ," Milan, Italy
| | - Claudia Foray
- 3 Bio-imaging Unit, Department of Cardiovascular Research, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri ," Milan, Italy
| | - Elena Ghibaudi
- 4 Department of Chemistry, University of Turin , Turin, Italy
| | - Giovanni Palladini
- 2 Amyloid Research and Treatment Center , Foundation IRCCS Policlinico San Matteo, Pavia, Italy .,5 Department of Molecular Medicine, University of Pavia , Pavia, Italy
| | - Robert A Cherny
- 6 The Florey Institute of Neuroscience and Mental Health, The University of Melbourne , Royal Pde, Parkville, Australia .,7 Prana Biotechnology Ltd. , Parkville, Australia
| | - Laura Verga
- 8 Pathologic Unit, Foundation IRCCS Policlinico San Matteo , Pavia, Italy
| | - Gian Luca Capello
- 8 Pathologic Unit, Foundation IRCCS Policlinico San Matteo , Pavia, Italy
| | - Vittorio Perfetti
- 9 Medical Oncology Unit, Foundation IRCCS Policlinico San Matteo , Pavia, Italy
| | - Fabio Fiordaliso
- 3 Bio-imaging Unit, Department of Cardiovascular Research, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri ," Milan, Italy
| | - Giampaolo Merlini
- 2 Amyloid Research and Treatment Center , Foundation IRCCS Policlinico San Matteo, Pavia, Italy .,5 Department of Molecular Medicine, University of Pavia , Pavia, Italy
| | - Mario Salmona
- 1 Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri ," Milan, Italy
| |
Collapse
|
16
|
Duce JA, Wong BX, Durham H, Devedjian JC, Smith DP, Devos D. Post translational changes to α-synuclein control iron and dopamine trafficking; a concept for neuron vulnerability in Parkinson's disease. Mol Neurodegener 2017; 12:45. [PMID: 28592304 PMCID: PMC5463308 DOI: 10.1186/s13024-017-0186-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is a multifactorial neurodegenerative disorder, the aetiology of which remains elusive. The primary clinical feature of progressively impaired motor control is caused by a loss of midbrain substantia nigra dopamine neurons that have a high α-synuclein (α-syn) and iron content. α-Syn is a neuronal protein that is highly modified post-translationally and central to the Lewy body neuropathology of the disease. This review provides an overview of findings on the role post translational modifications to α-syn have in membrane binding and intracellular vesicle trafficking. Furthermore, we propose a concept in which acetylation and phosphorylation of α-syn modulate endocytic import of iron and vesicle transport of dopamine during normal physiology. Disregulated phosphorylation and oxidation of α-syn mediate iron and dopamine dependent oxidative stress through impaired cellular location and increase propensity for α-syn aggregation. The proposition highlights a connection between α-syn, iron and dopamine, three pathological components associated with disease progression in sporadic Parkinson's disease.
Collapse
Affiliation(s)
- James A Duce
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK. .,Oxidation Biology Unit, the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, VIC, Australia.
| | - Bruce X Wong
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK.,Oxidation Biology Unit, the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, VIC, Australia
| | - Hannah Durham
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | | | - David P Smith
- Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield, UK
| | - David Devos
- Department of Medical Pharmacology, Lille University, INSERM U1171, CHU of Lille, Lille, France
| |
Collapse
|
17
|
Pino JMV, da Luz MHM, Antunes HKM, Giampá SQDC, Martins VR, Lee KS. Iron-Restricted Diet Affects Brain Ferritin Levels, Dopamine Metabolism and Cellular Prion Protein in a Region-Specific Manner. Front Mol Neurosci 2017; 10:145. [PMID: 28567002 PMCID: PMC5434142 DOI: 10.3389/fnmol.2017.00145] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/28/2017] [Indexed: 01/03/2023] Open
Abstract
Iron is an essential micronutrient for several physiological functions, including the regulation of dopaminergic neurotransmission. On the other hand, both iron, and dopamine can affect the folding and aggregation of proteins related with neurodegenerative diseases, such as cellular prion protein (PrPC) and α-synuclein, suggesting that deregulation of iron homeostasis and the consequential disturbance of dopamine metabolism can be a risk factor for conformational diseases. These proteins, in turn, are known to participate in the regulation of iron and dopamine metabolism. In this study, we evaluated the effects of dietary iron restriction on brain ferritin levels, dopamine metabolism, and the expression levels of PrPC and α-synuclein. To achieve this goal, C57BL/6 mice were fed with iron restricted diet (IR) or with normal diet (CTL) for 1 month. IR reduced iron and ferritin levels in liver. Ferritin reduction was also observed in the hippocampus. However, in the striatum of IR group, ferritin level was increased, suggesting that under iron-deficient condition, each brain area might acquire distinct capacity to store iron. Increased lipid peroxidation was observed only in hippocampus of IR group, where ferritin level was reduced. IR also generated discrete results regarding dopamine metabolism of distinct brain regions: in striatum, the level of dopamine metabolites (DOPAC and HVA) was reduced; in prefrontal cortex, only HVA was increased along with the enhanced MAO-A activity; in hippocampus, no alterations were observed. PrPC levels were increased only in the striatum of IR group, where ferritin level was also increased. PrPC is known to play roles in iron uptake. Thus, the increase of PrPC in striatum of IR group might be related to the increased ferritin level. α-synuclein was not altered in any regions. Abnormal accumulation of ferritin, increased MAO-A activity or lipid peroxidation are molecular features observed in several neurological disorders. Our findings show that nutritional iron deficiency produces these molecular alterations in a region-specific manner and provide new insight into the variety of molecular pathways that can lead to distinct neurological symptoms upon iron deficiency. Thus, adequate iron supplementation is essential for brain health and prevention of neurological diseases.
Collapse
Affiliation(s)
- Jessica M V Pino
- Departamento de Bioquímica, Universidade Federal de São PauloSão Paulo, Brazil
| | - Marcio H M da Luz
- Departamento de Bioquímica, Universidade Federal de São PauloSão Paulo, Brazil
| | - Hanna K M Antunes
- Departamento de Psicobiologia, Universidade Federal de São PauloSão Paulo, Brazil.,Departamento de Biociências, Universidade Federal de São PauloSão Paulo, Brazil
| | | | | | - Kil S Lee
- Departamento de Bioquímica, Universidade Federal de São PauloSão Paulo, Brazil
| |
Collapse
|
18
|
ACHIKA JONATHAN. Chemical investigation and antioxidant activity of fractions of Lannea humilis (Oliv.) Engl. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2017. [DOI: 10.18596/jotcsa.288249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
19
|
Duyn JH, Schenck J. Contributions to magnetic susceptibility of brain tissue. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3546. [PMID: 27240118 PMCID: PMC5131875 DOI: 10.1002/nbm.3546 10.1002/nbm.3546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/19/2016] [Accepted: 03/31/2016] [Indexed: 11/17/2023]
Abstract
This review discusses the major contributors to the subtle magnetic properties of brain tissue and how they affect MRI contrast. With the increased availability of high-field scanners, the use of magnetic susceptibility contrast for the study of human brain anatomy and function has increased dramatically. This has not only led to novel applications, but has also improved our understanding of the complex relationship between MRI contrast and magnetic susceptibility. Chief contributors to the magnetic susceptibility of brain tissue have been found to include myelin as well as iron. In the brain, iron exists in various forms with diverse biological roles, many of which are now only starting to be uncovered. An interesting aspect of magnetic susceptibility contrast is its sensitivity to the microscopic distribution of iron and myelin, which provides opportunities to extract information at spatial scales well below MRI resolution. For example, in white matter, the myelin sheath that surrounds the axons can provide tissue contrast that is dependent on the axonal orientation and reflects the relative size of intra- and extra-axonal water compartments. The extraction of such ultrastructural information, together with quantitative information about iron and myelin concentrations, is an active area of research geared towards the characterization of brain structure and function, and their alteration in disease. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jeff H. Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular
Imaging, National Institutes of Neurological Disorders and Stroke, National
Institutes of Health, Bethesda, Maryland 20892, USA
| | - John Schenck
- MRI Technologies and Systems, General Electric
Global Research Center, 1 Research Circle, Schenectady, New York 12309, USA
| |
Collapse
|
20
|
Duyn JH, Schenck J. Contributions to magnetic susceptibility of brain tissue. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3546. [PMID: 27240118 PMCID: PMC5131875 DOI: 10.1002/nbm.3546] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/19/2016] [Accepted: 03/31/2016] [Indexed: 05/08/2023]
Abstract
This review discusses the major contributors to the subtle magnetic properties of brain tissue and how they affect MRI contrast. With the increased availability of high-field scanners, the use of magnetic susceptibility contrast for the study of human brain anatomy and function has increased dramatically. This has not only led to novel applications, but has also improved our understanding of the complex relationship between MRI contrast and magnetic susceptibility. Chief contributors to the magnetic susceptibility of brain tissue have been found to include myelin as well as iron. In the brain, iron exists in various forms with diverse biological roles, many of which are now only starting to be uncovered. An interesting aspect of magnetic susceptibility contrast is its sensitivity to the microscopic distribution of iron and myelin, which provides opportunities to extract information at spatial scales well below MRI resolution. For example, in white matter, the myelin sheath that surrounds the axons can provide tissue contrast that is dependent on the axonal orientation and reflects the relative size of intra- and extra-axonal water compartments. The extraction of such ultrastructural information, together with quantitative information about iron and myelin concentrations, is an active area of research geared towards the characterization of brain structure and function, and their alteration in disease. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jeff H. Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular
Imaging, National Institutes of Neurological Disorders and Stroke, National
Institutes of Health, Bethesda, Maryland 20892, USA
| | - John Schenck
- MRI Technologies and Systems, General Electric
Global Research Center, 1 Research Circle, Schenectady, New York 12309, USA
| |
Collapse
|
21
|
Singh N, Asthana A, Baksi S, Desai V, Haldar S, Hari S, Tripathi AK. The prion-ZIP connection: From cousins to partners in iron uptake. Prion 2016; 9:420-8. [PMID: 26689487 PMCID: PMC4964862 DOI: 10.1080/19336896.2015.1118602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Converging observations from disparate lines of inquiry are beginning to clarify the cause of brain iron dyshomeostasis in sporadic Creutzfeldt-Jakob disease (sCJD), a neurodegenerative condition associated with the conversion of prion protein (PrPC), a plasma membrane glycoprotein, from α-helical to a β-sheet rich PrP-scrapie (PrPSc) isoform. Biochemical evidence indicates that PrPC facilitates cellular iron uptake by functioning as a membrane-bound ferrireductase (FR), an activity necessary for the transport of iron across biological membranes through metal transporters. An entirely different experimental approach reveals an evolutionary link between PrPC and the Zrt, Irt-like protein (ZIP) family, a group of proteins involved in the transport of zinc, iron, and manganese across the plasma membrane. Close physical proximity of PrPC with certain members of the ZIP family on the plasma membrane and increased uptake of extracellular iron by cells that co-express PrPC and ZIP14 suggest that PrPC functions as a FR partner for certain members of this family. The connection between PrPC and ZIP proteins therefore extends beyond common ancestry to that of functional cooperation. Here, we summarize evidence supporting the facilitative role of PrPC in cellular iron uptake, and implications of this activity on iron metabolism in sCJD brains.
Collapse
Affiliation(s)
- Neena Singh
- a Department of Pathology ; School of Medicine; Case Western Reserve University ; Cleveland , OH USA
| | - Abhishek Asthana
- a Department of Pathology ; School of Medicine; Case Western Reserve University ; Cleveland , OH USA
| | - Shounak Baksi
- a Department of Pathology ; School of Medicine; Case Western Reserve University ; Cleveland , OH USA
| | - Vilok Desai
- a Department of Pathology ; School of Medicine; Case Western Reserve University ; Cleveland , OH USA
| | - Swati Haldar
- a Department of Pathology ; School of Medicine; Case Western Reserve University ; Cleveland , OH USA
| | - Sahi Hari
- a Department of Pathology ; School of Medicine; Case Western Reserve University ; Cleveland , OH USA
| | - Ajai K Tripathi
- a Department of Pathology ; School of Medicine; Case Western Reserve University ; Cleveland , OH USA
| |
Collapse
|
22
|
Nehls M. Unified theory of Alzheimer's disease (UTAD): implications for prevention and curative therapy. J Mol Psychiatry 2016; 4:3. [PMID: 27429752 PMCID: PMC4947325 DOI: 10.1186/s40303-016-0018-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/03/2016] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to propose a Unified Theory of Alzheimer's disease (UTAD) that integrates all key behavioural, genetic and environmental risk factors in a causal chain of etiological and pathogenetic events. It is based on three concepts that emanate from human's evolutionary history: (1) The grandmother-hypothesis (GMH), which explains human longevity due to an evolutionary advantage in reproduction by trans-generational transfer of acquired knowledge. Consequently it is argued that mental health at old-age must be the default pathway of humans' genetic program and not development of AD. (2) Therefore, mechanism like neuronal rejuvenation (NRJ) and adult hippocampal neurogenesis (AHN) that still function efficiently even at old age provide the required lifelong ability to memorize personal experiences important for survival. Cumulative evidence from a multitude of experimental and epidemiological studies indicate that behavioural and environmental risk factors, which impair productive AHN, result in reduced episodic memory performance and in reduced psychological resilience. This leads to avoidance of novelty, dysregulation of the hypothalamic-pituitary-adrenal (HPA)-axis and cortisol hypersecretion, which drives key pathogenic mechanisms of AD like the accumulation and oligomerization of synaptotoxic amyloid beta, chronic neuroinflammation and neuronal insulin resistance. (3) By applying to AHN the law of the minimum (LOM), which defines the basic requirements of biological growth processes, the UTAD explains why and how different lifestyle deficiencies initiate the AD process by impairing AHN and causing dysregulation of the HPA-axis, and how environmental and genetic risk factors such as toxins or ApoE4, respectively, turn into disease accelerators under these unnatural conditions. Consequently, the UTAD provides a rational strategy for the prevention of mental decline and a system-biological approach for the causal treatment of AD, which might even be curative if the systemic intervention is initiated early enough in the disease process. Hence an individualized system-biological treatment of patients with early AD is proposed as a test for the validity of UTAD and outlined in this review.
Collapse
Affiliation(s)
- Michael Nehls
- Independent Researcher, Allmendweg 1, 79279 Vörstetten, Germany
| |
Collapse
|
23
|
Colvin RA, Lai B, Holmes WR, Lee D. Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics. Metallomics 2016; 7:1111-23. [PMID: 25894020 DOI: 10.1039/c5mt00084j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to demonstrate how single cell quantitative and subcellular metallomics inform us about both the spatial distribution and cellular mechanisms of metal buffering and homeostasis in primary cultured neurons from embryonic rat brain, which are often used as models of human disease involving metal dyshomeostasis. The present studies utilized synchrotron radiation X-ray fluorescence (SRXRF) and focused primarily on zinc and iron, two abundant metals in neurons that have been implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Total single cell contents for calcium, iron, zinc, copper, manganese, and nickel were determined. Resting steady state zinc showed a diffuse distribution in both soma and processes, best defined by the mass profile of the neuron with an enrichment in the nucleus compared with the cytoplasm. Zinc buffering and homeostasis was studied using two modes of cellular zinc loading - transporter and ionophore (pyrithione) mediated. Single neuron zinc contents were shown to statistically significantly increase by either loading method - ionophore: 160 million to 7 billion; transporter 160 million to 280 million atoms per neuronal soma. The newly acquired and buffered zinc still showed a diffuse distribution. Soma and processes have about equal abilities to take up zinc via transporter mediated pathways. Copper levels are distributed diffusely as well, but are relatively higher in the processes relative to zinc levels. Prior studies have observed iron puncta in certain cell types, but others have not. In the present study, iron puncta were characterized in several primary neuronal types. The results show that iron puncta could be found in all neuronal types studied and can account for up to 50% of the total steady state content of iron in neuronal soma. Although other metals can be present in iron puncta, they are predominantly iron containing and do not appear to be associated with ferritin cages or transferrin receptor endosomes. The iron content and its distribution in puncta were similar in all neuron types studied including primary dopaminergic neurons. In summary, quantitative measurements of steady state metal levels in single primary cultured neurons made possible by SRXRF analyses provide unique information on the relative levels of each metal in neuronal soma and processes, subcellular location of zinc loads, and have confirmed and extended the characterization of heretofore poorly understood cytoplasmic iron puncta.
Collapse
Affiliation(s)
- Robert A Colvin
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | | | | | | |
Collapse
|
24
|
Li K, Reichmann H. Role of iron in neurodegenerative diseases. J Neural Transm (Vienna) 2016; 123:389-99. [PMID: 26794939 DOI: 10.1007/s00702-016-1508-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023]
Abstract
Currently, we still lack effective measures to modify disease progression in neurodegenerative diseases. Iron-containing proteins play an essential role in many fundamental biological processes in the central nervous system. In addition, iron is a redox-active ion and can induce oxidative stress in the cell. Although the causes and pathology hallmarks of different neurodegenerative diseases vary, iron dyshomeostasis, oxidative stress and mitochondrial injury constitute a common pathway to cell death in several neurodegenerative diseases. MRI is capable of depicting iron content in the brain, and serves as a potential biomarker for early and differential diagnosis, tracking disease progression and evaluating the effectiveness of neuroprotective therapy. Iron chelators have shown their efficacy against neurodegeneration in a series of animal models, and been applied in several clinical trials. In this review, we summarize recent developments on iron dyshomeostasis in Parkinson's disease, Alzheimer's disease, Friedreich ataxia, and Huntington's disease.
Collapse
Affiliation(s)
- Kai Li
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany.
| | - Heinz Reichmann
- Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
25
|
Gozzelino R, Arosio P. Iron Homeostasis in Health and Disease. Int J Mol Sci 2016; 17:E130. [PMID: 26805813 PMCID: PMC4730371 DOI: 10.3390/ijms17010130] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 12/13/2022] Open
Abstract
Iron is required for the survival of most organisms, including bacteria, plants, and humans. Its homeostasis in mammals must be fine-tuned to avoid iron deficiency with a reduced oxygen transport and diminished activity of Fe-dependent enzymes, and also iron excess that may catalyze the formation of highly reactive hydroxyl radicals, oxidative stress, and programmed cell death. The advance in understanding the main players and mechanisms involved in iron regulation significantly improved since the discovery of genes responsible for hemochromatosis, the IRE/IRPs machinery, and the hepcidin-ferroportin axis. This review provides an update on the molecular mechanisms regulating cellular and systemic Fe homeostasis and their roles in pathophysiologic conditions that involve alterations of iron metabolism, and provides novel therapeutic strategies to prevent the deleterious effect of its deficiency/overload.
Collapse
Affiliation(s)
- Raffaella Gozzelino
- Inflammation and Neurodegeneration Laboratory, Chronic Diseases Research Center (CEDOC), Nova Medical School (NMS)/Faculdade de Ciências Médicas, University of Lisbon, Lisbon 1150-082, Portugal.
| | - Paolo Arosio
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, Brescia 25123, Italy.
| |
Collapse
|
26
|
Tripathi AK, Haldar S, Qian J, Beserra A, Suda S, Singh A, Hopfer U, Chen SG, Garrick MD, Turner JR, Knutson MD, Singh N. Prion protein functions as a ferrireductase partner for ZIP14 and DMT1. Free Radic Biol Med 2015; 84:322-330. [PMID: 25862412 PMCID: PMC4476631 DOI: 10.1016/j.freeradbiomed.2015.03.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/30/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
Abstract
Excess circulating iron is stored in the liver, and requires reduction of non-Tf-bound iron (NTBI) and transferrin (Tf) iron at the plasma membrane and endosomes, respectively, by ferrireductase (FR) proteins for transport across biological membranes through divalent metal transporters. Here, we report that prion protein (PrP(C)), a ubiquitously expressed glycoprotein most abundant on neuronal cells, functions as a FR partner for divalent-metal transporter-1 (DMT1) and ZIP14. Thus, absence of PrP(C) in PrP-knock-out (PrP(-/-)) mice resulted in markedly reduced liver iron stores, a deficiency that was not corrected by chronic or acute administration of iron by the oral or intraperitoneal routes. Likewise, preferential radiolabeling of circulating NTBI with (59)Fe revealed significantly reduced uptake and storage of NTBI by the liver of PrP(-/-) mice relative to matched PrP(+/+) controls. However, uptake, storage, and utilization of ferritin-bound iron that does not require reduction for uptake were increased in PrP(-/-) mice, indicating a compensatory response to the iron deficiency. Expression of exogenous PrP(C) in HepG2 cells increased uptake and storage of ferric iron (Fe(3+)), not ferrous iron (Fe(2+)), from the medium, supporting the function of PrP(C) as a plasma membrane FR. Coexpression of PrP(C) with ZIP14 and DMT1 in HepG2 cells increased uptake of Fe(3+) significantly, and surprisingly, increased the ratio of N-terminally truncated PrP(C) forms lacking the FR domain relative to full-length PrP(C). Together, these observations indicate that PrP(C) promotes, and possibly regulates, the uptake of NTBI through DMT1 and Zip14 via its FR activity. Implications of these observations for neuronal iron homeostasis under physiological and pathological conditions are discussed.
Collapse
Affiliation(s)
- Ajai K. Tripathi
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Swati Haldar
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Juan Qian
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Amber Beserra
- School of Arts and Sciences, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Srinivas Suda
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Ajay Singh
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Ulrich Hopfer
- Department of physiology and Biophysics, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Shu G. Chen
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | | | | | | | - Neena Singh
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, USA
- To whom correspondence should be addressed: Neena Singh, Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA. Tel: 216-368-2617;
| |
Collapse
|
27
|
Gozzelino R, Arosio P. The importance of iron in pathophysiologic conditions. Front Pharmacol 2015; 6:26. [PMID: 25759669 PMCID: PMC4338679 DOI: 10.3389/fphar.2015.00026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/30/2015] [Indexed: 11/26/2022] Open
Affiliation(s)
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy
| |
Collapse
|
28
|
Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev 2015; 49:135-56. [DOI: 10.1016/j.neubiorev.2014.12.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022]
|
29
|
Wong BX, Tsatsanis A, Lim LQ, Adlard PA, Bush AI, Duce JA. β-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS One 2014; 9:e114174. [PMID: 25464026 PMCID: PMC4252103 DOI: 10.1371/journal.pone.0114174] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/04/2014] [Indexed: 01/24/2023] Open
Abstract
Ceruloplasmin is a ferroxidase that interacts with ferroportin to export cellular iron, but is not expressed in neurons. We recently reported that the amyloid precursor protein (APP) is the analogous iron-exporting chaperone for neurons and other cells. The ferroxidase activity of APP has since been called into question. Using a triplex Fe2+ oxidation assay, we analyzed the activity of a soluble form of APP (sAPPα) within a buffer of physiological pH and anionic charge, and determined that iron oxidation originated from phosphate. Using various techniques such as flow-cytometry to measure surface presented proteins, we confirmed that endogenous APP is essential for ferroportin persistence on the neuronal surface. Therefore, despite lacking ferroxidase activity, APP still supports iron export from neurons.
Collapse
Affiliation(s)
- Bruce X. Wong
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Tsatsanis
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Linh Q. Lim
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul A. Adlard
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I. Bush
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AIB); (JAD)
| | - James A. Duce
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AIB); (JAD)
| |
Collapse
|
30
|
Affiliation(s)
- Neena Singh
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
31
|
Petters C, Irrsack E, Koch M, Dringen R. Uptake and metabolism of iron oxide nanoparticles in brain cells. Neurochem Res 2014; 39:1648-60. [PMID: 25011394 DOI: 10.1007/s11064-014-1380-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 01/29/2023]
Abstract
Magnetic iron oxide nanoparticles (IONPs) are used for various applications in biomedicine, for example as contrast agents in magnetic resonance imaging, for cell tracking and for anti-tumor treatment. However, IONPs are also known for their toxic effects on cells and tissues which are at least in part caused by iron-mediated radical formation and oxidative stress. The potential toxicity of IONPs is especially important concerning the use of IONPs for neurobiological applications as alterations in brain iron homeostasis are strongly connected with human neurodegenerative diseases. Since IONPs are able to enter the brain, potential adverse consequences of an exposure of brain cells to IONPs have to be considered. This article describes the pathways that allow IONPs to enter the brain and summarizes the current knowledge on the uptake, the metabolism and the toxicity of IONPs for the different types of brain cells in vitro and in vivo.
Collapse
Affiliation(s)
- Charlotte Petters
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | | | | | | |
Collapse
|