1
|
Li X, Nong X, Yang J, Li M, Wang Q, Sun M, Ma Q, Xu L, Wang Y. Exploring the Frontier of Cyclic Dipeptides: A Bioinformatics Approach to Potential Therapeutic Applications in Schizophrenia. Int J Mol Sci 2024; 25:11421. [PMID: 39518975 PMCID: PMC11546255 DOI: 10.3390/ijms252111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cyclic dipeptides (CDPs), known for their diverse biological activities, have potential therapeutic applications in mental and behavioral disorders (MBDs), particularly schizophrenia. This study explores the CDPs' therapeutic potential using bibliometric analysis, network pharmacology, molecular docking, and experimental verification, focusing on the interactions with the SIGMA1 receptor. A literature review over three decades utilizing the Web of Science Core Collection (WOSCC) was conducted to identify the emerging trends in CDPs research. A compound library was constructed from the PubChem database, and target prediction using SwissTargetPrediction revealed 800 potential protein targets. A compound-target network highlighted the key interactions with kinases, G protein-coupled receptors, and chromatin-modifying enzymes. Enrichment analysis revealed significant associations with schizophrenia and other MBDs. Schizophrenia-related targets among the potential protein targets were identified using the GEO database. Molecular docking results showed interactions of MC4R, OPRK1, SIGMA1, and CDK5R1 with various CDPs compounds, with SIGMA1 being especially noteworthy. Most CDPs exhibited lower binding energies than the control compounds NE-100 and duloxetine. Experimental validation demonstrated that CDPs such as Cyclo(Ala-Gln), Cyclo(Ala-His), and Cyclo(Val-Gly) exhibited IC50 values of 13.4, 19.4, and 11.5 μM, respectively, against SIGMA1, indicating biological activity. Our findings underscore their potential as therapeutic agents for schizophrenia, highlighting the need for further modifications to enhance specificity and efficacy. This work paves the way for future investigations into CDPs, contributing to developing targeted treatments for schizophrenia and related mental health disorders.
Collapse
Affiliation(s)
- Xingyu Li
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xuexiang Nong
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Yang
- Key Laboratory of Economic Plants and Biotechnology, Chinese Academy of Sciences, Kunming 650201, China
- Yunnan Key Laboratory for Wild Plant Resources, Chinese Academy of Sciences, Kunming 650201, China
| | - Minyue Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Qiuling Wang
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Min Sun
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Qichen Ma
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Ling Xu
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yuehu Wang
- Key Laboratory of Economic Plants and Biotechnology, Chinese Academy of Sciences, Kunming 650201, China
- Yunnan Key Laboratory for Wild Plant Resources, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
2
|
Malcolm NJ, Palkovic B, Sprague DJ, Calkins MM, Lanham JK, Halberstadt AL, Stucke AG, McCorvy JD. Mu-opioid receptor selective superagonists produce prolonged respiratory depression. iScience 2023; 26:107121. [PMID: 37416459 PMCID: PMC10320493 DOI: 10.1016/j.isci.2023.107121] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/17/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
Synthetic opioids are increasingly challenging to combat the opioid epidemic and act primarily at opioid receptors, chiefly the G protein-coupled receptor (GPCR) μ-opioid receptor (MOR), which signals through G protein-dependent and β-arrestin pathways. Using a bioluminescence resonance energy transfer (BRET) system, we investigate GPCR-signaling profiles by synthetic nitazenes, which are known to cause overdose and death due to respiratory depression. We show that isotonitazene and its metabolite, N-desethyl isotonitazene, are very potent MOR-selective superagonists, surpassing both DAMGO G protein and β-arrestin recruitment activity, which are properties distinct from other conventional opioids. Both isotonitazene and N-desethyl isotonitazene show high potency in mouse analgesia tail-flick assays, but N-desethyl isotonitazene shows longer-lasting respiratory depression compared to fentanyl. Overall, our results suggest that potent MOR-selective superagonists may be a pharmacological property predictive of prolonged respiratory depression resulting in fatal consequences and should be examined for future opioid analgesics.
Collapse
Affiliation(s)
- Nicholas J. Malcolm
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Barbara Palkovic
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel J. Sprague
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Maggie M. Calkins
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Janelle K. Lanham
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Adam L. Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92108, USA
| | - Astrid G. Stucke
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John D. McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Limoges A, Yarur HE, Tejeda HA. Dynorphin/kappa opioid receptor system regulation on amygdaloid circuitry: Implications for neuropsychiatric disorders. Front Syst Neurosci 2022; 16:963691. [PMID: 36276608 PMCID: PMC9579273 DOI: 10.3389/fnsys.2022.963691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Amygdaloid circuits are involved in a variety of emotional and motivation-related behaviors and are impacted by stress. The amygdala expresses several neuromodulatory systems, including opioid peptides and their receptors. The Dynorphin (Dyn)/kappa opioid receptor (KOR) system has been implicated in the processing of emotional and stress-related information and is expressed in brain areas involved in stress and motivation. Dysregulation of the Dyn/KOR system has also been implicated in various neuropsychiatric disorders. However, there is limited information about the role of the Dyn/KOR system in regulating amygdala circuitry. Here, we review the literature on the (1) basic anatomy of the amygdala, (2) functional regulation of synaptic transmission by the Dyn/KOR system, (3) anatomical architecture and function of the Dyn/KOR system in the amygdala, (4) regulation of amygdala-dependent behaviors by the Dyn/KOR system, and (5) future directions for the field. Future work investigating how the Dyn/KOR system shapes a wide range of amygdala-related behaviors will be required to increase our understanding of underlying circuitry modulation by the Dyn/KOR system. We anticipate that continued focus on the amygdala Dyn/KOR system will also elucidate novel ways to target the Dyn/KOR system to treat neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aaron Limoges
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
- NIH-Columbia University Individual Graduate Partnership Program, National Institutes of Health, Bethesda, MD, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Hector E. Yarur
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
- *Correspondence: Hugo A. Tejeda,
| |
Collapse
|
4
|
Cichon J, Liu R, Le HV. Therapeutic Potential of Salvinorin A and Its Analogues in Various Neurological Disorders. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2022; 9:452-457. [PMID: 35959414 PMCID: PMC9364973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Joseph Cichon
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hoang V. Le
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
| |
Collapse
|
5
|
Ko MC, Husbands SM. Pleiotropic Effects of Kappa Opioid Receptor-Related Ligands in Non-human Primates. Handb Exp Pharmacol 2022; 271:435-452. [PMID: 33274403 PMCID: PMC8175454 DOI: 10.1007/164_2020_419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The kappa opioid receptor (KOR)-related ligands have been demonstrated in preclinical studies for several therapeutic potentials. This chapter highlights (1) how non-human primates (NHP) studies facilitate the research and development of ligands targeting the KOR, (2) effects of the endogenous opioid peptide, dynorphin A-(1-17), and its analogs in NHP, and (3) pleiotropic effects and therapeutic applications of KOR-related ligands. In particular, synthetic ligands targeting the KOR have been extensively studied in NHP in three therapeutic areas, i.e., the treatment for itch, pain, and substance use disorders. As the KORs are widely expressed in the peripheral and central nervous systems, pleiotropic effects of KOR-related ligands, such as discriminative stimulus effects, neuroendocrine effects (e.g., prolactin release and stimulation of hypothalamic-pituitary-adrenal axis), and diuresis, in NHP are discussed. Centrally acting KOR agonists are known to produce adverse effects including dysphoria, hallucination, and sedation. Nonetheless, with strategic advances in medicinal chemistry, three classes of KOR-related agonists, i.e., peripherally restricted KOR agonists, mixed KOR/mu opioid receptor partial agonists, and G protein-biased KOR agonists, warrant additional NHP studies to improve our understanding of their functional efficacy, selectivity, and tolerability. Pharmacological studies in NHP which carry high translational significance will facilitate future development of KOR-based medications.
Collapse
Affiliation(s)
- Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
6
|
Piras S, Murineddu G, Loriga G, Carta A, Battistello E, Merighi S, Gessi S, Corona P, Asproni B, Ibba R, Temml V, Schuster D, Pinna GA. Biological Effects on μ-Receptors Affinity and Selectivity of Arylpropenyl Chain Structural Modification on Diazatricyclodecane Derivatives. Molecules 2021; 26:5448. [PMID: 34576918 PMCID: PMC8467848 DOI: 10.3390/molecules26185448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Opioid analgesics are clinically used to relieve severe pain in acute postoperative and cancer pain, and also in the long term in chronic pain. The analgesic action is mediated by μ-, δ-, and κ-receptors, but currently, with few exceptions for k-agonists, μ-agonists are the only ones used in therapy. Previously synthesized compounds with diazotricyclodecane cores (DTDs) have shown their effectiveness in binding opioid receptors. Fourteen novel diazatricyclodecanes belonging to the 9-propionyl-10-substituted-9,10-diazatricyclo[4.2.1.12,5]decane (compounds 20-23, 53, 57 and 59) and 2-propionyl-7-substituted-2,7-diazatricyclo[4.4.0.03,8]decane (compounds 24-27, 54, 58 and 60) series, respectively, have been synthesized and their ability to bind to the opioid μ-, δ- and κ-receptors was evaluated. Five of these derivatives, compounds 20, 21, 24, 26 and 53, showed μ-affinity in the nanomolar range with a negligible affinity towards δ- and κ-receptors and high μ-receptor selectivity. The synthesized compounds showed μ-receptor selectivity higher than those of previously reported methylarylcinnamyl analogs.
Collapse
Affiliation(s)
- Sandra Piras
- Department of Chemistry and Pharmacy, University of Sassari, via F. Muroni 23/A, 07100 Sassari, Italy; (G.M.); (A.C.); (P.C.); (B.A.); (R.I.); (G.A.P.)
| | - Gabriele Murineddu
- Department of Chemistry and Pharmacy, University of Sassari, via F. Muroni 23/A, 07100 Sassari, Italy; (G.M.); (A.C.); (P.C.); (B.A.); (R.I.); (G.A.P.)
| | - Giovanni Loriga
- Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca 3, 07100 Sassari, Italy;
| | - Antonio Carta
- Department of Chemistry and Pharmacy, University of Sassari, via F. Muroni 23/A, 07100 Sassari, Italy; (G.M.); (A.C.); (P.C.); (B.A.); (R.I.); (G.A.P.)
| | - Enrica Battistello
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.B.); (S.M.); (S.G.)
| | - Stefania Merighi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.B.); (S.M.); (S.G.)
| | - Stefania Gessi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.B.); (S.M.); (S.G.)
| | - Paola Corona
- Department of Chemistry and Pharmacy, University of Sassari, via F. Muroni 23/A, 07100 Sassari, Italy; (G.M.); (A.C.); (P.C.); (B.A.); (R.I.); (G.A.P.)
| | - Battistina Asproni
- Department of Chemistry and Pharmacy, University of Sassari, via F. Muroni 23/A, 07100 Sassari, Italy; (G.M.); (A.C.); (P.C.); (B.A.); (R.I.); (G.A.P.)
| | - Roberta Ibba
- Department of Chemistry and Pharmacy, University of Sassari, via F. Muroni 23/A, 07100 Sassari, Italy; (G.M.); (A.C.); (P.C.); (B.A.); (R.I.); (G.A.P.)
| | - Veronika Temml
- Department of Pharmaceutical Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria; (V.T.); (D.S.)
| | - Daniela Schuster
- Department of Pharmaceutical Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria; (V.T.); (D.S.)
| | - Gérard Aimè Pinna
- Department of Chemistry and Pharmacy, University of Sassari, via F. Muroni 23/A, 07100 Sassari, Italy; (G.M.); (A.C.); (P.C.); (B.A.); (R.I.); (G.A.P.)
| |
Collapse
|
7
|
Shou Q, Tan T, Xu F. Salvinorin A inhibits ovalbumin-stimulated allergic rhinitis and RBL-2H3 cells degranulation. FEBS Open Bio 2021. [PMID: 34092045 PMCID: PMC8329952 DOI: 10.1002/2211-5463.13219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/25/2021] [Accepted: 06/04/2021] [Indexed: 12/25/2022] Open
Abstract
Allergic rhinitis (AR) is a long-term noncommunicable inflammatory disease of the nasal mucosa mediated by immunoglobulin E and is mainly caused by exposure of genetically susceptible individuals to environmental allergens. Mast cells contribute to the pathogenesis of allergic and nonallergic inflammatory diseases. Salvinorin A has been previously shown to inhibit leukotriene production and mast cell degranulation to suppress airway hyperresponsiveness caused by sensitization; thus, we hypothesized that salvinorin A has an anti-AR effect. We tested this hypothesis using monoclonal anti-2,4,6-dinitrophenyl immunoglobulin E/human serum albumin-induced rat basophilic leukemia cells (RBL-2H3 cells) and ovalbumin (OVA)-induced AR in mice as in vivo and in vitro AR models, respectively. The expression levels of histamine, β-hexosaminidase, interleukin-4 and tumor necrosis factor-α were decreased by salvinorin A in vitro. Granule release and F-actin organization were also suppressed by salvinorin A. Furthermore, salvinorin A inhibited OVA-induced features of AR in mice, including nasal rubbing and sneezing, as well as increased OVA-specific immunoglobulin E, histamine, tumor necrosis factor-α and interleukin-4 levels. In addition, salvinorin A decreased the phosphorylation of phosphoinositide 3-kinase/Akt in vitro and in vivo. Our work suggests that salvinorin A suppresses AR caused by sensitization by inhibiting the inflammatory responses of mast cells; thus, salvinorin A may have potential for treatment of AR.
Collapse
Affiliation(s)
- Qiyang Shou
- The Second Affiliated Hospital, Zhejiang University of Chinese Medicine, Hangzhou, China
| | - Tao Tan
- Internal Medicine Department, Zhejiang Provincial General Team Hospital of the Chinese People's Armed Police Force, Hangzhou, China
| | - Faying Xu
- School of Medical Imaging, Hangzhou Medical College, China
| |
Collapse
|
8
|
Abstract
A concise enantioselective total synthesis of the neoclerodane diterpene (-)-salvinorin A is reported. The stereogenic center at C-12 was installed by catalytic asymmetric propargylation with excellent enantioselectivity, and the remaining six stereogenic centers were set up highly diastereoselectively under substrate control. As for our previous synthesis of racemic salvinorin A, two intramolecular Diels-Alder reactions were applied to generate the tricyclic core. A chemoselective Mitsunobu inversion of a syn 1,2-diol allowed for further streamlining of the original reaction sequence by two steps. Overall, (-)-salvinorin A was synthesized in only 16 steps starting from 3-furaldehyde with 1.4 % total yield. Furthermore, an alternative intramolecular Diels-Alder strategy employing a 2-bromo-1,3-diene moiety was investigated.
Collapse
Affiliation(s)
- Patrick Zimdars
- Fakultät Chemie und LebensmittelchemieOrganische Chemie ITechnische Universität DresdenBergstraße 6601069DresdenGermany
| | - Yuzhou Wang
- Fakultät Chemie und LebensmittelchemieOrganische Chemie ITechnische Universität DresdenBergstraße 6601069DresdenGermany
| | - Peter Metz
- Fakultät Chemie und LebensmittelchemieOrganische Chemie ITechnische Universität DresdenBergstraße 6601069DresdenGermany
| |
Collapse
|
9
|
Chakraborty S, Majumdar S. Natural Products for the Treatment of Pain: Chemistry and Pharmacology of Salvinorin A, Mitragynine, and Collybolide. Biochemistry 2021; 60:1381-1400. [PMID: 32930582 PMCID: PMC7982354 DOI: 10.1021/acs.biochem.0c00629] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pain remains a very pervasive problem throughout medicine. Classical pain management is achieved through the use of opiates belonging to the mu opioid receptor (MOR) class, which have significant side effects that hinder their utility. Pharmacologists have been trying to develop opioids devoid of side effects since the isolation of morphine from papaver somniferum, more commonly known as opium by Sertürner in 1804. The natural products salvinorin A, mitragynine, and collybolide represent three nonmorphinan natural product-based targets, which are potent selective agonists of opioid receptors, and emerging next-generation analgesics. In this work, we review the phytochemistry and medicinal chemistry efforts on these templates and their effects on affinity, selectivity, analgesic actions, and a myriad of other opioid-receptor-related behavioral effects.
Collapse
Affiliation(s)
- Soumen Chakraborty
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
10
|
Rengasamy KRR, Mahomoodally MF, Joaheer T, Zhang Y. A Systematic Review of Traditionally Used Herbs and Animal-Derived Products as Potential Analgesics. Curr Neuropharmacol 2021; 19:553-588. [PMID: 32781962 PMCID: PMC8206464 DOI: 10.2174/1570159x18666200808151522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/10/2020] [Accepted: 06/21/2020] [Indexed: 11/25/2022] Open
Abstract
Pain is a distressing but fundamental manifestation that prepares the body for potentially detrimental stimuli while ensuring its protection. Plant and animal products have traditionally been used to relieve pain for centuries. However, no attempt has been made to compile a single report of plant and animal products possessing analgesic properties. This review enadeavours to recover data from published articles to establish a collective literature review on folk remedies from plant and animal sources used as analgesics and in the treatment of pain-related conditions, identifying gaps in existing knowledge and future works. Relevant information was systematically retrieved using the PRISMA method. In this review, in total, 209 plants were found to be either used raw or prepared by decoctions or maceration. Administration was either oral or topical, and they were predominantly used in Asian countries. In vivo studies of plants with analgesic properties, which were tested using different methods including acetic-induced writhing test, hotplate test, tail-flick test, and formalin-induced pain test, were compiled. Animal products with analgesic properties were obtained mainly from compounds present in venom; their bioactive compounds were also identified. In the literature search, certain gaps were noted, which could be reviewed in future studies. For instance, there was a disparity of information regarding the traditional uses of medicinal plants. In this review, an attempt was made to critically assess and describe the pharmacological properties and bioactive composition of indigenous plants, some animal species, and animal venom by scrutinizing databases and looking for published articles. Therefore, it can be concluded that the compounds obtained from these sources can serve as important ingredients in therapeutic agents to alleviate pain once their limitations are assessed and improved upon. In the literature search, certain gaps were noted, which could be reviewed in future studies.
Collapse
Affiliation(s)
- Kannan R R Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.,Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam,Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, North West Province, South Africa
| | - Mohamad Fawzi Mahomoodally
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Teshika Joaheer
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Yansheng Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
11
|
Pharmacokinetics and Pharmacodynamics of Salvinorin A and Salvia divinorum: Clinical and Forensic Aspects. Pharmaceuticals (Basel) 2021; 14:ph14020116. [PMID: 33546518 PMCID: PMC7913753 DOI: 10.3390/ph14020116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/13/2023] Open
Abstract
Salvia divinorum Epling and Játiva is a perennial mint from the Lamiaceae family, endemic to Mexico, predominantly from the state of Oaxaca. Due to its psychoactive properties, S. divinorum had been used for centuries by Mazatecans for divinatory, religious, and medicinal purposes. In recent years, its use for recreational purposes, especially among adolescents and young adults, has progressively increased. The main bioactive compound underlying the hallucinogenic effects, salvinorin A, is a non-nitrogenous diterpenoid with high affinity and selectivity for the κ-opioid receptor. The aim of this work is to comprehensively review and discuss the toxicokinetics and toxicodynamics of S. divinorum and salvinorin A, highlighting their psychological, physiological, and toxic effects. Potential therapeutic applications and forensic aspects are also covered in this review. The leaves of S. divinorum can be chewed, drunk as an infusion, smoked, or vaporised. Absorption of salvinorin A occurs through the oral mucosa or the respiratory tract, being rapidly broken down in the gastrointestinal system to its major inactive metabolite, salvinorin B, when swallowed. Salvinorin A is rapidly distributed, with accumulation in the brain, and quickly eliminated. Its pharmacokinetic parameters parallel well with the short-lived psychoactive and physiological effects. No reports on toxicity or serious adverse outcomes were found. A variety of therapeutic applications have been proposed for S. divinorum which includes the treatment of chronic pain, gastrointestinal and mood disorders, neurological diseases, and treatment of drug dependence. Notwithstanding, there is still limited knowledge regarding the pharmacology and toxicology features of S. divinorum and salvinorin A, and this is needed due to its widespread use. Additionally, the clinical acceptance of salvinorin A has been hampered, especially due to the psychotropic side effects and misuse, turning the scientific community to the development of analogues with better pharmacological profiles.
Collapse
|
12
|
Spetea M, Schmidhammer H. Kappa Opioid Receptor Ligands and Pharmacology: Diphenethylamines, a Class of Structurally Distinct, Selective Kappa Opioid Ligands. Handb Exp Pharmacol 2021; 271:163-195. [PMID: 33454858 DOI: 10.1007/164_2020_431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The kappa opioid receptor (KOR), a G protein-coupled receptor, and its endogenous ligands, the dynorphins, are prominent members of the opioid neuromodulatory system. The endogenous kappa opioid system is expressed in the central and peripheral nervous systems, and has a key role in modulating pain in central and peripheral neuronal circuits and a wide array of physiological functions and neuropsychiatric behaviors (e.g., stress, reward, emotion, motivation, cognition, epileptic seizures, itch, and diuresis). We review the latest advances in pharmacology of the KOR, chemical developments on KOR ligands with advances and challenges, and therapeutic and potential applications of KOR ligands. Diverse discovery strategies of KOR ligands targeting natural, naturally derived, and synthetic compounds with different scaffolds, as small molecules or peptides, with short or long-acting pharmacokinetics, and central or peripheral site of action, are discussed. These research efforts led to ligands with distinct pharmacological properties, as agonists, partial agonists, biased agonists, and antagonists. Differential modulation of KOR signaling represents a promising strategy for developing pharmacotherapies for several human diseases, either by activating (treatment of pain, pruritus, and epilepsy) or blocking (treatment of depression, anxiety, and addiction) the receptor. We focus on the recent chemical and pharmacological advances on diphenethylamines, a new class of structurally distinct, selective KOR ligands. Design strategies and investigations to define structure-activity relationships together with in vivo pharmacology of diphenethylamines as agonists, biased agonists, and antagonists and their potential use as therapeutics are discussed.
Collapse
Affiliation(s)
- Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Faouzi A, Varga BR, Majumdar S. Biased Opioid Ligands. Molecules 2020; 25:E4257. [PMID: 32948048 PMCID: PMC7570672 DOI: 10.3390/molecules25184257] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Achieving effective pain management is one of the major challenges associated with modern day medicine. Opioids, such as morphine, have been the reference treatment for moderate to severe acute pain not excluding chronic pain modalities. Opioids act through the opioid receptors, the family of G-protein coupled receptors (GPCRs) that mediate pain relief through both the central and peripheral nervous systems. Four types of opioid receptors have been described, including the μ-opioid receptor (MOR), κ-opioid receptor (KOR), δ-opioid receptor (DOR), and the nociceptin opioid peptide receptor (NOP receptor). Despite the proven success of opioids in treating pain, there are still some inherent limitations. All clinically approved MOR analgesics are associated with adverse effects, which include tolerance, dependence, addiction, constipation, and respiratory depression. On the other hand, KOR selective analgesics have found limited clinical utility because they cause sedation, anxiety, dysphoria, and hallucinations. DOR agonists have also been investigated but they have a tendency to cause convulsions. Ligands targeting NOP receptor have been reported in the preclinical literature to be useful as spinal analgesics and as entities against substance abuse disorders while mixed MOR/NOP receptor agonists are useful as analgesics. Ultimately, the goal of opioid-related drug development has always been to design and synthesize derivatives that are equally or more potent than morphine but most importantly are devoid of the dangerous residual side effects and abuse potential. One proposed strategy is to take advantage of biased agonism, in which distinct downstream pathways can be activated by different molecules working through the exact same receptor. It has been proposed that ligands not recruiting β-arrestin 2 or showing a preference for activating a specific G-protein mediated signal transduction pathway will function as safer analgesic across all opioid subtypes. This review will focus on the design and the pharmacological outcomes of biased ligands at the opioid receptors, aiming at achieving functional selectivity.
Collapse
MESH Headings
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Arrestin/metabolism
- Furans/chemistry
- Furans/metabolism
- Humans
- Ligands
- Pain/drug therapy
- Pyrones/chemistry
- Pyrones/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
| | | | - Susruta Majumdar
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO 63131, USA; (A.F.); (B.R.V.)
| |
Collapse
|
14
|
Freitas-Andrade M, Raman-Nair J, Lacoste B. Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 2020; 11:948. [PMID: 32848875 PMCID: PMC7433746 DOI: 10.3389/fphys.2020.00948] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow ensure proper brain function. The adult human brain represents only a small portion of the body mass, yet about a quarter of the cardiac output is dedicated to energy consumption by brain cells at rest. Due to a low capacity to store energy, brain health is heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular integrity and function, compromising brain homeostasis and leading to widespread consequences from early-onset motor deficits to long-term cognitive decline. While numerous lines of investigation have been undertaken to develop new pharmacological therapies for stroke, only few advances have been made and most clinical trials have failed. Overall, our understanding of the acute and chronic vascular responses to stroke is insufficient, yet a better comprehension of cerebrovascular remodeling following stroke is an essential prerequisite for developing novel therapeutic options. In this review, we present a comprehensive update on post-stroke cerebrovascular remodeling, an important and growing field in neuroscience, by discussing cellular and molecular mechanisms involved, sex differences, limitations of preclinical research design and future directions.
Collapse
Affiliation(s)
| | - Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Socała K, Doboszewska U, Wlaź P. Salvinorin A Does Not Affect Seizure Threshold in Mice. Molecules 2020; 25:molecules25051204. [PMID: 32155979 PMCID: PMC7179429 DOI: 10.3390/molecules25051204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 11/16/2022] Open
Abstract
The κ-opioid receptor has recently gained attention as a new molecular target in the treatment of many psychiatric and neurological disorders including epilepsy. Salvinorin A is a potent plant-derived hallucinogen that acts as a highly selective κ-opioid receptor agonist. It has unique structure and pharmacological properties, but its influence on seizure susceptibility has not been studied so far. Therefore, the aim of the present study was to investigate the effect of salvinorin A on seizure thresholds in three acute seizure tests in mice. We also examined its effect on muscular strength and motor coordination. The obtained results showed that salvinorin A (0.1-10 mg/kg, i.p.) did not significantly affect the thresholds for the first myoclonic twitch, generalized clonic seizure, or forelimb tonus in the intravenous pentylenetetrazole seizure threshold test in mice. Likewise, it failed to affect the thresholds for tonic hindlimb extension and psychomotor seizures in the maximal electroshock- and 6 Hz-induced seizure threshold tests, respectively. Moreover, no changes in motor coordination (assessed in the chimney test) or muscular strength (assessed in the grip-strength test) were observed. This is a preliminary report only, and further studies are warranted to better characterize the effects of salvinorin A on seizure and epilepsy.
Collapse
|
16
|
Xiao L, Wang Y, Zhang M, Wu W, Kong L, Ma Y, Xu X, Liu X, He Q, Qian Y, Sun H, Wu H, Lin C, Huang H, Ye R, Jiang S, Ye RF, Yuan C, Fang S, Xue D, Yang X, Chen H, Zheng Y, Yu L, Xie Q, Zheng L, Fu W, Li W, Qiu Z, Liu J, Shao L. Discovery of a Highly Selective and Potent κ Opioid Receptor Agonist from N-Cyclopropylmethyl-7α-phenyl-6,14-endoethanotetrahydronorthebaines with Reduced Central Nervous System (CNS) Side Effects Navigated by the Message-Address Concept. J Med Chem 2019; 62:11054-11070. [PMID: 31738550 DOI: 10.1021/acs.jmedchem.9b00857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effective and safe analgesics represent an unmet medical need for the treatment of acute and chronic pain. A series of N-cyclopropylmethyl-7α-phenyl-6,14-endoethanotetrahydronorthebaines were designed, synthesized, and assayed, leading to the discovery of a benzylamine derivative (compound 4, SLL-039) as a highly selective and potent κ opioid agonist (κ, Ki = 0.47 nM, κ/μ = 682, κ/δ = 283), which was confirmed by functional assays in vitro and antinociceptive assays in vivo. The in vivo effect could be blocked by pretreatment with the selective κ antagonist nor-BNI. Moreover, this compound did not induce sedation, a common dose limiting effect of κ opioid receptor agonists, at its analgesic dose compared to U50,488H. The dissociation of sedation/antinociception found in SLL-039 was assumed to be correlated with the occupation of its benzamide motif in a unique subsite involving V1182.63, W124EL1, and E209EL2.
Collapse
Affiliation(s)
- Li Xiao
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Yujun Wang
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Mumei Zhang
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Weiwei Wu
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science , 555 Zuchongzhi Road , Shanghai 201203 , China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Linghui Kong
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Yan Ma
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science , 555 Zuchongzhi Road , Shanghai 201203 , China.,Shanghai University School of Life Sciences , No. 99 Shangda Road , Shanghai 200444 , China
| | - Xuejun Xu
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Xiao Liu
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Qian He
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Yuanyuan Qian
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Huijiao Sun
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Haihao Wu
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Cheng Lin
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Huoming Huang
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Rongrong Ye
- Shanghai Institute of Technology , No. 100 Haiquan Road , Shanghai 201418 , China
| | - Shuang Jiang
- Nanjing University of Chinese Medicine , No. 138 Xianlin Avenue , Nanjing 210023 , China
| | - Ru-Feng Ye
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Congmin Yuan
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Shengyang Fang
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Dengqi Xue
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Xicheng Yang
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Hao Chen
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Yilin Zheng
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Linqian Yu
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Lan Zheng
- Minhang Hospital , Fudan University , No. 170 Xinsong Road , Shanghai 201199 , China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Zhuibai Qiu
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China
| | - Jinggen Liu
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science , 555 Zuchongzhi Road , Shanghai 201203 , China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy , Fudan University , No. 826 Zhangheng Road , Shanghai 201203 , China.,State Key Laboratory of Medical Neurobiology , Fudan University , No. 138 Yixueyuan Road , Shanghai 200032 , China
| |
Collapse
|
17
|
A Survey of Molecular Imaging of Opioid Receptors. Molecules 2019; 24:molecules24224190. [PMID: 31752279 PMCID: PMC6891617 DOI: 10.3390/molecules24224190] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/09/2023] Open
Abstract
The discovery of endogenous peptide ligands for morphine binding sites occurred in parallel with the identification of three subclasses of opioid receptor (OR), traditionally designated as μ, δ, and κ, along with the more recently defined opioid-receptor-like (ORL1) receptor. Early efforts in opioid receptor radiochemistry focused on the structure of the prototype agonist ligand, morphine, although N-[methyl-11C]morphine, -codeine and -heroin did not show significant binding in vivo. [11C]Diprenorphine ([11C]DPN), an orvinol type, non-selective OR antagonist ligand, was among the first successful PET tracers for molecular brain imaging, but has been largely supplanted in research studies by the μ-preferring agonist [11C]carfentanil ([11C]Caf). These two tracers have the property of being displaceable by endogenous opioid peptides in living brain, thus potentially serving in a competition-binding model. Indeed, many clinical PET studies with [11C]DPN or [11C]Caf affirm the release of endogenous opioids in response to painful stimuli. Numerous other PET studies implicate μ-OR signaling in aspects of human personality and vulnerability to drug dependence, but there have been very few clinical PET studies of μORs in neurological disorders. Tracers based on naltrindole, a non-peptide antagonist of the δ-preferring endogenous opioid enkephalin, have been used in PET studies of δORs, and [11C]GR103545 is validated for studies of κORs. Structures such as [11C]NOP-1A show selective binding at ORL-1 receptors in living brain. However, there is scant documentation of δ-, κ-, or ORL1 receptors in healthy human brain or in neurological and psychiatric disorders; here, clinical PET research must catch up with recent progress in radiopharmaceutical chemistry.
Collapse
|
18
|
Browne CA, Lucki I. Targeting opioid dysregulation in depression for the development of novel therapeutics. Pharmacol Ther 2019; 201:51-76. [PMID: 31051197 DOI: 10.1016/j.pharmthera.2019.04.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Since the serendipitous discovery of the first class of modern antidepressants in the 1950's, all pharmacotherapies approved by the Food and Drug Administration for major depressive disorder (MDD) have shared a common mechanism of action, increased monoaminergic neurotransmission. Despite the widespread availability of antidepressants, as many as 50% of depressed patients are resistant to these conventional therapies. The significant length of time required to produce meaningful symptom relief with these medications, 4-6 weeks, indicates that other mechanisms are likely involved in the pathophysiology of depression which may yield more viable targets for drug development. For decades, no viable candidate target with a different mechanism of action to that of conventional therapies proved successful in clinical studies. Now several exciting avenues for drug development are under intense investigation. One of these emerging targets is modulation of endogenous opioid tone. This review will evaluate preclinical and clinical evidence pertaining to opioid dysregulation in depression, focusing on the role of the endogenous ligands endorphin, enkephalin, dynorphin, and nociceptin/orphanin FQ (N/OFQ) and their respective receptors, mu (MOR), delta (DOR), kappa (KOR), and the N/OFQ receptor (NOP) in mediating behaviors relevant to depression and anxiety. Finally, putative opioid based antidepressants that are under investigation in clinical trials, ALKS5461, JNJ-67953964 (formerly LY2456302 and CERC-501) and BTRX-246040 (formerly LY-2940094) will be discussed. This review will illustrate the potential therapeutic value of targeting opioid dysregulation in developing novel therapies for MDD.
Collapse
Affiliation(s)
- Caroline A Browne
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America
| | - Irwin Lucki
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| |
Collapse
|
19
|
Coffeen U, Pellicer F. Salvia divinorum: from recreational hallucinogenic use to analgesic and anti-inflammatory action. J Pain Res 2019; 12:1069-1076. [PMID: 30962708 PMCID: PMC6434906 DOI: 10.2147/jpr.s188619] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Salvia divinorum is a herbal plant native to the southwest region of Mexico. Traditional preparations of this plant have been used in illness treatments that converge with inflammatory conditions and pain. Currently, S. divinorum extracts have become popular in several countries as a recreational drug due to its hallucinogenic effects. Its main active component is a diterpene named salvinorin A (SA), a potent naturally occurring hallucinogen with a great affinity to the κ opioid receptors and with allosteric modulation of cannabinoid type 1 receptors. Recent biochemical research has revealed the mechanism of action of the anti-inflammatory and analgesic effect of SA at the cellular and molecular level. Nevertheless, because of their short-lasting and hallucinogenic effect, the research has focused on discovering a new analogue of SA that is able to induce analgesia and reduce inflammation with a long-lasting effect but without the hallucinatory component. In this review, we explore the role of S. divinorum, SA and its analogues. We focus mainly on their analgesic and anti-inflammatory roles but also mention their psychoactive properties.
Collapse
Affiliation(s)
- Ulises Coffeen
- Research in Neurosciences, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, México,
| | - Francisco Pellicer
- Research in Neurosciences, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, México,
| |
Collapse
|
20
|
Zjawiony JK, Machado AS, Menegatti R, Ghedini PC, Costa EA, Pedrino GR, Lukas SE, Franco OL, Silva ON, Fajemiroye JO. Cutting-Edge Search for Safer Opioid Pain Relief: Retrospective Review of Salvinorin A and Its Analogs. Front Psychiatry 2019; 10:157. [PMID: 30971961 PMCID: PMC6445891 DOI: 10.3389/fpsyt.2019.00157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 03/04/2019] [Indexed: 12/21/2022] Open
Abstract
Over the years, pain has contributed to low life quality, poor health, and economic loss. Opioids are very effective analgesic drugs for treating mild, moderate, or severe pain. Therapeutic application of opioids has been limited by short and long-term side effects. These side effects and opioid-overuse crisis has intensified interest in the search for new molecular targets and drugs. The present review focuses on salvinorin A and its analogs with the aim of exploring their structural and pharmacological profiles as clues for the development of safer analgesics. Ethnopharmacological reports and growing preclinical data have demonstrated the antinociceptive effect of salvinorin A and some of its analogs. The pharmacology of analogs modified at C-2 dominates the literature when compared to the ones from other positions. The distinctive binding affinity of these analogs seems to correlate with their chemical structure and in vivo antinociceptive effects. The high susceptibility of salvinorin A to chemical modification makes it an important pharmacological tool for cellular probing and developing analogs with promising analgesic effects. Additional research is still needed to draw reliable conclusions on the therapeutic potential of salvinorin A and its analogs.
Collapse
Affiliation(s)
- Jordan K Zjawiony
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, United States
| | - Antônio S Machado
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Ricardo Menegatti
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Paulo C Ghedini
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | - Elson A Costa
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gustavo R Pedrino
- Department of Physiology, Universidade Federal de Goiás, Goiânia, Brazil
| | - Scott E Lukas
- McLean Imaging Center, Harvard Medical School, McLean Hospital, Belmont, MA, United States
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
| | - Osmar N Silva
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - James O Fajemiroye
- Department of Physiology, Universidade Federal de Goiás, Goiânia, Brazil.,Centro Universitário de Anápolis, Unievangélica, Anápolis, Brazil
| |
Collapse
|
21
|
Xu C, Liu G, Ji H, Chen W, Dai D, Chen Z, Zhou D, Xu L, Hu H, Cui W, Chang L, Zha Q, Li L, Duan S, Wang Q. Elevated methylation of OPRM1 and OPRL1 genes in Alzheimer's disease. Mol Med Rep 2018; 18:4297-4302. [PMID: 30152845 PMCID: PMC6172396 DOI: 10.3892/mmr.2018.9424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
Previous studies have suggested that increased opioid receptor κ1 (OPRK1) and opioid receptor δ1 (OPRD1) methylation levels are involved in Alzheimer's disease (AD). In the present study, the methylation levels of two opioid receptor genes, opioid receptor µ1 (OPRM1) and opioid related nociceptin receptor 1 (OPRL1), were analyzed for their association with AD. Gene methylation levels were measured using bisulfite pyrosequencing in DNA samples derived from blood samples of 51 AD patients and 63 controls. The results indicated that there were significantly elevated promoter methylation levels of OPRM1 and OPRL1 in AD (OPRM1: P=0.007; OPRL1: P=2.987×10−6). Dual-luciferase reporter gene assays demonstrated that the promoter fragments of these two genes were able to promote gene expression (OPRM1: Fold-change=2.616, P=0.003; OPRL1: Fold change=11.395, P=0.007). In addition, receiver operating characteristic analyses further indicated that a methylation panel of four opioid receptor genes (area under the curve=0.848, sensitivity=0.723, and specificity=0.879) performed well in the prediction of AD. These results suggested that opioid receptor genes may be used as potential methylation biomarkers for the diagnosis of AD.
Collapse
Affiliation(s)
- Chunshuang Xu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Guili Liu
- Department of Science and Education, Ningbo No. 9 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Huihui Ji
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Weihua Chen
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Dongjun Dai
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zhongming Chen
- Geriatrics Department, Ningbo Kangning Hospital, Ningbo, Zhejiang 315200, P.R. China
| | - Dongsheng Zhou
- Geriatrics Department, Ningbo Kangning Hospital, Ningbo, Zhejiang 315200, P.R. China
| | - Lei Xu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Haochang Hu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Lan Chang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Qin Zha
- Department of Science and Education, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315200, P.R. China
| | - Liping Li
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shiwei Duan
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Qinwen Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
22
|
Fedoros EI, Orlov AA, Zherebker A, Gubareva EA, Maydin MA, Konstantinov AI, Krasnov KA, Karapetian RN, Izotova EI, Pigarev SE, Panchenko AV, Tyndyk ML, Osolodkin DI, Nikolaev EN, Perminova IV, Anisimov VN. Novel water-soluble lignin derivative BP-Cx-1: identification of components and screening of potential targets in silico and in vitro. Oncotarget 2018; 9:18578-18593. [PMID: 29719628 PMCID: PMC5915095 DOI: 10.18632/oncotarget.24990] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 11/25/2022] Open
Abstract
Identification of molecular targets and mechanism of action is always a challenge, in particular – for natural compounds due to inherent chemical complexity. BP-Cx-1 is a water-soluble modification of hydrolyzed lignin used as the platform for a portfolio of innovative pharmacological products aimed for therapy and supportive care of oncological patients. The present study describes a new approach, which combines in vitro screening of potential molecular targets for BP-Cx-1 using Diversity Profile - P9 panel by Eurofins Cerep (France) with a search of possible active components in silico in ChEMBL - manually curated chemical database of bioactive molecules with drug-like properties. The results of diversity assay demonstrate that BP-Cx-1 has multiple biological effects on neurotransmitters receptors, ligand-gated ion channels and transporters. Of particular importance is that the major part of identified molecular targets are involved in modulation of inflammation and immune response and might be related to tumorigenesis. Characterization of molecular composition of BP-Cx-1 with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and subsequent identification of possible active components by searching for molecular matches in silico in ChEMBL indicated polyphenolic components, nominally, flavonoids, sapogenins, phenanthrenes, as the major carriers of biological activity of BP-Cx-1. In vitro and in silico target screening yielded overlapping lists of proteins: adenosine receptors, dopamine receptor DRD4, glucocorticoid receptor, serotonin receptor 5-HT1, prostaglandin receptors, muscarinic cholinergic receptor, GABAA receptor. The pleiotropic molecular activities of polyphenolic components are beneficial in treatment of multifactorial disorders such as diseases associated with chronic inflammation and cancer.
Collapse
Affiliation(s)
- Elena I Fedoros
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russia.,Nobel LTD, Saint-Petersburg 192012, Russia
| | - Alexey A Orlov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Zherebker
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.,Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
| | - Ekaterina A Gubareva
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russia
| | - Mikhail A Maydin
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russia
| | | | - Konstantin A Krasnov
- Institute of Toxicology, Federal Medical-Biological Agency, Saint-Petersburg 192019, Russia
| | | | | | | | - Andrey V Panchenko
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russia
| | - Margarita L Tyndyk
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russia
| | - Dmitry I Osolodkin
- Institute of Poliomyelitis and Viral Encephalitides, Chumakov FSC R&D IBP RAS, Moscow 108819, Russia.,Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Evgeny N Nikolaev
- Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia.,Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow 119121, Russia
| | - Irina V Perminova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir N Anisimov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russia
| |
Collapse
|
23
|
Erli F, Guerrieri E, Ben Haddou T, Lantero A, Mairegger M, Schmidhammer H, Spetea M. Highly Potent and Selective New Diphenethylamines Interacting with the κ-Opioid Receptor: Synthesis, Pharmacology, and Structure-Activity Relationships. J Med Chem 2017; 60:7579-7590. [PMID: 28825813 PMCID: PMC5601360 DOI: 10.1021/acs.jmedchem.7b00981] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 12/26/2022]
Abstract
We previously reported on a series of small molecules targeting the κ-opioid (KOP) receptor featuring a diphenethylamine scaffold and showed the promise of these ligands as effective analgesics with reduced liability for adverse effects. This study expands the structure-activity relationships on our original series by presenting several modifications in the lead compounds 1 (HS665) and 2 (HS666). A library of new diphenethylamines was designed, synthesized, and pharmacologically evaluated. In comparison with 1 and 2, the KOP receptor affinity, selectivity, and agonist activity were modulated by introducing bulkier N-substituents, a 2-fluoro substitution, and additional hydroxyl groups at positions 3' and 4'. Several analogues showed subnanomolar affinity and excellent KOP receptor selectivity acting as full or partial agonists, and one as an antagonist. The new diphenethylamines displayed antinociceptive efficacies with increased potencies than U50,488, 1 and 2 in the writhing assay and without inducing motor dysfunction after sc administration in mice.
Collapse
Affiliation(s)
| | | | - Tanila Ben Haddou
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Aquilino Lantero
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Michael Mairegger
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Helmut Schmidhammer
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Mariana Spetea
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
24
|
Venieraki A, Dimou M, Katinakis P. Endophytic fungi residing in medicinal plants have the ability to produce the same or similar pharmacologically active secondary metabolites as their hosts. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/hppj-2017-0006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Summary
Medicinal plants have been used for thousands of years in folk medicines and still are used for their health benefits. In our days medicinal plants are exploited for the isolation of plant-derived drugs as they are very effective and have relatively less or no side effects. However, the natural resources of medicinal plants are gradually exhausted and access to plant bioactive compounds is challenged by the low levels at which these products accumulate in native medicinal plants. For instance, to meet the market demands of 3 Kg per year of vinca alkaloids, powerful plant-derived anticancer drugs, 1.5×106 Kg dry leaves are required. In this regard, this review aims to highlight the fact that endophytic fungi residing in medicinal plants are capable to biosynthesize pharmacologically active secondary metabolites similar or identical to those produced by their host medicinal plant. Furthermore, the evolutionary origin of the genes involved in these metabolic pathways as well as the approaches designed to enhance the production of these metabolites by the isolated endophytic fungi are also discussed.
Collapse
Affiliation(s)
- A. Venieraki
- Laboratory of General and Agricultural Microbiology Department of Crop Science, Agricultural University of Athens, Iera Odos 75, GR 118 55 Votanikos, Athens , Greece
| | - M. Dimou
- Laboratory of General and Agricultural Microbiology Department of Crop Science, Agricultural University of Athens, Iera Odos 75, GR 118 55 Votanikos, Athens , Greece
| | - P. Katinakis
- Laboratory of General and Agricultural Microbiology Department of Crop Science, Agricultural University of Athens, Iera Odos 75, GR 118 55 Votanikos, Athens , Greece
| |
Collapse
|
25
|
Chen X, Berim A, Dayan FE, Gang DR. A (-)-kolavenyl diphosphate synthase catalyzes the first step of salvinorin A biosynthesis in Salvia divinorum. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1109-1122. [PMID: 28204567 PMCID: PMC5441855 DOI: 10.1093/jxb/erw493] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Salvia divinorum (Lamiaceae) is an annual herb used by indigenous cultures of Mexico for medicinal and ritual purposes. The biosynthesis of salvinorin A, its major bioactive neo-clerodane diterpenoid, remains virtually unknown. This investigation aimed to identify the enzyme that catalyzes the first reaction of salvinorin A biosynthesis, the formation of (-)-kolavenyl diphosphate [(-)-KPP], which is subsequently dephosphorylated to afford (-)-kolavenol. Peltate glandular trichomes were identified as the major and perhaps exclusive site of salvinorin accumulation in S. divinorum. The trichome-specific transcriptome was used to identify candidate diterpene synthases (diTPSs). In vitro and in planta characterization of a class II diTPS designated as SdKPS confirmed its activity as (-)-KPP synthase and its involvement in salvinorin A biosynthesis. Mutation of a phenylalanine into histidine in the active site of SdKPS completely converts the product from (-)-KPP into ent-copalyl diphosphate. Structural elements were identified that mediate the natural formation of the neo-clerodane backbone by this enzyme and suggest how SdKPS and other diTPSs may have evolved from ent-copalyl diphosphate synthase.
Collapse
Affiliation(s)
- Xiaoyue Chen
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164,USA
| | - Anna Berim
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164,USA
| | - Franck E Dayan
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523-1177, USA
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164,USA
| |
Collapse
|
26
|
Rossi A, Caiazzo E, Bilancia R, Riemma MA, Pagano E, Cicala C, Ialenti A, Zjawiony JK, Izzo AA, Capasso R, Roviezzo F. Salvinorin A Inhibits Airway Hyperreactivity Induced by Ovalbumin Sensitization. Front Pharmacol 2017; 7:525. [PMID: 28133450 PMCID: PMC5233683 DOI: 10.3389/fphar.2016.00525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/19/2016] [Indexed: 01/15/2023] Open
Abstract
Salvinorin A, a neoclerodane diterpene isolated from Salvia divinorum, exerts a number of pharmacological actions which are not solely limited to the central nervous system. Recently it has been demonstrated that Salvinorin A inhibits acute inflammatory response affecting leukotriene (LT) production. Since LTs are potent lipid mediators implicated in allergic diseases, we evaluated the effect of Salvinorin A on allergic inflammation and on airways following sensitization in the mouse. Mice were sensitized with s.c. injection of ovalbumin (OVA) on days 1 and 8. Sensitized mice received on days 9 and 12 on the shaved dorsal surface air administration to induce the development of the air-pouches. On day 15 animals were challenged by injection of OVA into the air-pouch. Salvinorin A, administered (10 mg/kg) before each allergen exposure, significantly reduced OVA-induced LT increase in the air pouch. This effect was coupled to a reduction in cell recruitment and Th2 cytokine production. In another set of experiments, mice were sensitized with OVA and both bronchial reactivity and pulmonary inflammation were assessed. Salvinorin A abrogated bronchial hyperreactivity and interleukin (IL)-13 production, without effect on pulmonary inflammation. Indeed cell infiltration and peribronchial edema were still present following diterpenoid treatment. Similarly, pulmonary IL-4 and plasmatic IgE levels were not modulated. Conversely, Salvinorin A significantly reduced LTC4 production in the lung of sensitized mice. Finally mast cell activity was evaluated by means of toluidine blue staining. Data obtained evidenced that Salvinorin A significantly inhibited mast cell degranulation in the lung. Our study demonstrates that Salvinorin A inhibits airway hyperreactivity induced by sensitization by inhibition of LT production and mast cell degranulation. In conclusion Salvinorin A could represent a promising candidate for drug development in allergic diseases such as asthma.
Collapse
Affiliation(s)
- Antonietta Rossi
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| | | | - Rossella Bilancia
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - Maria A Riemma
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - Ester Pagano
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - Carla Cicala
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - Armando Ialenti
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - Jordan K Zjawiony
- Department of BioMolecular Sciences, Division of Pharmacognosy and the Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi University, MS, USA
| | - Angelo A Izzo
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - Raffaele Capasso
- Department of Pharmacy, University of Naples Federico IINaples, Italy; Department of Agricultural Sciences, University of Naples Federico IIPortici, Italy
| | | |
Collapse
|
27
|
Abstract
Hallucinogens fall into several different classes, as broadly defined by pharmacological mechanism of action, and chemical structure. These include psychedelics, entactogens, dissociatives, and other atypical hallucinogens. Although these classes do not share a common primary mechanism of action, they do exhibit important similarities in their ability to occasion temporary but profound alterations of consciousness, involving acute changes in somatic, perceptual, cognitive, and affective processes. Such effects likely contribute to their recreational use. However, a growing body of evidence indicates that these drugs may have therapeutic applications beyond their potential for abuse. This review will present data on several classes of hallucinogens with a particular focus on psychedelics, entactogens, and dissociatives, for which clinical utility has been most extensively documented. Information on each class is presented in turn, tracing relevant historical insights, highlighting similarities and differences between the classes from the molecular to the behavioral level, and presenting the most up-to-date information on clinically oriented research with these substances, with important ramifications for their potential therapeutic value. (PsycINFO Database Record
Collapse
Affiliation(s)
- Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Brennan Kersgaard
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Peter H. Addy
- Department of Medical Informatics, Department of Veterans Affairs, West Haven, CT
- Department of Medical Informatics, Yale University School of Medicine, New Haven, CT
| |
Collapse
|