1
|
Yuan SSF, Chan LP, Nguyen HDH, Su CW, Chen YK, Chen JYF, Shimodaira S, Hu SCS, Lo S, Wang YY. Areca nut-induced metabolic reprogramming and M2 differentiation promote OPMD malignant transformation. J Exp Clin Cancer Res 2024; 43:233. [PMID: 39160581 PMCID: PMC11334407 DOI: 10.1186/s13046-024-03163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Betel quid and its major ingredient, areca nut, are recognized by IARC as major risk factors in oral cancer development. Areca nut extract (ANE) exposure has been linked to OPMD progression and malignant transformation to OSCC. However, the detailed mechanism through which ANE acts on other cell types in the oral microenvironment to promote oral carcinogenesis remains elusive. METHODS Immunoprofiling of macrophages associated with OPMD and OSCC was carried out by immunohistochemical and immunofluorescence staining. Phosphokinase and cytokine arrays and western blotting were performed to determine the underlying mechanisms. Transwell assays were used to evaluate the migration-promoting effect of ANE. Hamster model was finally applied to confirm the in vivo effect of ANE. RESULTS We reported that M2 macrophages positively correlated with oral cancer progression. ANE induced M2 macrophage differentiation, CREB phosphorylation and VCAM-1 secretion and increased mitochondrial metabolism. Conditioned medium and VCAM-1 from ANE-treated macrophages promoted migration and mesenchymal phenotypes in oral precancer cells. In vivo studies showed that ANE enhanced M2 polarization and related signaling pathways in the oral buccal tissues of hamsters. CONCLUSION Our study provides novel mechanisms for areca nut-induced oral carcinogenesis, demonstrating that areca nut promotes M2 macrophage differentiation and secretion of oncogenic cytokines that critically activate malignant transformation of oral premalignant cells.
Collapse
Affiliation(s)
- Shyng-Shiou F Yuan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Biodevices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu, Taiwan
| | - Leong-Perng Chan
- Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital and Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hieu D H Nguyen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708, Taiwan
| | - Chang-Wei Su
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708, Taiwan
- Division of Oral and Maxillofacial Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708, Taiwan
- Division of Oral Pathology & Maxillofacial Radiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jeff Yi-Fu Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Kahoku, Ishikawa, 920-0293, Japan
- Division of Stem Cell Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Stephen Chu-Sung Hu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Steven Lo
- Canniesburn Regional Plastic Surgery and Burns Unit, Glasgow, G4 0SF, UK
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yen-Yun Wang
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708, Taiwan.
| |
Collapse
|
2
|
Qian Z, Shaofang F, Chen C, Chunhua S, Nan W, Chao L. IL-33 Suppresses the Progression of Atherosclerosis via the ERK1/2-IRF1-VCAM-1 Pathway. Cardiovasc Drugs Ther 2024; 38:569-580. [PMID: 37957490 DOI: 10.1007/s10557-023-07523-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE This study was designed to explore the effects of interleukin 33 (IL-33) on the progression of atherosclerosis and the possible mechanism. METHODS The adhesion assay was performed on isolated peripheral blood mononuclear cells (PBMCs) and human umbilical vein endothelial cells (HUVEC). The expression of proteins and messenger RNA (mRNA) were detected by western blot and quantitative real-time polymerase chain reaction (PCR), including intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and P-selectin. The effect of IL-33 on the interaction of growth stimulation expressed gene 2 (ST2) with myeloid differentiation factor 88 (MyD88) and interleukin-1 receptor-associated kinase (IRAK) 1/4 were investigated using co-immunoprecipitation assay. An apolipoprotein (Apo) E-/- mice model was used to confirm the effect of IL-33 on atherosclerosis progression. Area of plaques was recorded by hematoxylin-eosin (H&E) staining. The severity of atherosclerosis plaque was evaluated using immunohistochemistry assay, and lipid accumulation was measured by an oil red O staining. In contrast, western blot was performed to detect the expression levels of VCAM-1, extracellular signal-regulated kinase (ERK) 1/2, and interferon regulatory factor 1 (IRF1). RESULTS Our study observed that IL-33 suppressed cell adhesion and the expression of VCAM-1 in tumor necrosis factor-α (TNF-α) exposed HUVEC. Moreover, the addition of IL-33 significantly inhibited the expression of IRF1 and the binding level of IRF1 to VCAM-1 and also promoted the phosphorylation level of IRAK1/4 and ERK1/2 compared to TNF-α-stimulated HUVEC. The ST2 neutralizing antibody or ERK pathway inhibitor SCH772984 reversed the regulatory effects of IL-33 on HUVEC, suggesting that IL-33 suppressed IRF1 and VCAM-1 dependent on binding to ST2 and activating the ERK1/2 signaling pathway. Further investigation in vivo confirmed that IL-33 decreased the expressions of IRF1 and VCAM-1 by activating the phosphorylation of ERK1/2 in the thoracic aorta of Apo E-/- mice. CONCLUSION In conclusion, our results demonstrated that IL-33 plays a protective role in the progression of atherosclerosis by inhibiting cell adhesion via the ERK1/2-IRF1-VCAM-1 pathway. This study may provide a potential therapeutic way to prevent the development of atherosclerosis.
Collapse
Affiliation(s)
- Zhang Qian
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 68 Changle Rd, Nanjing, 210006, Jiangsu, China
| | - Feng Shaofang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Chen Chen
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 68 Changle Rd, Nanjing, 210006, Jiangsu, China
| | - Shi Chunhua
- Medical Department, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Wang Nan
- Jinling Hospital, Medical School of Nanjing University, 22 Hankou Rd, Nanjing, 210093, Jiangsu, China.
| | - Liu Chao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 68 Changle Rd, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
3
|
Simonyan RM, Feschyan SM, Madoyan RA, Simonyan GM, Sargsyan HH, Babayan MA, Yekmalyan HH, Melkonyan MM, Simonyan MA, Manukyan AL. Superoxide-producing associates from gastrointestinal bacteria: stimulation of its growth by exogenous superoxide-producing complex from raspberries. Free Radic Res 2024; 58:145-155. [PMID: 38426488 DOI: 10.1080/10715762.2024.2325940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Aerobic organisms including the gut microbiota have an essential antioxidant status, as a result of which these bacteria protect organisms from various pathologies and diseases. The goal of the given investigation is (1) the isolation and purification of the isoforms of endogenous О2--producing associate from gastrointestinal bacteria (Lactobacillus rhamnosus, Lactobacillus acidophilus, Bifidobacterium bifidum); (2) determination of the effective concentrations of exogenous О2- produced by a complex of NADPH-containing protein component and Fe(III) (NPC-Fe(III)) from raspberries on the growth of the gastrointestinal bacteria in a nutrient medium in vitro. Ion-exchange chromatography on cellulose DE-52 and gel filtration on Sephadex G-100 at the pH of 9.5 was used to isolate and purify the NLP-Nox isoforms. Specific maximal optical absorption spectra of the Nox isoforms were observed in a weakly opalescent aqueous solution of the NLP-Nox isoforms. The specific contents of these NLP-Nox isoforms, as well as their composition, the stationary concentration of produced О2-, and the mechanism of О2- production were determined. The stimulating effect on the growth of these gastrointestinal bacteria in the nutrient medium of MRS broth and MRS agar in vitro under the influence of О2-, as a product of a new thermostable and acid-stable complex NPC-Fe(III) was determined. The NPC-Fe(III) complex, from raspberries was determined as well. Thus, for the first time, the isolation and purification of О2-- producing thermostable NADPH-containing lipoprotein-NADPH oxidase (NLP-Nox) associate from gastrointestinal bacteria membranes (continuously producing О2- under the aerobic conditions), and the stimulation of these bacteria growth by О2- formed by the complex from raspberries were demonstrated.
Collapse
Affiliation(s)
- Ruzan M Simonyan
- H. Buniatyan Institute of Biochemistry NAS RA, Laboratory of "Metabolism of Reactive Oxygen", Yerevan, Armenia
| | - Sona M Feschyan
- Department of Biology, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Roza A Madoyan
- H.Buniatyan Institute of Biochemistry NAS RA, Laboratory of "Analytical Chromatography and mass spectral research", Yerevan, Armenia
| | - Gegham M Simonyan
- H. Buniatyan Institute of Biochemistry NAS RA, Laboratory of "Metabolism of Reactive Oxygen", Yerevan, Armenia
| | - Hasmik H Sargsyan
- H.Buniatyan Institute of Biochemistry NAS RA, Laboratory of "Analytical Chromatography and mass spectral research", Yerevan, Armenia
| | - Madlena A Babayan
- H. Buniatyan Institute of Biochemistry NAS RA, Laboratory of "Metabolism of Reactive Oxygen", Yerevan, Armenia
| | - Hasmik H Yekmalyan
- H. Buniatyan Institute of Biochemistry NAS RA, Laboratory of "Metabolism of Reactive Oxygen", Yerevan, Armenia
| | - Magdalina M Melkonyan
- Department of Medical Chemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Maxim A Simonyan
- H. Buniatyan Institute of Biochemistry NAS RA, Laboratory of "Metabolism of Reactive Oxygen", Yerevan, Armenia
| | - Ashkhen L Manukyan
- Department of Medical Chemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| |
Collapse
|
4
|
Yang CM, Yang CC, Hsu WH, Hsiao LD, Tseng HC, Shih YF. Tumor Necrosis Factor-α-Induced C-C Motif Chemokine Ligand 20 Expression through TNF Receptor 1-Dependent Activation of EGFR/p38 MAPK and JNK1/2/FoxO1 or the NF-κB Pathway in Human Cardiac Fibroblasts. Int J Mol Sci 2022; 23:ijms23169086. [PMID: 36012347 PMCID: PMC9409325 DOI: 10.3390/ijms23169086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor necrosis factor (TNF)-α is involved in the pathogenesis of cardiac injury, inflammation, and apoptosis. It is a crucial pro-inflammatory cytokine in many heart disorders, including chronic heart failure and ischemic heart disease, contributing to cardiac remodeling and dysfunction. The implication of TNF-α in inflammatory responses in the heart has been indicated to be mediated through the induction of C-C Motif Chemokine Ligand 20 (CCL20). However, the detailed mechanisms of TNF-α-induced CCL20 upregulation in human cardiac fibroblasts (HCFs) are not completely defined. We demonstrated that in HCFs, TNF-α induced CCL20 mRNA expression and promoter activity leading to an increase in the secretion of CCL20. TNF-α-mediated responses were attenuated by pretreatment with TNFR1 antibody, the inhibitor of epidermal growth factor receptor (EGFR) (AG1478), p38 mitogen-activated protein kinase (MAPK) (p38 inhibitor VIII, p38i VIII), c-Jun amino N-terminal kinase (JNK)1/2 (SP600125), nuclear factor kappaB (NF-κB) (helenalin), or forkhead box O (FoxO)1 (AS1841856) and transfection with siRNA of TNFR1, EGFR, p38α, JNK2, p65, or FoxO1. Moreover, TNF-α markedly induced EGFR, p38 MAPK, JNK1/2, FoxO1, and NF-κB p65 phosphorylation which was inhibited by their respective inhibitors in these cells. In addition, TNF-α-enhanced binding of FoxO1 or p65 to the CCL20 promoter was inhibited by p38i VIII, SP600125, and AS1841856, or helenalin, respectively. Accordingly, in HCFs, our findings are the first to clarify that TNF-α-induced CCL20 secretion is mediated through a TNFR1-dependent EGFR/p38 MAPK and JNK1/2/FoxO1 or NF-κB cascade. We demonstrated that TNFR1-derived EGFR transactivation is involved in the TNF-α-induced responses in these cells. Understanding the regulation of CCL20 expression by TNF-α on HCFs may provide a potential therapeutic strategy in cardiac inflammatory disorders.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung 40402, Taiwan
- Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-22053366 (ext. 2229)
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan 33302, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Wun-Hsin Hsu
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Hui-Ching Tseng
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ya-Fang Shih
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
5
|
5,8-Dihydroxy-4 , 7-dimethoxyflavone Attenuates TNF-α-Induced Expression of Vascular Cell Adhesion Molecule-1 through EGFR/PKCα/PI3K/Akt/Sp1-Dependent Induction of Heme Oxygenase-1 in Human Cardiac Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1372958. [PMID: 35281466 PMCID: PMC8916851 DOI: 10.1155/2022/1372958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/07/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
Recently, we found that 5,8-dihydroxy-4
,7-dimethoxyflavone (DDF) upregulated the expression of heme oxygenase (HO)-1 via p38 mitogen-activated protein kinase/nuclear factor-erythroid factor 2-related factor 2 (MAPK/Nrf2) pathway in human cardiac fibroblasts (HCFs). However, the alternative processes by which DDF induces the upregulation of HO-1 expression are unknown. Activation of epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), and protein kinase C (PKC)α may initiate specificity protein (Sp)1 activity, which has been reported to induce expression of antioxidant molecules. Thus, we explored whether these components are engaged in DDF-induced HO-1 upregulation in HCFs. Western blotting, promoter-reporter analyses, and real-time polymerase chain reactions were adopted to measure HO-1 and vascular cell adhesion molecule (VCAM)-1 expressions in HCFs. Respective small interfering (si)RNAs and pharmacological inhibitors were employed to investigate the signaling components engaged in DDF-induced HO-1 upregulation. The chromatin immunoprecipitation assay was conducted to detect the binding interaction of Sp1 and antioxidant response elements (ARE) on the promoter of HO-1. An adhesion assay of THP-1 monocyte was undertaken to examine the functional effect of HO-1 on tumor necrosis factor (TNF)-α-induced VCAM-1 expression. DDF stimulated the EGFR/PKCα/PI3K/Akt pathway leading to activation of Sp1 in HCFs. The roles of these protein kinases in HO-1 induction were ensured by transfection with their respective siRNAs. Chromatin immunoprecipitation assays revealed the interaction between Sp1 and the binding site of proximal ARE on the HO-1 promoter, which was abolished by glutathione, AG1478, Gö6976, LY294002, or mithramycin A. HO-1 expression enhanced by DDF abolished the monocyte adherence to HCFs and VCAM-1 expression induced by TNF-α. Pretreatment with an inhibitor of HO-1: zinc protoporphyrin IX reversed these inhibitory effects of HO-1. We concluded that DDF-induced HO-1 expression was mediated via an EGFR/PKCα/PI3K/Akt-dependent Sp1 pathway and attenuated the responses of inflammation in HCFs.
Collapse
|
6
|
The interplay of DAMPs, TLR4, and proinflammatory cytokines in pulmonary fibrosis. J Mol Med (Berl) 2021; 99:1373-1384. [PMID: 34258628 PMCID: PMC8277227 DOI: 10.1007/s00109-021-02113-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Pulmonary fibrosis is a chronic debilitating condition characterized by progressive deposition of connective tissue, leading to a steady restriction of lung elasticity, a decline in lung function, and a median survival of 4.5 years. The leading causes of pulmonary fibrosis are inhalation of foreign particles (such as silicosis and pneumoconiosis), infections (such as post COVID-19), autoimmune diseases (such as systemic autoimmune diseases of the connective tissue), and idiopathic pulmonary fibrosis. The therapeutics currently available for pulmonary fibrosis only modestly slow the progression of the disease. This review is centered on the interplay of damage-associated molecular pattern (DAMP) molecules, Toll-like receptor 4 (TLR4), and inflammatory cytokines (such as TNF-α, IL-1β, and IL-17) as they contribute to the pathogenesis of pulmonary fibrosis, and the possible avenues to develop effective therapeutics that disrupt this interplay.
Collapse
|
7
|
A Novel STAT3-Mediated GATA6 Pathway Contributes to tert-Butylhydroquinone- (tBHQ-) Protected TNF α-Activated Vascular Cell Adhesion Molecule 1 (VCAM-1) in Vascular Endothelium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6584059. [PMID: 33274004 PMCID: PMC7683157 DOI: 10.1155/2020/6584059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022]
Abstract
The activation of vascular cell adhesion molecule 1 (VCAM-1) in vascular endothelial cells has been well considered implicating in the initiation and processing of atherosclerosis. Oxidative stress is mechanistically involved in proatherosclerotic cytokine-induced VCAM-1 activation. tert-Butylhydroquinone (tBHQ), a synthetic phenolic antioxidant used for preventing lipid peroxidation of food, possesses strongly antioxidant capacity against oxidative stress-induced dysfunction in various pathological process. Here, we investigated the protective role of tBHQ on tumor necrosis factor alpha- (TNFα-) induced VCAM-1 activation in both aortic endothelium of mice and cultured human vascular endothelial cells and uncovered its potential mechanisms. Our data showed that tBHQ treatment significantly reversed TNFα-induced activation of VCAM-1 at both transcriptional and protein levels. The mechanistic study revealed that inhibiting neither nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nor autophagy blocked the beneficial role of tBHQ. Alternatively, tBHQ intervention markedly alleviated TNFα-increased GATA-binding protein 6 (GATA6) mRNA and protein expressions and its translocation into nucleus. Further investigation indicated that tBHQ-inhibited signal transducer and activator of transcription 3 (STAT3) but not mitogen-activated protein kinase (MAPK) pathway contributed to its protective role against VCAM-1 activation via regulating GATA6. Collectively, our data demonstrated that tBHQ prevented TNFα-activated VCAM-1 via a novel STAT3/GATA6-involved pathway. tBHQ could be a potential candidate for the prevention of proatherosclerotic cytokine-caused inflammatory response and further dysfunctions in vascular endothelium.
Collapse
|
8
|
Su H, Zeng H, He X, Zhu SH, Chen JX. Histone Acetyltransferase p300 Inhibitor Improves Coronary Flow Reserve in SIRT3 (Sirtuin 3) Knockout Mice. J Am Heart Assoc 2020; 9:e017176. [PMID: 32865093 PMCID: PMC7727016 DOI: 10.1161/jaha.120.017176] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Coronary microvascular dysfunction is common in patients of myocardial infarction with non‐obstructive coronary artery disease. Coronary flow reserve (CFR) reflects coronary microvascular function and is a powerful independent index of coronary microvascular dysfunction and heart failure. Our previous studies showed that knockout of SIRT3 (Sirtuin 3) decreased CFR and caused a diastolic dysfunction. Few studies focus on the treatment of impaired CFR and heart failure. In the present study, we explored the role of C646, a histone acetyltransferase p300 inhibitor, in regulating CFR and cardiac remodeling in SIRT3 knockout (SIRT3KO) mice. Methods and Results After treating with C646 for 14 days, CFR, pulse‐wave velocity, and cardiac function were measured in SIRT3KO mice. SIRT3KO mice treated with C646 showed a significant improvement of CFR, pulse‐wave velocity, ejection fraction, and fractional shortening. Treatment with C646 reversed pre‐existing cardiac fibrosis, hypertrophy, and capillary rarefaction in SIRT3KO mice. Mechanistically, knockout of Sirtuin 3 resulted in significant increases in p300 expression and H3K56 acetylation. Treatment with C646 significantly reduced levels of p300 and H3K56 acetylation in SIRT3KO mice. Furthermore, treatment with C646 increased endothelial nitric oxide synthase expression and reduced arginase II expression and activity. The expression of NF‐κB (nuclear factor kappa‐light‐chain‐enhancer of activated B cells) and VCAM‐1 (vascular cell adhesion molecule 1) was also significantly suppressed by C646 treatment in SIRT3KO mice. Conclusions C646 treatment attenuated p300 and H3K56 acetylation and improved arterial stiffness and CFR via improvement of endothelial cell (EC) dysfunction and suppression of NF‐κB.
Collapse
Affiliation(s)
- Han Su
- Department of Pharmacology and Toxicology University of Mississippi Medical Center Jackson MS.,Department of General Surgery Third Xiangya Hospital Central South University Changsha China
| | - Heng Zeng
- Department of Pharmacology and Toxicology University of Mississippi Medical Center Jackson MS
| | - Xiaochen He
- Department of Pharmacology and Toxicology University of Mississippi Medical Center Jackson MS
| | - Shai-Hong Zhu
- Department of General Surgery Third Xiangya Hospital Central South University Changsha China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology University of Mississippi Medical Center Jackson MS
| |
Collapse
|
9
|
Su H, Zeng H, Liu B, Chen JX. Sirtuin 3 is essential for hypertension-induced cardiac fibrosis via mediating pericyte transition. J Cell Mol Med 2020; 24:8057-8068. [PMID: 32463172 PMCID: PMC7348169 DOI: 10.1111/jcmm.15437] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 01/02/2023] Open
Abstract
Hypertension is the key factor for the development of cardiac fibrosis and diastolic dysfunction. Our previous study showed that knockout of sirtuin 3 (SIRT3) resulted in diastolic dysfunction in mice. In the present study, we explored the role of SIRT3 in angiotensin II (Ang‐II)–induced cardiac fibrosis and pericyte‐myofibroblast transition. NG2 tracing reporter NG2‐DsRed mouse was crossed with wild‐type (WT) mice and SIRT3KO mice. Cardiac function, cardiac fibrosis and reactive oxygen species (ROS) were measured. Mice infused with Ang‐II for 28 days showed a significant reduction of SIRT3 expression in the mouse hearts. Knockout of SIRT3 sensitized Ang‐II‐induced elevation of isovolumic relaxation time (IVRT) and reduction of ejection fraction (EF) and fractional shortening (FS). Ang‐II‐induced cardiac fibrosis, capillary rarefaction and hypertrophy were further enhanced by knockout of SIRT3. NG2 pericyte tracing reporter mice infused with Ang‐II had a significantly increased number of NG2‐DsRed pericyte in the heart. Knockout of SIRT3 further enhanced Ang‐II‐induced increase of pericytes. To examine pericyte‐myofibroblast/fibroblast transition, DsRed pericytes were co‐stained with FSP‐1 and α‐SMA. Ang‐II infusion led to a significant increase in numbers of DsRed+/FSP‐1+ and DsRed+/α‐SMA+ cells, while SIRT3KO further developed pericyte‐myofibroblast/fibroblast transition. In addition, knockout of SIRT3 promoted Ang‐II‐induced NADPH oxidase‐derived ROS formation together with increased expression of transforming growth factor beta 1 (TGF‐β1). We concluded that Ang‐II induced cardiac fibrosis partly by the mechanisms involving SIRT3‐mediated pericyte‐myofibroblast/fibroblast transition and ROS‐TGF‐β1 pathway.
Collapse
Affiliation(s)
- Han Su
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.,Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Bo Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
10
|
Radix Angelica Sinensis and Radix Hedysari Ultrafiltration Extract Protects against X-Irradiation-Induced Cardiac Fibrosis in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4675851. [PMID: 32382291 PMCID: PMC7191370 DOI: 10.1155/2020/4675851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/11/2020] [Indexed: 12/27/2022]
Abstract
Radiation-induced myocardial fibrosis (RIMF) is the main pathological change associated with radiation-induced heart toxicity after radiation therapy in patients with thoracic tumors. There is an antifibrosis effect of Radix Angelica Sinensis and Radix Hedysari (RAS-RH) ultrafiltration extract from Danggui Buxue decoction (DBD) in X-irradiation-induced rat myocardial fibrosis, and this study aimed to investigate whether that effect correlated with apoptosis and oxidative stress damage in primary rat cardiac fibroblasts; further, the potential mechanisms were also explored. In this study, we first found that the RAS-RH antifibrosis effect was associated with the upregulation of microRNA-200a and the downregulation of TGF-β1/smad3 and COL1α. In addition, we also found that the antifibrosis effect of RAS-RH was related to the induction of apoptosis in primary rat cardiac fibroblasts and to the prevention of damage caused by reactive oxygen species (ROS). Interestingly, primary rat cardiac fibroblasts exposed to X-ray radiation underwent apoptosis less frequently in the absence of RAS-RH. Therefore, RAS-RH has the ability to protect against fibrosis, which could be occurring through the induction of apoptosis and the resistance to oxidative stress in rats with X-irradiation-induced myocardial fibrosis; thus, in a model of RIMF, RAS-RH acts against X-irradiation-induced cardiac toxicity.
Collapse
|
11
|
Tseng HC, Lin CC, Hsiao LD, Yang CM. Lysophosphatidylcholine-induced mitochondrial fission contributes to collagen production in human cardiac fibroblasts. J Lipid Res 2019; 60:1573-1589. [PMID: 31363041 PMCID: PMC6718437 DOI: 10.1194/jlr.ra119000141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidylcholine (LPC) may accumulate in the heart to cause fibrotic events, which is mediated through fibroblast activation and collagen accumulation. Here, we evaluated the mechanisms underlying LPC-mediated collagen induction via mitochondrial events in human cardiac fibroblasts (HCFs), coupling application of the pharmacologic cyclooxygenase-2 (COX-2) inhibitor, celecoxib, and genetic mutations in FOXO1 on the fibrosis pathway. In HCFs, LPC caused prostaglandin E2 (PGE2)/PGE2 receptor 4 (EP4)-dependent collagen induction via activation of transcriptional activity of forkhead box protein O1 (FoxO1) on COX-2 gene expression. These responses were mediated through LPC-induced generation of mitochondrial reactive oxygen species (mitoROS), as confirmed by ex vivo studies, which indicated that LPC increased COX-2 expression and oxidative stress. LPC-induced mitoROS mediated the activation of protein kinase C (PKC)α, which interacted with and phosphorylated dynamin-related protein 1 (Drp1) at Ser616, thereby increasing Drp1-mediated mitochondrial fission and mitochondrial depolarization. Furthermore, inhibition of PKCα and Drp1 reduced FoxO1-mediated phosphorylation at Ser256 and nuclear accumulation, which suppressed COX-2/PGE2 expression and collagen production. Moreover, pretreatment with celecoxib or COX-2 siRNA suppressed WT FoxO1; mutated Ser256-to-Asp256 FoxO1-enhanced collagen induction, which was reversed by addition of PGE2 Our results demonstrate that LPC-induced generation of mitoROS regulates PKCα-mediated Drp1-dependent mitochondrial fission and COX-2 expression via a PKCα/Drp1/FoxO1 cascade, leading to PGE2/EP4-mediated collagen induction. These findings provide new insights about the role of LPC in the pathway of fibrotic injury in HCFs.
Collapse
Affiliation(s)
- Hui-Ching Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, and Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics Chang Gung Memorial Hospital, Linkuo, Taiwan and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics Chang Gung Memorial Hospital, Linkuo, Taiwan and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, and Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Department of Anesthetics Chang Gung Memorial Hospital, Linkuo, Taiwan and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan; Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
12
|
Picca A, Mankowski RT, Burman JL, Donisi L, Kim JS, Marzetti E, Leeuwenburgh C. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat Rev Cardiol 2019; 15:543-554. [PMID: 30042431 DOI: 10.1038/s41569-018-0059-z] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality worldwide. Advancing age is a major risk factor for developing cardiovascular disease because of the lifelong exposure to cardiovascular risk factors and specific alterations affecting the heart and the vasculature during ageing. Indeed, the ageing heart is characterized by structural and functional changes that are caused by alterations in fundamental cardiomyocyte functions. In particular, the myocardium is heavily dependent on mitochondrial oxidative metabolism and is especially susceptible to mitochondrial dysfunction. Indeed, primary alterations in mitochondrial function, which are subsequently amplified by defective quality control mechanisms, are considered to be major contributing factors to cardiac senescence. In this Review, we discuss the mechanisms linking defective mitochondrial quality control mechanisms (that is, proteostasis, biogenesis, dynamics, and autophagy) to organelle dysfunction in the context of cardiac ageing. We also illustrate relevant molecular pathways that might be exploited for the prevention and treatment of age-related heart dysfunction.
Collapse
Affiliation(s)
- Anna Picca
- Department of Geriatrics, Neuroscience and Orthopedics, Teaching Hospital "Agostino Gemelli", Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | - Robert T Mankowski
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Jonathon L Burman
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA.,National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Luca Donisi
- Department of Geriatrics, Neuroscience and Orthopedics, Teaching Hospital "Agostino Gemelli", Catholic University of the Sacred Heart School of Medicine, Rome, Italy.,Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Jae-Sung Kim
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Emanuele Marzetti
- Department of Geriatrics, Neuroscience and Orthopedics, Teaching Hospital "Agostino Gemelli", Catholic University of the Sacred Heart School of Medicine, Rome, Italy.
| | | |
Collapse
|
13
|
Rossaneis AC, Longhi-Balbinot DT, Bertozzi MM, Fattori V, Segato-Vendrameto CZ, Badaro-Garcia S, Zaninelli TH, Staurengo-Ferrari L, Borghi SM, Carvalho TT, Bussmann AJC, Gouveia FS, Lopes LGF, Casagrande R, Verri WA. [Ru(bpy) 2(NO)SO 3](PF 6), a Nitric Oxide Donating Ruthenium Complex, Reduces Gout Arthritis in Mice. Front Pharmacol 2019; 10:229. [PMID: 30914954 PMCID: PMC6423075 DOI: 10.3389/fphar.2019.00229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
Monosodium urate crystals (MSU) deposition induces articular inflammation known as gout. This disease is characterized by intense articular inflammation and pain by mechanisms involving the activation of the transcription factor NFκB and inflammasome resulting in the production of cytokines and oxidative stress. Despite evidence that MSU induces iNOS expression, there is no evidence on the effect of nitric oxide (NO) donors in gout. Thus, the present study evaluated the effect of the ruthenium complex donor of NO {[Ru(bpy)2(NO)SO3](PF6)} (complex I) in gout arthritis. Complex I inhibited in a dose-dependent manner MSU-induced hypersensitivity to mechanical stimulation, edema and leukocyte recruitment. These effects were corroborated by a decrease of histological inflammation score and recruitment of Lysm-eGFP+ cells. Mechanistically, complex I inhibited MSU-induced mechanical hypersensitivity and joint edema by triggering the cGMP/PKG/ATP-sensitive K (+) channels signaling pathway. Complex I inhibited MSU-induced oxidative stress and pro-inflammatory cytokine production in the knee joint. These data were supported by the observation that complex I inhibited MSU-induced NFκB activation, and IL-1β expression and production. Complex I also inhibited MSU-induced activation of pro-IL-1β processing. Concluding, the present data, to our knowledge, is the first evidence that a NO donating ruthenium complex inhibits MSU-induced articular inflammation and pain. Further, complex I targets the main physiopathological mechanisms of gout arthritis. Therefore, it is envisaged that complex I and other NO donors have therapeutic potential that deserves further investigation.
Collapse
Affiliation(s)
- Ana C Rossaneis
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Daniela T Longhi-Balbinot
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Mariana M Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Carina Z Segato-Vendrameto
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Stephanie Badaro-Garcia
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Larissa Staurengo-Ferrari
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Sergio M Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Thacyana T Carvalho
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Allan J C Bussmann
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Florêncio S Gouveia
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Luiz G F Lopes
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, University Hospital (Health Science Centre), Londrina State University, Londrina, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| |
Collapse
|
14
|
Tseng HC, Lin CC, Wang CY, Yang CC, Hsiao LD, Yang CM. Lysophosphatidylcholine induces cyclooxygenase-2-dependent IL-6 expression in human cardiac fibroblasts. Cell Mol Life Sci 2018; 75:4599-4617. [PMID: 30229288 PMCID: PMC11105650 DOI: 10.1007/s00018-018-2916-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/08/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023]
Abstract
Lysophosphatidylcholine (LysoPC) has been shown to induce the expression of inflammatory proteins, including cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6), associated with cardiac fibrosis. Here, we demonstrated that LysoPC-induced COX-2 and IL-6 expression was inhibited by silencing NADPH oxidase 1, 2, 4, 5; p65; and FoxO1 in human cardiac fibroblasts (HCFs). LysoPC-induced IL-6 expression was attenuated by a COX-2 inhibitor. LysoPC-induced responses were mediated via the NADPH oxidase-derived reactive oxygen species-dependent JNK1/2 phosphorylation pathway, leading to NF-κB and FoxO1 activation. In addition, we demonstrated that both FoxO1 and p65 regulated COX-2 promoter activity stimulated by LysoPC. Overexpression of wild-type FoxO1 and S256D FoxO1 enhanced COX-2 promoter activity and protein expression in HCFs. These results were confirmed by ex vivo studies, where LysoPC-induced COX-2 and IL-6 expression was attenuated by the inhibitors of NADPH oxidase, NF-κB, and FoxO1. Our findings demonstrate that LysoPC-induced COX-2 expression is mediated via NADPH oxidase-derived reactive oxygen species generation linked to the JNK1/2-dependent pathway leading to FoxO1 and NF-κB activation in HCFs. LysoPC-induced COX-2-dependent IL-6 expression provided novel insights into the therapeutic targets of the cardiac fibrotic responses.
Collapse
Affiliation(s)
- Hui-Ching Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan, Taiwan
- Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chen-Yu Wang
- Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan, Taiwan.
- Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan.
| |
Collapse
|
15
|
Lee CW, Wu CH, Chiang YC, Chen YL, Chang KT, Chuang CC, Lee IT. Carbon monoxide releasing molecule-2 attenuates Pseudomonas aeruginosa-induced ROS-dependent ICAM-1 expression in human pulmonary alveolar epithelial cells. Redox Biol 2018; 18:93-103. [PMID: 30007888 PMCID: PMC6039312 DOI: 10.1016/j.redox.2018.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) infection in the lung is common in patients with cystic fibrosis (CF). Intercellular adhesion molecule-1 (ICAM-1) is known to play a key role in lung inflammation. Acute inflammation and its timely resolution are important to ensure bacterial clearance and limit tissue damage. Carbon monoxide (CO) has been shown to exert anti-inflammatory effects in various tissues and organ systems. Here, we explored the protective effects and mechanisms of carbon monoxide releasing molecule-2 (CORM-2) on P. aeruginosa-induced inflammatory responses in human pulmonary alveolar epithelial cells (HPAEpiCs). We showed that P. aeruginosa induced prostaglandin E2 (PGE2)/interleukin-6 (IL-6)/ICAM-1 expression and monocyte adherence to HPAEpiCs. Moreover, P. aeruginosa-induced inflammatory responses were inhibited by transfection with siRNA of Toll-like receptor 4 (TLR4), PKCα, p47phox, JNK2, p42, p50, or p65. P. aeruginosa also induced PKCα, JNK, ERK1/2, and NF-κB activation. We further demonstrated that P. aeruginosa increased intracellular ROS generation via NADPH oxidase activation. On the other hand, P. aeruginosa-induced inflammation was inhibited by pretreatment with CORM-2. Preincubation with CORM-2 had no effects on TLR4 mRNA levels in response to P. aeruginosa. However, CORM-2 inhibits P. aeruginosa-induced inflammation by decreasing intracellular ROS generation. P. aeruginosa-induced PKCα, JNK, ERK1/2, and NF-κB activation was inhibited by CORM-2. Finally, we showed that P. aeruginosa induced levels of the biomarkers of inflammation in respiratory diseases, which were inhibited by pretreatment with CORM-2. Taken together, these data suggest that CORM-2 inhibits P. aeruginosa-induced PGE2/IL-6/ICAM-1 expression and lung inflammatory responses by reducing the ROS generation and the inflammatory pathways. CORM-2 inhibits P. aeruginosa-induced PGE2/IL-6/ICAM-1 expression. CORM-2 reduced PKCα phosphorylation in response to P. aeruginosa. We provide molecular mechanisms for antibacterial effects of CORM-2.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Division of Basic Medical Sciences, Department of Nursing and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan, ROC; Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan, ROC; Department of Rehabilitation, Chang Gung Memorial Hospital, Chia-Yi, Taiwan, ROC
| | - Cheng-Hsun Wu
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan, ROC
| | - Yao-Chang Chiang
- Division of Basic Medical Sciences, Department of Nursing and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan, ROC; Center for Drug Abuse and Addiction, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Kuo-Ting Chang
- Translational Medicine Center, Taoyuan General Hospital, Ministry of Healthy and Welfare, Taoyuan, Taiwan, ROC
| | - Chu-Chun Chuang
- Department of Physical Therapy, China Medical University, Taichung, Taiwan, ROC
| | - I-Ta Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, ROC; Department of Nursing, College of Nursing, Hungkuang University, Taichung, Taiwan, ROC.
| |
Collapse
|
16
|
Sandoval R, Lazcano P, Ferrari F, Pinto-Pardo N, González-Billault C, Utreras E. TNF-α Increases Production of Reactive Oxygen Species through Cdk5 Activation in Nociceptive Neurons. Front Physiol 2018; 9:65. [PMID: 29467671 PMCID: PMC5808211 DOI: 10.3389/fphys.2018.00065] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
The participation of reactive oxygen species (ROS) generated by NOX1 and NOX2/NADPH oxidase has been documented during inflammatory pain. However, the molecular mechanism involved in their activation is not fully understood. We reported earlier a key role of Cyclin-dependent kinase 5 (Cdk5) during inflammatory pain. In particular, we demonstrated that TNF-α increased p35 expression, a Cdk5 activator, causing Cdk5-mediated TRPV1 phosphorylation followed by an increment in Ca2+ influx in nociceptive neurons and increased pain sensation. Here we evaluated if Cdk5 activation mediated by p35 transfection in HEK293 cells or by TNF-α treatment in primary culture of nociceptive neurons could increase ROS production. By immunofluorescence we detected the expression of catalytic subunit (Nox1 and Nox2) and their cytosolic regulators (NOXO1 and p47phox) of NOX1 and NOX2/NADPH oxidase complexes, and their co-localization with Cdk5/p35 in HEK293 cells and in nociceptive neurons. By using a hydrogen peroxide sensor, we detected a significant increase of ROS production in p35 transfected HEK293 cells as compared with control cells. This effect was significantly blocked by VAS2870 (NADPH oxidase inhibitor) or by roscovitine (Cdk5 activity inhibitor). Also by using another ROS probe named DCFH-DA, we found a significant increase of ROS production in nociceptive neurons treated with TNF-α and this effect was also blocked by VAS2870 or by roscovitine treatment. Interestingly, TNF-α increased immunodetection of p35 protein and NOX1 and NOX2/NADPH oxidase complexes in primary culture of trigeminal ganglia neurons. Finally, the cytosolic regulator NOXO1 was significantly translocated to plasma membrane after TNF-α treatment and roscovitine blocked this effect. Altogether these results suggest that Cdk5 activation is implicated in the ROS production by NOX1 and NOX2/NADPH oxidase complexes during inflammatory pain.
Collapse
Affiliation(s)
- Rodrigo Sandoval
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Pablo Lazcano
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Franco Ferrari
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Nicolás Pinto-Pardo
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Doctorate in Biomedicine, Universidad de los Andes, Santiago, Chile
| | - Christian González-Billault
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Elías Utreras
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
de Almeida AJPO, Ribeiro TP, de Medeiros IA. Aging: Molecular Pathways and Implications on the Cardiovascular System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7941563. [PMID: 28874954 PMCID: PMC5569936 DOI: 10.1155/2017/7941563] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
The world's population over 60 years is growing rapidly, reaching 22% of the global population in the next decades. Despite the increase in global longevity, individual healthspan needs to follow this growth. Several diseases have their prevalence increased by age, such as cardiovascular diseases, the leading cause of morbidity and mortality worldwide. Understanding the aging biology mechanisms is fundamental to the pursuit of cardiovascular health. In this way, aging is characterized by a gradual decline in physiological functions, involving the increased number in senescent cells into the body. Several pathways lead to senescence, including oxidative stress and persistent inflammation, as well as energy failure such as mitochondrial dysfunction and deregulated autophagy, being ROS, AMPK, SIRTs, mTOR, IGF-1, and p53 key regulators of the metabolic control, connecting aging to the pathways which drive towards diseases. In addition, senescence can be induced by cellular replication, which resulted from telomere shortening. Taken together, it is possible to draw a common pathway unifying aging to cardiovascular diseases, and the central point of this process, senescence, can be the target for new therapies, which may result in the healthspan matching the lifespan.
Collapse
Affiliation(s)
- Arthur José Pontes Oliveira de Almeida
- Departamento de Ciências Farmacêuticas/Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária-Campus I, Caixa Postal 5009, 58.051-970 João Pessoa, PB, Brazil
| | - Thaís Porto Ribeiro
- Departamento de Ciências Farmacêuticas/Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária-Campus I, Caixa Postal 5009, 58.051-970 João Pessoa, PB, Brazil
| | - Isac Almeida de Medeiros
- Departamento de Ciências Farmacêuticas/Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária-Campus I, Caixa Postal 5009, 58.051-970 João Pessoa, PB, Brazil
| |
Collapse
|
18
|
Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, Wang Y, Li W. Antioxidant Properties of Probiotic Bacteria. Nutrients 2017; 9:nu9050521. [PMID: 28534820 PMCID: PMC5452251 DOI: 10.3390/nu9050521] [Citation(s) in RCA: 465] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/01/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress defines a condition in which the prooxidant-antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells' viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yanping Wu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yuanyuan Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Han Xu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoqiang Mei
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Dongyou Yu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yibing Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Lin CC, Yang CC, Cho RL, Wang CY, Hsiao LD, Yang CM. Sphingosine 1-Phosphate-Induced ICAM-1 Expression via NADPH Oxidase/ROS-Dependent NF-κB Cascade on Human Pulmonary Alveolar Epithelial Cells. Front Pharmacol 2016; 7:80. [PMID: 27065868 PMCID: PMC4815023 DOI: 10.3389/fphar.2016.00080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/14/2016] [Indexed: 12/11/2022] Open
Abstract
The intercellular adhesion molecule-1 (ICAM-1) expression is frequently correlated with the lung inflammation. In lung injury, sphingosine-1-phosphate (S1P, bioactive sphingolipid metabolite), participate gene regulation of adhesion molecule in inflammation progression and aggravate tissue damage. To investigate the transduction mechanisms of the S1P in pulmonary epithelium, we demonstrated that exposure of HPAEpiCs (human pulmonary alveolar epithelial cells) to S1P significantly induces ICAM-1 expression leading to increase monocyte adhesion on the surface of HPAEpiCs. These phenomena were effectively attenuated by pretreatments with series of inhibitors such as Rottlerin (PKCδ), PF431396 (PYK2), diphenyleneiodonium chloride (DPI), apocynin (NADPH oxidase), Edaravone (ROS), and Bay11-7082 (NF-κB). Consistently, knockdown with siRNA transfection of PKCδ, PYK2, p47phox, and p65 exhibited the same results. Pretreatment with both Gq-coupled receptor antagonist (GPA2A) and Gi/o-coupled receptor antagonist (GPA2) also blocked the upregulation of ICAM-1 protein and mRNA induced by S1P. We observed that S1P induced PYK2 activation via a Gq-coupled receptor/PKCδ-dependent pathway. In addition, S1P induced NADPH oxidase activation and intracellular ROS generation, which were also reduced by Rottlerin or PF431396. We demonstrated that S1P induced NF-κB p65 phosphorylation and nuclear translocation in HPAEpiCs. Activated NF-κB was blocked by Rottlerin, PF431396, APO, DPI, or Edaravone. Besides, the results of monocyte adhesion assay indicated that S1P-induced ICAM-1 expression on HPAEpiCs can enhance the monocyte attachments. In the S1P-treated mice, we found that the levels of ICAM-1 protein and mRNA in the lung fractions, the pulmonary hematoma and leukocyte count in bronchoalveolar lavage fluid were enhanced through a PKCδ/PYK2/NADPH oxidase/ROS/NF-κB signaling pathway. We concluded that S1P-accelerated lung damage is due to the ICAM-1 induction associated with leukocyte recruitment.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan; College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Chien-Chung Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan
| | - Rou-Ling Cho
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University Taoyuan, Taiwan
| | - Chen-Yu Wang
- Department of Anesthetics, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan; College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan; College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Chuen-Mao Yang
- Department of Anesthetics, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan; College of Medicine, Chang Gung UniversityTaoyuan, Taiwan; Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan; Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and TechnologyTaoyuan, Taiwan
| |
Collapse
|