1
|
Meneguin AB, Roque-Borda CA, Piperas ABG, Pollini MFO, Cardoso VMB, Primo LMDG, Alemi F, Pavan FR, Chorilli M. Nanofiber-boosted retrograded starch/pectin microparticles for targeted 5-Aminosalicylic acid delivery in inflammatory bowel disease: In vitro and in vivo non-toxicity evaluation. Carbohydr Polym 2024; 346:122647. [PMID: 39245532 DOI: 10.1016/j.carbpol.2024.122647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
Incorporating 5-aminosalicylic acid (5-ASA) into a colon-specific carrier is crucial for treating inflammatory bowel diseases (IBD), as it enhances therapeutic efficacy, targets the affected regions directly, and minimizes side effects. This study evaluated the impact of incorporating cellulose nanofibers (CNF) on the in vitro and in vivo biological performance of retrograded starch/pectin (RS/P) microparticles (MPs) containing 5-ASA. Using Fourier Transform Infrared (FTIR) Spectroscopy, shifts in the spectra of retrograded samples containing CNF were observed with increasing CNF proportions, suggesting the establishment of new supramolecular interactions. Liquid absorption exhibited pH-dependent behaviors, with reduced absorption in simulated gastric fluid (∼269 %) and increased absorption in simulated colonic fluid (∼662 %). Increasing CNF concentrations enhanced mucoadhesion in porcine colonic sections, with a maximum force of 3.4 N at 50 % CNF. Caco-2 cell viability tests showed biocompatibility across all tested concentrations (0.0625-2.0000 mg/mL). Evaluation of intestinal permeability in Caco-2 cell monolayers demonstrated up to a tenfold increase in 5-ASA permeation, ranging from 29 % to 48 %. An in vivo study using Galleria mellonella larvae, with inflammation induced by LPS, showed reduction of inflammation. Given the scalability of spray-drying, these findings suggest the potential of CNF-incorporated RS/P microparticles for targeted 5-ASA delivery in IBD.
Collapse
Affiliation(s)
- Andréia Bagliotti Meneguin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil.
| | - Cesar Augusto Roque-Borda
- Vicerrectorado de Investigación, Universidad Católica de Santa María de Arequipa, Arequipa 04000, Peru
| | - Ana Beatriz Grotto Piperas
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil
| | - Maria Fernanda Ortolani Pollini
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil
| | - Vinicius Martinho Borges Cardoso
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil
| | - Laura Maria Duran Gleriani Primo
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-900, SP, Brazil
| | - Forogh Alemi
- School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil
| | - Fernando Rogério Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-900, SP, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil
| |
Collapse
|
2
|
Gupta A, Kulkarni S, Soman S, Saha M, Kulkarni J, Rana K, Dhas N, Ayesha Farhana S, Kumar Tiyyagura P, Pandey A, Moorkoth S, Mutalik S. Breaking barriers in cancer management: The promising role of microsphere conjugates in cancer diagnosis and therapy. Int J Pharm 2024; 665:124687. [PMID: 39265846 DOI: 10.1016/j.ijpharm.2024.124687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Cancer is a significant worldwide health concern, and there is a demand for ongoing breakthroughs in treatment techniques. Microspheres are among the most studied drug delivery platforms for delivering cargo to a specified location over an extended period of time. They are biocompatible, biodegradable, and capable of surface modifications. Microspheres and their conjugates have emerged as potential cancer therapeutic options throughout the years. This review provides an in-depth look at the current advancements and applications of microspheres and their conjugates in cancer treatment. The review encompasses a wide array of conjugates, ranging from polymers such as ethyl cellulose and Eudragit to stimuli-responsive polymers, proteins, peptides, polysaccharides such as HA and chitosan, inorganic metals, aptamers, quantum dots (QDs), biomimetic conjugates, and radio conjugates designed for radioembolization. Conjugated microspheres precisely deliver chemotherapeutics to the intended target while achieving controlled drug release to prevent side effects. It offers a means of integrating several distinct therapeutic modalities (chemotherapy, photothermal therapy, photodynamic therapy, radiotherapy, immunotherapy, etc.) to provide synergistic effects during cancer treatment. This review offers insights into the prospects and evolving role of microspheres and their conjugates in the dynamic landscape of cancer therapy. This review provides a comprehensive resource for researchers and clinicians working towards advancements in cancer treatment through innovative applications in therapy and translational research.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Moumita Saha
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jahnavi Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Komal Rana
- Manipal - Government of Karnataka Bioincubator, 3rd Floor, Advanced Research Centre, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, Qassim 51452, Saudi Arabia
| | - Pavan Kumar Tiyyagura
- Department of Chemical Engineering, Manipal Institute of Technology Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Global Drug Development/ Technical Research and Development, Novartis Healthcare Private Limited, Genome Valley, Hyderabad 500081, Telangana, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
3
|
Dong R, Kang M, Qu Y, Hou T, Zhao J, Cheng X. Incorporating Hydrogel (with Low Polymeric Content) into 3D-Printed PLGA Scaffolds for Local and Sustained Release of BMP2 in Repairing Large Segmental Bone Defects. Adv Healthc Mater 2024:e2403613. [PMID: 39491519 DOI: 10.1002/adhm.202403613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Indexed: 11/05/2024]
Abstract
Treating large bone defects remains a considerable challenge for clinicians: bone repair requires scaffolds with mechanical properties and bioactivities. Herein, based on crosslinking o-phthalaldehyde (OPA) with amine groups, 4-arm polyethylene glycol (4armPEG)-OPA/Gelatin hydrogel loaded with bone morphogenetic protein 2 (BMP2) is prepared and a three dimensional (3D)-printed poly (lactic-co-glycolic acid) (PLGA) porous scaffold is filled with the hydrogel solution. The composite scaffold, with a compression modulus of 0.68 ± 0.097 GPa similar to the cancellous bone, has a porosity of 56.67 ± 4.72% and a pore size of about 380 µm, promoting bone growth. The hydrogel forms a porous network at low concentrations, aiding protein release and cell migration. The hydrogel degrades in approximately three weeks, and the scaffold takes five months, matching bone repair timelines. BMP2 release experiment shows a sustained BMP2 release with a 72.4 ± 0.53% release ratio. The ALP activity test and alizarin red staining shows effective osteogenic promotion, while RT-PCR confirms BMP2@Gel enhanced COL-1 and OPN expression. Animal experiments further validate the composite scaffold's bone repair efficacy. This study demonstrates the effectiveness of the hydrogel in releasing BMP2 and the mechanical support of the 3D-printed PLGA porous scaffold, providing a new treatment for bone defects.
Collapse
Affiliation(s)
- Rongpeng Dong
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin, 130014, China
| | - Mingyang Kang
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin, 130014, China
| | - Yang Qu
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin, 130014, China
| | - Tingting Hou
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin, 130014, China
| | - Jianwu Zhao
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin, 130014, China
| | - Xueliang Cheng
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin, 130014, China
| |
Collapse
|
4
|
Chen C, Zhao Y, Tang K, Ning H, Yu X, Zhu Y, Shi Q. Sustainable release artifact in PLGA microspheres for prolonged local aesthetics in postoperative pain management. J Biomater Appl 2024:8853282241290141. [PMID: 39383130 DOI: 10.1177/08853282241290141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
The challenge of effectively managing long-term pain after surgery remains a significant issue in clinical settings. Although local anesthetics are preferred for their effective pain relief and few side effects, their short-lasting effect does not fully meet the pain relief needs after surgery. Articaine, widely used for postoperative pain relief as a local anesthetic, is pharmacologically limited by its short half-life, which reduces the duration of its pain-relieving effects. To overcome this issue, this study presents a new approach using poly (lactic-co-glycolic acid) (PLGA) microspheres for controlled articaine release, aiming to extend its analgesic effect while reducing potential toxicity. The PLGA microspheres were shown to extend the release of articaine for at least 72 h in lab tests, displaying excellent biocompatibility and low toxicity. When used in a rodent model for postoperative pain, the microspheres provided significantly prolonged pain relief, effectively reducing pain for up to 3 days post-surgery, without causing inflammation or tissue damage for over 72 h after being administered. The extended release and high safety profile of these PLGA microspheres highlight their promise as a new method for delivering local anesthetics, opening up new possibilities for pain management in the future.
Collapse
Affiliation(s)
- Chong Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
| | - Yejun Zhao
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
| | - Kaijia Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Honglong Ning
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Xiaohua Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Yueliang Zhu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Qingyu Shi
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
5
|
Sun R, Chen Y, Pei Y, Wang W, Zhu Z, Zheng Z, Yang L, Sun L. The drug release of PLGA-based nanoparticles and their application in treatment of gastrointestinal cancers. Heliyon 2024; 10:e38165. [PMID: 39364250 PMCID: PMC11447355 DOI: 10.1016/j.heliyon.2024.e38165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
The poly (lactic-co-glycolic acid) (PLGA) based nanoparticles have been applied for drug delivery due to their simple preparation, biodegradability, and ideal biocompatibility. In this study, the factors affecting the degradation of PLGA-based nanoparticles are reviewed, encompassing the ratio of PLA to PGA, relative molecular weight, crystallinity, and preparation process of PLGA nanoparticles. The drug release behavior of PLGA-based nanoparticles, such as the degradation environment, encapsulated drug properties of polymers, and drug loading rates, are also discussed. Since gastrointestinal cancer is one of the major global threats to human health, this paper comprehensively summarizes the application of PLGA nanoparticles in gastrointestinal cancers from diagnosis, chemotherapy, radiotherapy, and novel tumor treatment methods (immunotherapy, gene therapy, and photothermal therapy). Finally, the future application of PLGA-based drug delivery systems in treating gastrointestinal cancers is discussed. The bottleneck of application status and the prospect of PLGA-nanoparticles in gastrointestinal tumor application are presented. To truly realize the great and wide application of PLGA-based nanoparticles, collaborative progress in the field of nanomaterials and life sciences is needed.
Collapse
Affiliation(s)
- Rui Sun
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Yanfei Chen
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Yanjiang Pei
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Wenbin Wang
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Zhi Zhu
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Zhaohua Zheng
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Limeng Yang
- School of Textile Science & Engineering, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Li Sun
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| |
Collapse
|
6
|
Yonet-Tanyeri N, Parker RS, Falo LD, Little SR. Investigation of the Impact of Manufacturing Methods on Protein-Based Long-Acting Injectable Formulations: A Comparative Assessment for Microfluidics vs. Conventional Methods. Pharmaceutics 2024; 16:1264. [PMID: 39458596 PMCID: PMC11510299 DOI: 10.3390/pharmaceutics16101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Microparticle-based drug delivery systems offer several advantages for protein-based drug formulations, enhancing patient compliance and therapeutic efficiency through the sustained delivery of the active pharmaceutical ingredient. Over the past few decades, the microfluidics method has emerged as a continuous manufacturing process for preparing drug-encapsulating microparticles, mainly for small molecule drugs. However, comparative assessments for the conventional batch method vs. the microfluidics method for protein-based drug formulations have been lacking. The main objective of this study was to generate immunomodulatory protein drug-loaded injectable formulations using both conventional batch and microfluidics methods. METHODS Therefore, rhCCL22-loaded poly(lactic-co-glycolic) acid (PLGA) microparticles were prepared by conventional homogenization and microfluidics methods. RESULTS The resulting microparticles were analyzed comparatively, focusing on critical quality attributes such as microparticle size, size distribution, morphology, drug encapsulation efficiency, release kinetics, and batch-to-batch variations in relation to the manufacturing method. Our results demonstrated that the conventional method resulted in microparticles with denser surface porosity and wider size distribution as opposed to microparticles prepared by the microfluidics method, which could contribute to a significant difference in the drug-release kinetics. Additionally, our findings indicated minimal variation within batches for the microparticles prepared by the microfluidics method. CONCLUSION Overall, this study highlights the comparative assessment of several critical quality attributes and batch variations associated with the manufacturing methods of protein-loaded microparticles which is crucial for ensuring consistency in efficacy, regulatory compliance, and quality control in the drug formulation manufacturing process.
Collapse
Affiliation(s)
- Nihan Yonet-Tanyeri
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA; (N.Y.-T.); (R.S.P.)
| | - Robert S. Parker
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA; (N.Y.-T.); (R.S.P.)
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA;
- Department of Critical Care Medicine, University of Pittsburgh, 3550 Terrace Street, Alan Magee Scaife Hall, Suite 600, Pittsburgh, PA 15213, USA
| | - Louis D. Falo
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA;
- Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, 3708 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Steven R. Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA; (N.Y.-T.); (R.S.P.)
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA;
- Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, USA
- Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Li X, Li L, Wang D, Zhang J, Yi K, Su Y, Luo J, Deng X, Deng F. Fabrication of polymeric microspheres for biomedical applications. MATERIALS HORIZONS 2024; 11:2820-2855. [PMID: 38567423 DOI: 10.1039/d3mh01641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polymeric microspheres (PMs) have attracted great attention in the field of biomedicine in the last several decades due to their small particle size, special functionalities shown on the surface and high surface-to-volume ratio. However, how to fabricate PMs which can meet the clinical needs and transform laboratory achievements to industrial scale-up still remains a challenge. Therefore, advanced fabrication technologies are pursued. In this review, we summarize the technologies used to fabricate PMs, including emulsion-based methods, microfluidics, spray drying, coacervation, supercritical fluid and superhydrophobic surface-mediated method and their advantages and disadvantages. We also review the different structures, properties and functions of the PMs and their applications in the fields of drug delivery, cell encapsulation and expansion, scaffolds in tissue engineering, transcatheter arterial embolization and artificial cells. Moreover, we discuss existing challenges and future perspectives for advancing fabrication technologies and biomedical applications of PMs.
Collapse
Affiliation(s)
- Xuebing Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Luohuizi Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Jun Zhang
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Kangfeng Yi
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Yucai Su
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Jing Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China
| | - Fei Deng
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Department of Nephrology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu 610054, P. R. China.
| |
Collapse
|
8
|
Zhai M, Wu P, Liao Y, Wu L, Zhao Y. Polymer Microspheres and Their Application in Cancer Diagnosis and Treatment. Int J Mol Sci 2024; 25:6556. [PMID: 38928262 PMCID: PMC11204375 DOI: 10.3390/ijms25126556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer is a significant global public health issue with increasing morbidity and mortality rates. To address this challenge, novel drug carriers such as nano-materials, liposomes, hydrogels, fibers, and microspheres have been extensively researched and utilized in oncology. Among them, polymer microspheres are gaining popularity due to their ease of preparation, excellent performance, biocompatibility, and drug-release capabilities. This paper categorizes commonly used materials for polymer microsphere preparation, summarizes various preparation methods (emulsification, phase separation, spray drying, electrospray, microfluidics, and membrane emulsification), and reviews the applications of polymer microspheres in cancer diagnosis, therapy, and postoperative care. The current status and future development directions of polymer microspheres in cancer treatment are analyzed, highlighting their importance and potential for improving patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (M.Z.); (P.W.); (Y.L.); (L.W.)
| |
Collapse
|
9
|
Bentley ER, Subick S, Pezzillo M, Balmert SC, Herbert A, Little SR. Identification and Characterization of Critical Processing Parameters in the Fabrication of Double-Emulsion Poly(lactic-co-glycolic) Acid Microparticles. Pharmaceutics 2024; 16:796. [PMID: 38931917 PMCID: PMC11207479 DOI: 10.3390/pharmaceutics16060796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
In the past several decades, polymeric microparticles (MPs) have emerged as viable solutions to address the limitations of standard pharmaceuticals and their corresponding delivery methods. While there are many preclinical studies that utilize polymeric MPs as a delivery vehicle, there are limited FDA-approved products. One potential barrier to the clinical translation of these technologies is a lack of understanding with regard to the manufacturing process, hindering batch scale-up. To address this knowledge gap, we sought to first identify critical processing parameters in the manufacturing process of blank (no therapeutic drug) and protein-loaded double-emulsion poly(lactic-co-glycolic) acid MPs through a quality by design approach. We then utilized the design of experiments as a tool to systematically investigate the impact of these parameters on critical quality attributes (e.g., size, surface morphology, release kinetics, inner occlusion size, etc.) of blank and protein-loaded MPs. Our results elucidate that some of the most significant CPPs impacting many CQAs of double-emulsion MPs are those within the primary or single-emulsion process (e.g., inner aqueous phase volume, solvent volume, etc.) and their interactions. Furthermore, our results indicate that microparticle internal structure (e.g., inner occlusion size, interconnectivity, etc.) can heavily influence protein release kinetics from double-emulsion MPs, suggesting it is a crucial CQA to understand. Altogether, this study identifies several important considerations in the manufacturing and characterization of double-emulsion MPs, potentially enhancing their translation.
Collapse
Affiliation(s)
- Elizabeth R. Bentley
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15260, USA;
| | - Stacia Subick
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA; (S.S.); (M.P.)
| | - Michael Pezzillo
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA; (S.S.); (M.P.)
| | - Stephen C. Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, W1150 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15213, USA;
| | - Aidan Herbert
- DigiM Solution—Pixel Perfect Therapeutics, 500 W Cummings Park, Suite 3650, Woburn, MA 01801, USA;
| | - Steven R. Little
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15260, USA;
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA; (S.S.); (M.P.)
- Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
- Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, USA
- Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
Saleh SR, Abd-Elmegied A, Aly Madhy S, Khattab SN, Sheta E, Elnozahy FY, Mehanna RA, Ghareeb DA, Abd-Elmonem NM. Brain-targeted Tet-1 peptide-PLGA nanoparticles for berberine delivery against STZ-induced Alzheimer's disease in a rat model: Alleviation of hippocampal synaptic dysfunction, Tau pathology, and amyloidogenesis. Int J Pharm 2024; 658:124218. [PMID: 38734273 DOI: 10.1016/j.ijpharm.2024.124218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that causes severe dementia and memory loss. Surface functionalized poly(lactic-co-glycolic acid) nanoparticles have been reported for better transport through the blood-brain barrier for AD therapy. This study investigated the improved therapeutic potential of berberine-loaded poly(lactic-co-glycolic acid)/Tet-1 peptide nanoparticles (BBR/PLGA-Tet NPs) in a rat model of sporadic AD. BBR was loaded into the PLGA-Tet conjugate. BBR/PLGA-Tet NPs were physicochemically and morphologically characterized. AD was achieved by bilateral intracerebroventricular (ICV) injection of streptozotocin (STZ). Cognitively impaired rats were divided into STZ, STZ + BBR, STZ + BBR/PLGA-Tet NPs, and STZ + PLGA-Tet NPs groups. Cognitive improvement was assessed using the Morris Water Maze. Brain acetylcholinesterase and monoamine oxidase activities, amyloid β42 (Aβ42), and brain glycemic markers were estimated. Further, hippocampal neuroplasticity (BDNF, pCREB, and pERK/ERK), Tau pathogenesis (pGSK3β/GSK3β, Cdk5, and pTau), inflammatory, and apoptotic markers were evaluated. Finally, histopathological changes were monitored. ICV-STZ injection produces AD-like pathologies evidenced by Aβ42 deposition, Tau hyperphosphorylation, impaired insulin signaling and neuroplasticity, and neuroinflammation. BBR and BBR/PLGA-Tet NPs attenuated STZ-induced hippocampal damage, enhanced cognitive performance, and reduced Aβ42, Tau phosphorylation, and proinflammatory responses. BBR/PLGA-Tet NPs restored neuroplasticity, cholinergic, and monoaminergic function, which are critical for cognition and brain function. BBR/PLGA-Tet NPs may have superior therapeutic potential in alleviating sporadic AD than free BBR due to their bioavailability, absorption, and brain uptake.
Collapse
Affiliation(s)
- Samar R Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Aml Abd-Elmegied
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Somaya Aly Madhy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Fatma Y Elnozahy
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Doaa A Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Nihad M Abd-Elmonem
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Rongala DS, Patil SM, Kunda NK. Design of Experiment (DoE) Approach for Developing Inhalable PLGA Microparticles Loaded with Clofazimine for Tuberculosis Treatment. Pharmaceuticals (Basel) 2024; 17:754. [PMID: 38931422 PMCID: PMC11206430 DOI: 10.3390/ph17060754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Tuberculosis (TB) is an airborne bacterial infection caused by Mycobacterium tuberculosis (M. tb), resulting in approximately 1.3 million deaths in 2022 worldwide. Oral therapy with anti-TB drugs often fails to achieve therapeutic concentrations at the primary infection site (lungs). In this study, we developed a dry powder inhalable formulation (DPI) of clofazimine (CFZ) to provide localized drug delivery and minimize systemic adverse effects. Poly (lactic acid-co-glycolic acid) (PLGA) microparticles (MPs) containing CFZ were developed through a single emulsion solvent evaporation technique. Clofazimine microparticles (CFZ MPs) displayed entrapment efficiency and drug loading of 66.40 ± 2.22 %w/w and 33.06 ± 1.45 µg/mg, respectively. To facilitate pulmonary administration, MPs suspension was spray-dried to yield a dry powder formulation (CFZ SD MPs). Spray drying had no influence on particle size (~1 µm), zeta potential (-31.42 mV), and entrapment efficiency. Solid state analysis (PXRD and DSC) of CFZ SD MPs studies demonstrated encapsulation of the drug in the polymer. The drug release studies showed a sustained drug release. The optimized formulation exhibited excellent aerosolization properties, suggesting effective deposition in the deeper lung region. The in vitro antibacterial studies against H37Ra revealed improved (eight-fold) efficacy of spray-dried formulation in comparison to free drug. Hence, clofazimine dry powder formulation presents immense potential for the treatment of tuberculosis with localized pulmonary delivery and improved patient compliance.
Collapse
Affiliation(s)
| | | | - Nitesh K. Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY 11439, USA; (D.S.R.); (S.M.P.)
| |
Collapse
|
12
|
Nicole W. Microplastics and Metabolism: Physiological Responses in Mice Following Ingestion. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:64003. [PMID: 38922330 PMCID: PMC11218702 DOI: 10.1289/ehp15015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 06/27/2024]
Abstract
Mice exposed orally to microspheres showed changes in lipid and other metabolic pathways, and the particles were detected in tissues throughout the body. Changes were greater after exposure to mixed microplastics compared with polystyrene alone.
Collapse
|
13
|
Block M, Sieger P, Truenkle C, Saal C, Simon R, Truebenbach I. Miniaturized screening and performance prediction of tailored subcutaneous extended-release formulations for preclinical in vivo studies. Eur J Pharm Sci 2024; 196:106733. [PMID: 38408709 DOI: 10.1016/j.ejps.2024.106733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Microencapsulation of active pharmaceutical ingredients (APIs) for preparation of long acting injectable (LAI) formulations is an auspicious technique to enable preclinical characterization of a broad variety of APIs, ideally independent of their physicochemical and pharmacokinetic (PK) characteristics. During early API discovery, tunable LAI formulations may enable pharmacological proof-of-concept for the given variety of candidates by tailoring the level of plasma exposure over the duration of various timespans. Although numerous reports on small scale preparation methods for LAIs utilizing copolymers of lactic and glycolic acid (PLGA) and polymers of lactic acid (PLA) highlight their potential, application in formulation screening and use in preclinical in vivo studies is yet very limited. Transfer from downscale formulation preparation to in vivo experiments is hampered in early preclinical API screening by the large number of API candidates with simultaneously very limited available amount in the lower sub-gram scale, lack of formulation stability and deficient tunability of sustained release. We hereby present a novel comprehensive platform tool for tailored extended-release formulations, aiming to support a variety of preclinical in vivo experiments with ranging required plasma exposure levels and timespans. A novel small-scale spray drying process was successfully implemented by using an air brush based instrument for preparation of PLGA and PLA based formulations. Using Design of Experiments (DoE), required API amount of 250 mg was demonstrated to suffice for identification of dominant polymer characteristics with largest impact on sustained release capability for an individual API. BI-3231, a hydrophilic and weakly acidic small compound with good water solubility and permeability, but low metabolic stability, was used as an exemplary model for one of the many candidates during API discovery. Furthermore, an in vitro to in vivo correlation (IVIVC) of API release rate was established in mice, which enabled the prediction of in vivo plasma concentration plateaus after single subcutaneous injection, using only in vitro dissolution profiles of screened formulations. By tailoring LAI formulations and their doses for acute and sub-chronic preclinical experiments, we exemplary demonstrate the practical use for BI-3231. Pharmacological proof-of-concept could be enabled whilst circumventing the need of multiple administration as result of extensive hepatic metabolism and simultaneously superseding numerous in vivo experiments for formulation tailoring.
Collapse
Affiliation(s)
- Marco Block
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Peter Sieger
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Cornelius Truenkle
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Christoph Saal
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Roman Simon
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Ines Truebenbach
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany.
| |
Collapse
|
14
|
Seon S, Li Y, Lee S, Jeon YS, Kang DS, Ryu DJ. Self-Assembled PLGA-Pluronic F127 Microsphere for Sustained Drug Release for Osteoarthritis. Pharmaceuticals (Basel) 2024; 17:471. [PMID: 38675430 PMCID: PMC11054183 DOI: 10.3390/ph17040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
For many years, sustained-release drug delivery systems (SRDDS) have emerged as a featured topic in the pharmaceutical field. Particularly for chronic diseases, such as osteoarthritis, there is a lot of demand for SRDDS because of the long treatment period and repetitive medication administration. Thus, we developed an injectable PLGA-F127 microsphere (MS) that is capable of the in situ conversion to an implant. The microprecipitation method for PLGA-F127 MS was established, and the physicochemical stability of the products was confirmed. The microspheres were assembled into a single mass in 37 °C aqueous conditions and showed a remarkably delayed drug release profile. First, the release started with no significant initial burst and lagged for 60 days. After that, in the next 40 days, the remaining 75% of the drugs were constantly released until day 105. We expect that our PLGA-F127 MS could be employed to extend the release period of 2 months of medication to 4 months. This could be a valuable solution for developing novel SRDDS for local injections.
Collapse
Affiliation(s)
- Semee Seon
- Research & Development, Nextbiomedical Co., Ltd., Incheon 22013, Republic of Korea
| | - Yixian Li
- Research & Development, Nextbiomedical Co., Ltd., Incheon 22013, Republic of Korea
| | - Sangah Lee
- Research & Development, Nextbiomedical Co., Ltd., Incheon 22013, Republic of Korea
| | - Yoon Sang Jeon
- Orthopedic Surgery, Inha University Hospital, Incheon 22013, Republic of Korea
| | - Dong Seok Kang
- Orthopedic Surgery, Inha University Hospital, Incheon 22013, Republic of Korea
| | - Dong Jin Ryu
- Orthopedic Surgery, Inha University Hospital, Incheon 22013, Republic of Korea
| |
Collapse
|
15
|
Panigrahi SK, Das S, Majumdar S. Unveiling the potentials of hydrophilic and hydrophobic polymers in microparticle systems: Opportunities and challenges in processing techniques. Adv Colloid Interface Sci 2024; 326:103121. [PMID: 38457900 DOI: 10.1016/j.cis.2024.103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
Conventional drug delivery systems are associated with various shortcomings, including low bioavailability and limited control over release. Biodegradable polymeric microparticles have emerged as versatile carriers in drug delivery systems addressing all these challenges. This comprehensive review explores the dynamic landscape of microparticles, considering the role of hydrophilic and hydrophobic materials. Within the continuously evolving domain of microparticle preparation methods, this review offers valuable insights into the latest advancements and addresses the factors influencing microencapsulation, which is pivotal for harnessing the full potential of microparticles. Exploration of the latest research in this dynamic field unlocks the possibilities of optimizing microencapsulation techniques to produce microparticles of desired characteristics and properties for different applications, which can help contribute to the ongoing evolution in the field of pharmaceutical science.
Collapse
Affiliation(s)
- Subrat Kumar Panigrahi
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India
| | - Sougat Das
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India.
| |
Collapse
|
16
|
Garcia MM, Romero AS, Merkley SD, Meyer-Hagen JL, Forbes C, Hayek EE, Sciezka DP, Templeton R, Gonzalez-Estrella J, Jin Y, Gu H, Benavidez A, Hunter RP, Lucas S, Herbert G, Kim KJ, Cui JY, Gullapalli RR, In JG, Campen MJ, Castillo EF. In Vivo Tissue Distribution of Polystyrene or Mixed Polymer Microspheres and Metabolomic Analysis after Oral Exposure in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47005. [PMID: 38598326 PMCID: PMC11005960 DOI: 10.1289/ehp13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. OBJECTIVES This study aims to investigate the impacts of polymer microspheres on tissue metabolism in mice by assessing the microspheres ability to translocate across the gut barrier and enter into systemic circulation. Specifically, we wanted to examine microsphere accumulation in different organ systems, identify concentration-dependent metabolic changes, and evaluate the effects of mixed microsphere exposures on health outcomes. METHODS To investigate the impact of ingested microspheres on target metabolic pathways, mice were exposed to either polystyrene (5 μ m ) microspheres or a mixture of polymer microspheres consisting of polystyrene (5 μ m ), polyethylene (1 - 4 μ m ), and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid) (5 μ m ). Exposures were performed twice a week for 4 weeks at a concentration of either 0, 2, or 4 mg / week via oral gastric gavage. Tissues were collected to examine microsphere ingress and changes in metabolites. RESULTS In mice that ingested microspheres, we detected polystyrene microspheres in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolic differences that occurred in the colon, liver, and brain, which showed differential responses that were dependent on concentration and type of microsphere exposure. DISCUSSION This study uses a mouse model to provide critical insight into the potential health implications of the pervasive issue of plastic pollution. These findings demonstrate that orally consumed polystyrene or mixed polymer microspheres can accumulate in tissues such as the brain, liver, and kidney. Furthermore, this study highlights concentration-dependent and polymer type-specific metabolic changes in the colon, liver, and brain after plastic microsphere exposure. These results underline the mobility within and between biological tissues of MPs after exposure and emphasize the importance of understanding their metabolic impact. https://doi.org/10.1289/EHP13435.
Collapse
Affiliation(s)
- Marcus M. Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Aaron S. Romero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Seth D. Merkley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jewel L. Meyer-Hagen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Charles Forbes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - David P. Sciezka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Rachel Templeton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jorge Gonzalez-Estrella
- School of Civil & Environmental Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico, USA
| | - Russell P. Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Kyle Joohyung Kim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Rama R. Gullapalli
- Department of Pathology, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
17
|
Lin J, Jia S, Cao F, Huang J, Chen J, Wang J, Liu P, Zeng H, Zhang X, Cui W. Research Progress on Injectable Microspheres as New Strategies for the Treatment of Osteoarthritis Through Promotion of Cartilage Repair. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202400585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 07/07/2024]
Abstract
AbstractOsteoarthritis (OA) is a degenerative disease caused by a variety of factors with joint pain as the main symptom, including fibrosis, chapping, ulcers, and loss of cartilage. Traditional treatment can only delay the progression of OA, and classical delivery system have many side effects. In recent years, microspheres have shown great application prospects in the field of OA treatment. Microspheres can support cells, reproduce the natural tissue microenvironment in vitro and in vivo, and are an efficient delivery system for the release of drugs or biological agents, which can promote cell proliferation, migration, and differentiation. Thus, they have been widely used in cartilage repair and regeneration. In this review, preparation processes, basic materials, and functional characteristics of various microspheres commonly used in OA treatment are systematically reviewed. Then it is introduced surface modification strategies that can improve the biological properties of microspheres and discussed a series of applications of microsphere functionalized scaffolds in OA treatment. Finally, based on bibliometrics research, the research development, future potential, and possible research hotspots of microspheres in the field of OA therapy is systematically and dynamically evaluated. The comprehensive and systematic review will bring new understanding to the field of microsphere treatment of OA.
Collapse
Affiliation(s)
- Jianjing Lin
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
| | - Shicheng Jia
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
- Shantou University Medical College Shantou Guangdong 515041 P. R. China
| | - Fuyang Cao
- Department of Orthopedics Second Hospital of Shanxi Medical University Taiyuan Shanxi 030001 P. R. China
| | - Jingtao Huang
- Shantou University Medical College Shantou Guangdong 515041 P. R. China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
- Shantou University Medical College Shantou Guangdong 515041 P. R. China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200025 P. R. China
| | - Peng Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
| | - Hui Zeng
- Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University) Shenzhen Guangdong 518035 China
| | - Xintao Zhang
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200025 P. R. China
| |
Collapse
|
18
|
Sunazuka Y, Ueda K, Higashi K, Wada K, Moribe K. Mechanistic Analysis of Temperature-Dependent Curcumin Release from Poly(lactic-co-glycolic acid)/Poly(lactic acid) Polymer Nanoparticles. Mol Pharm 2024; 21:1424-1435. [PMID: 38324797 DOI: 10.1021/acs.molpharmaceut.3c01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
In this study, we investigated the mechanism of curcumin (CUR) release from poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) nanoparticles (NPs) by evaluating the temperature-dependent CUR release. NPs were prepared by the nanoprecipitation method using various PLGA/PLA polymers with different lactic:glycolic ratios (L:G ratios) and molecular weights. Increasing the polymer molecular weight resulted in a decrease in the particle size of NPs. The wet glass transition temperature (Tg) of PLGA/PLA NPs was lower than the intrinsic polymer Tg, which can be derived from the water absorption and nanosizing of the polymer. The reduction in Tg was more significant for the PLGA/PLA NPs with lower polymer L:G ratios and lower polymer molecular weight. The greater decrease of Tg in the lower polymer L:G ratios was possibly caused by the higher water absorption due to the more hydrophilic nature of the glycolic acid segment than that of the lactic acid segment. The efficient water absorption in PLGA/PLA NPs with lower molecular weight could cause a significant reduction of Tg as it has lower hydrophobicity. CUR release tests from the PLGA/PLA NPs exhibited enhanced CUR release with increasing temperatures, irrespective of polymer species. By fitting the CUR release profiles into mathematical models, the CUR release process was well described by an initial burst release followed by a diffusion-controlled release. The wet Tg and particle size of the PLGA/PLA NPs affected the amount and temperature dependence of the initial burst release of CUR. Above the wet Tg of NPs, the initial burst release of CUR increased sharply. Smaller particle sizes of PLGA/PLA NPs led to a higher fraction of initial CUR burst release, which was more pronounced above the wet Tg of NPs. The wet Tg and particle sizes of the PLGA/PLA NPs also influenced the diffusion-controlled CUR release. The diffusion rate of CUR in the NPs increased as the wet Tg values of the NPs decreased. The diffusion path length of CUR was affected by the particle size, with larger particle size resulting in a prolonged diffusion-controlled release of CUR. This study highlighted that for the formulation development of PLGA/PLA NPs, suitable PLGA/PLA polymers should be selected considering the physicochemical properties of PLGA/PLA NPs and their correlation with the release behavior of encapsulated drugs at the application temperature.
Collapse
Affiliation(s)
- Yushi Sunazuka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Nippon Boehringer Ingelheim Co. Ltd., 6-7-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Koichi Wada
- Nippon Boehringer Ingelheim Co. Ltd., 6-7-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
19
|
Nakhla DS, Mekkawy AI, Naguib YW, Silva AD, Gao D, Ah Kim J, Alhaj-Suliman SO, Acri TM, Kumar Patel K, Ernst S, Stoltz DA, Welsh MJ, Salem AK. Injectable long-acting ivacaftor-loaded poly (lactide-co-glycolide) microparticle formulations for the treatment of cystic fibrosis: In vitro characterization and in vivo pharmacokinetics in mice. Int J Pharm 2024; 650:123693. [PMID: 38081555 PMCID: PMC10843602 DOI: 10.1016/j.ijpharm.2023.123693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023]
Abstract
Optimizing a sustained-release drug delivery system for the treatment of cystic fibrosis (CF) is crucial for decreasing the dosing frequency and improving patients' compliance with the treatment regimen. In the current work, we developed an injectable poly(D,L-lactide-co-glycolide) (PLGA) microparticle formulation loaded with ivacaftor, a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator that increases the open probability of the CFTR anion channel, using a single emulsion solvent evaporation technique. We aimed to study the effect of different parameters on the characteristics of the prepared formulations to select an optimized microparticle formulation to be used in an in vivo pharmacokinetic study in mice. First, a suite of ivacaftor-loaded microparticles were prepared using different formulation parameters in order to study the effect of varying these parameters on microparticle size, morphology, drug loading, encapsulation efficiency, and in vitro release profiles. Prepared microparticles were spherical with diameters ranging from 1.91-6.93 µm, percent drug loading (% DL) of 3.91-10.3%, percent encapsulation efficiencies (% EE) of 26.6-100%, and an overall slow cumulative release profile. We selected the formulation that demonstrated optimal combined % DL and % EE values (8.25 and 90.7%, respectively) for further studies. These microparticles had an average particle size of 6.83 µm and a slow tri-phasic in vitro release profile (up to 6 weeks). In vivo pharmacokinetic studies in mice showed that the subcutaneously injected microparticles resulted in steady plasma levels of ivacaftor over a period of 28 days, and a 6-fold increase in AUC 0 - t (71.6 µg/mL*h) compared to the intravenously injected soluble ivacaftor (12.3 µg/mL*h). Our results suggest that this novel ivacaftor-loaded microparticle formulation could potentially eliminate the need for the frequent daily administration of ivacaftor to people with CF thus improving their compliance and ensuring successful treatment outcomes.
Collapse
Affiliation(s)
- David S Nakhla
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aml I Mekkawy
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Sohag 82524, Egypt
| | - Youssef W Naguib
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aaron D Silva
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Dylan Gao
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jeong Ah Kim
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Timothy M Acri
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Krishna Kumar Patel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Sarah Ernst
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - David A Stoltz
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - Michael J Welsh
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
20
|
Valiallahi A, Vazifeh Z, Gatabi ZR, Davoudi M, Gatabi IR. PLGA Nanoparticles as New Drug Delivery Systems in Leishmaniasis Chemotherapy: A Review of Current Practices. Curr Med Chem 2024; 31:6371-6392. [PMID: 37612875 DOI: 10.2174/0929867331666230823094737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/03/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023]
Abstract
Although leishmaniasis is one of the most common parasitic diseases, its traditional treatments suffer from some serious problems. To solve such issues, we can take advantage of the effective nanoparticle-based approaches to deliver anti-leishmanial agents into leishmania-infected macrophages either using passive targeting or using macrophagerelated receptors. Despite the high potential of nanotechnology, Liposomal Amphotericin B (AmBisome®) is the only FDA-approved nanoparticle-based anti-leishmanial therapy. In an effort to find more anti-leishmanial nano-drugs, this 2011-2021 review study aimed to investigate the in-vivo and in-vitro effectiveness of poly (lactic-co-glycolic acid) nanoparticles (PLGA-NPs) in the delivery of some traditional anti-leishmanial drugs. Based on the results, PLGA-NPs could improve solubility, controlled release, trapping efficacy, bioavailability, selectivity, and mucosal penetration of the drugs, while they decreased resistance, dose/duration of administration and organotoxicity of the agents. However, none of these nano-formulations have been able to enter clinical trials so far. We summarized the data about the common problems of anti-leishmanial agents and the positive effects of various PLGA nano-formulations on reducing these drawbacks under both in-vitro and in-vivo conditions in three separate tables. Overall, this study proposes two AmB-loaded PLGA with a 99% reduction in parasite load as promising nanoparticles for further studies.
Collapse
Affiliation(s)
- Alaleh Valiallahi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Zahra Vazifeh
- Department of Biotechnology, Shahed University, Tehran, Iran
| | - Zahra Rezanejad Gatabi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Davoudi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
21
|
Rodríguez-Nogales C, Meeus J, Thonus G, Corveleyn S, Allémann E, Jordan O. Spray-dried nanocrystal-loaded polymer microparticles for long-term release local therapies: an opportunity for poorly soluble drugs. Drug Deliv 2023; 30:2284683. [PMID: 37994039 PMCID: PMC10987046 DOI: 10.1080/10717544.2023.2284683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
Nano- and micro-technologies can salvage drugs with very low solubility that were doomed to pre-clinical and clinical failure. A unique design approach to develop drug nanocrystals (NCs) loaded in extended release polymeric microparticles (MPs) for local treatments is presented here through the case of a potential osteoarthritis (OA) drug candidate for intra-articular (IA) administration. Optimizing a low-shear wet milling process allowed the production of NCs that can be subsequently freeze-dried (FD) and redispersed in a hydrophobic polymer-organic solvent solution to form spray-dried MPs. Results demonstrated a successful development of a ready-to-upscale formulation containing PLGA MPs with high drug NC encapsulation rates that showed a continuous and controlled drug release profile over four months. The screenings and procedures described allowed for identifying and overcoming common difficulties and challenges raised along the drug reduction to nano-size and spray-drying process. Above all, the technical knowledge acquired is intended for formulation scientists aiming to improve the therapeutic perspectives of poorly soluble drugs.
Collapse
Affiliation(s)
- Carlos Rodríguez-Nogales
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, Geneva, Switzerland
| | - Joke Meeus
- CMC Analytical Development, Galapagos NV, Mechelen, Belgium
| | - Gaby Thonus
- CMC Analytical Development, Galapagos NV, Mechelen, Belgium
| | - Sam Corveleyn
- CMC Analytical Development, Galapagos NV, Mechelen, Belgium
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, Geneva, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, Geneva, Switzerland
| |
Collapse
|
22
|
Tsai LH, Young TH, Yen CH, Yao WC, Chang CH. Intratumoral thermo-chemotherapeutic alginate hydrogel containing doxorubicin loaded PLGA nanoparticle and heating agent. Int J Biol Macromol 2023; 251:126221. [PMID: 37572819 DOI: 10.1016/j.ijbiomac.2023.126221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/03/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Chemotherapy has been widely used to treat cancer; however, the non-specific systemic toxicity of chemotherapeutic agents has always been an issue. Local injection treatment is a strategy used to reduce the undesired adverse effects of chemotherapeutic drugs. In addition, chemotherapeutic agents combined with thermotherapy are effective in further enhancing therapeutic potency. In the present study, we prepared an injectable hydrogel, namely, doxorubicin (DOX)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticle (DPN) and magnetite nanoparticle (MNP) embedded in alginate hydrogel (DPN/MNP-HG), where DPN and MNP were the chemotherapeutic and heating agents, respectively, for intratumoral thermo-chemotherapy. Injectable DPN/MNP-HG, which possesses solid-like elastic properties, was conveniently prepared via ionic cross-linking at room-temperature. When exposed to an alternating magnetic field (AMF), DPN/MNP-HG exhibited controllable heat generation with a reversible temperature-rise profile. Regarding the kinetics of DOX release, both with and without AMF, DPN/MNP-HG exhibited a slow initial burst and sustained release profile. In cytotoxicity studies and subcutaneous mouse cancer models, successful thermo-chemotherapy with DPN/MNP-HG resulted in significantly lower cell viability and increased tumor-growth suppression; mice also exhibited good tolerance to injected DPN/MNP-HG both with(+) and without AMF application. In conclusion, the proposed thermo-chemotherapeutic DPN/MNP-HG for local intratumoral injection is a promising formulation for cancer treatment.
Collapse
Affiliation(s)
- Li-Hui Tsai
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan; Department of Biomedical Engineering, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chia-Hsiang Yen
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Wei-Cheng Yao
- Department of Anesthesiology and Pain Medicine, Min-Sheng General Hospital, Taoyuan 330, Taiwan
| | - Chih-Hao Chang
- Department of Orthopedics, National Taiwan University Hospital Jin-Shan Branch, New Taipei City 20844, Taiwan; Department of Orthopedics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan.
| |
Collapse
|
23
|
Jurić Simčić A, Erak I, Cetina Čižmek B, Hafner A, Filipović-Grčić J. Selection of Excipients for the Preparation of Vancomycin-Loaded Poly(D,L-lactide-co-glycolide) Microparticles with Extended Release by Emulsion Spray Drying. Pharmaceutics 2023; 15:2438. [PMID: 37896198 PMCID: PMC10610132 DOI: 10.3390/pharmaceutics15102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study was to relate the composition of the W/O emulsion used as a starting fluid in the spray-drying process to the quality of the dry polymer particles obtained in terms of physical-chemical properties, compatibility and drug release performance. Four W/O emulsions containing vancomycin hydrochloride (VAN), an encapsulating PLGA polymer and Poloxamer® 407, chitosan and/or sorbitan monooleate as stabilisers were spray-dried using an ultrasonic atomising nozzle. The microparticles obtained were micron-sized, with a volume mean diameter between 43.2 ± 0.3 and 64.0 ± 12.6 µm, and spherical with a mostly smooth, non-porous surface and with high drug loading (between 14.5 ± 0.6 and 17.1 ± 1.9% w/w). All formulations showed a prolonged and biphasic VAN release profile, with diffusion being the primary release mechanism. Microparticles prepared from the emulsions with Poloxamer® 407 and sorbitan monooleate released VAN rapidly and completely within one day. The release of VAN from microparticles prepared from the emulsion without additives or with chitosan in the inner aqueous phase was significantly decreased; after four days, a cumulative release of 65% and 61%, respectively, was achieved. Microparticles with encapsulated chitosan had the largest mean particle diameter and the slowest release of VAN.
Collapse
Affiliation(s)
- Ana Jurić Simčić
- R&D, PLIVA Croatia Ltd., TEVA Group Member, 10000 Zagreb, Croatia; (A.J.S.); (I.E.); (B.C.Č.)
| | - Iva Erak
- R&D, PLIVA Croatia Ltd., TEVA Group Member, 10000 Zagreb, Croatia; (A.J.S.); (I.E.); (B.C.Č.)
| | - Biserka Cetina Čižmek
- R&D, PLIVA Croatia Ltd., TEVA Group Member, 10000 Zagreb, Croatia; (A.J.S.); (I.E.); (B.C.Č.)
| | - Anita Hafner
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia;
| | | |
Collapse
|
24
|
Zhang H, Yang Z, Wu D, Hao B, Liu Y, Wang X, Pu W, Yi Y, Shang R, Wang S. The Effect of Polymer Blends on the In Vitro Release/Degradation and Pharmacokinetics of Moxidectin-Loaded PLGA Microspheres. Int J Mol Sci 2023; 24:14729. [PMID: 37834176 PMCID: PMC10573114 DOI: 10.3390/ijms241914729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
To investigate the effect of polymer blends on the in vitro release/degradation and pharmacokinetics of moxidectin-loaded PLGA microspheres (MOX-MS), four formulations (F1, F2, F3 and F4) were prepared using the O/W emulsion solvent evaporation method by blending high (75/25, 75 kDa) and low (50/50, 23 kDa) molecular weight PLGA with different ratios. The addition of low-molecular-weight PLGA did not change the release mechanism of microspheres, but sped up the drug release of microspheres and drastically shortened the lag phase. The in vitro degradation results show that the release of microspheres consisted of a combination of pore diffusion and erosion, and especially autocatalysis played an important role in this process. Furthermore, an accelerated release method was also developed to reduce the period for drug release testing within one month. The pharmacokinetic results demonstrated that MOX-MS could be released for at least 60 days with only a slight blood drug concentration fluctuation. In particular, F3 displayed the highest AUC and plasma concentration (AUC0-t = 596.53 ng/mL·d, Cave (day 30-day 60) = 8.84 ng/mL), making it the optimal formulation. Overall, these results indicate that using polymer blends could easily adjust hydrophobic drug release from microspheres and notably reduce the lag phase of microspheres.
Collapse
Affiliation(s)
- Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Zhen Yang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Di Wu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Xuehong Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Yunpeng Yi
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| |
Collapse
|
25
|
He M, Cao Y, Chi C, Zhao J, Chong E, Chin KXC, Tan NZV, Dmitry K, Yang G, Yang X, Hu K, Enikeev M. Unleashing novel horizons in advanced prostate cancer treatment: investigating the potential of prostate specific membrane antigen-targeted nanomedicine-based combination therapy. Front Immunol 2023; 14:1265751. [PMID: 37795091 PMCID: PMC10545965 DOI: 10.3389/fimmu.2023.1265751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Prostate cancer (PCa) is a prevalent malignancy with increasing incidence in middle-aged and older men. Despite various treatment options, advanced metastatic PCa remains challenging with poor prognosis and limited effective therapies. Nanomedicine, with its targeted drug delivery capabilities, has emerged as a promising approach to enhance treatment efficacy and reduce adverse effects. Prostate-specific membrane antigen (PSMA) stands as one of the most distinctive and highly selective biomarkers for PCa, exhibiting robust expression in PCa cells. In this review, we explore the applications of PSMA-targeted nanomedicines in advanced PCa management. Our primary objective is to bridge the gap between cutting-edge nanomedicine research and clinical practice, making it accessible to the medical community. We discuss mainstream treatment strategies for advanced PCa, including chemotherapy, radiotherapy, and immunotherapy, in the context of PSMA-targeted nanomedicines. Additionally, we elucidate novel treatment concepts such as photodynamic and photothermal therapies, along with nano-theragnostics. We present the content in a clear and accessible manner, appealing to general physicians, including those with limited backgrounds in biochemistry and bioengineering. The review emphasizes the potential benefits of PSMA-targeted nanomedicines in enhancing treatment efficiency and improving patient outcomes. While the use of PSMA-targeted nano-drug delivery has demonstrated promising results, further investigation is required to comprehend the precise mechanisms of action, pharmacotoxicity, and long-term outcomes. By meticulous optimization of the combination of nanomedicines and PSMA ligands, a novel horizon of PSMA-targeted nanomedicine-based combination therapy could bring renewed hope for patients with advanced PCa.
Collapse
Affiliation(s)
- Mingze He
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Changliang Chi
- Department of Urology, First Hospital of Jilin University, Changchun, China
| | - Jiang Zhao
- Department of Urology, Xi’an First Hospital, Xi’an, China
| | - Eunice Chong
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ke Xin Casey Chin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nicole Zian Vi Tan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Korolev Dmitry
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Guodong Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Kebang Hu
- Department of Urology, First Hospital of Jilin University, Changchun, China
| | - Mikhail Enikeev
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
26
|
He M, Cao Y, Chi C, Zhao J, Chong E, Chin KXC, Tan NZV, Dmitry K, Yang G, Yang X, Hu K, Enikeev M. Unleashing novel horizons in advanced prostate cancer treatment: investigating the potential of prostate specific membrane antigen-targeted nanomedicine-based combination therapy. Front Immunol 2023; 14. [DOI: https:/doi.org/10.3389/fimmu.2023.1265751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Prostate cancer (PCa) is a prevalent malignancy with increasing incidence in middle-aged and older men. Despite various treatment options, advanced metastatic PCa remains challenging with poor prognosis and limited effective therapies. Nanomedicine, with its targeted drug delivery capabilities, has emerged as a promising approach to enhance treatment efficacy and reduce adverse effects. Prostate-specific membrane antigen (PSMA) stands as one of the most distinctive and highly selective biomarkers for PCa, exhibiting robust expression in PCa cells. In this review, we explore the applications of PSMA-targeted nanomedicines in advanced PCa management. Our primary objective is to bridge the gap between cutting-edge nanomedicine research and clinical practice, making it accessible to the medical community. We discuss mainstream treatment strategies for advanced PCa, including chemotherapy, radiotherapy, and immunotherapy, in the context of PSMA-targeted nanomedicines. Additionally, we elucidate novel treatment concepts such as photodynamic and photothermal therapies, along with nano-theragnostics. We present the content in a clear and accessible manner, appealing to general physicians, including those with limited backgrounds in biochemistry and bioengineering. The review emphasizes the potential benefits of PSMA-targeted nanomedicines in enhancing treatment efficiency and improving patient outcomes. While the use of PSMA-targeted nano-drug delivery has demonstrated promising results, further investigation is required to comprehend the precise mechanisms of action, pharmacotoxicity, and long-term outcomes. By meticulous optimization of the combination of nanomedicines and PSMA ligands, a novel horizon of PSMA-targeted nanomedicine-based combination therapy could bring renewed hope for patients with advanced PCa.
Collapse
|
27
|
Gao R, Xu S, Chen C, Liu D, He Y, Zang Y, Dong X, Ma G, Liu H. Impact of 1,25-dihydroxyvitamin D 3 PLGA-nanoparticles/chitosan hydrogel on osteoimmunomodulation. Int J Biol Macromol 2023; 247:125624. [PMID: 37392919 DOI: 10.1016/j.ijbiomac.2023.125624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Severe bone defects that extend beyond a critical size do not heal on their own, increasing the risk of complications and leading to poor outcomes for patients. Healing is a highly coordinated and complex process in which immune cells have an important function making the design and preparation of biomaterials with immunomodulatory functions an important new therapeutic strategy. 1,25-dihydroxyvitamin D3 (VD3) is crucial for bone metabolism and immune regulation. For post-defect bone regeneration, we developed a drug delivery system (DDS) based on chitosan (CS) and nanoparticles (NPs) to sustain the release effect of VD3 and desirable biological characteristics. The hydrogel system was physically characterized and confirmed to have good mechanical strength, degradation rate, and drug release rate. In vitro experiments showed that the cells had good biological activity when the hydrogel was co-cultured with MC3T3-E1 and RAW264.7. The high expression of ARG-1 and low expression of iNOS in macrophages confirmed that VD3-NPs/CS-GP hydrogel transformed lipopolysaccharide-induced M1 macrophages into M2 macrophages. Alkaline phosphatase and alizarin red staining showed that VD3-NPs/CS-GP hydrogel promoted osteogenic differentiation under inflammatory conditions. In conclusion, VD3-NPs/CS-GP hydrogel with synergistic anti-inflammatory and pro-osteogenic differentiation effects may serve as a potential immunomodulatory biomaterial for bone repair and regeneration in cases of bone defects.
Collapse
Affiliation(s)
- Rongzhu Gao
- School of Stomatology, Dalian Medical University, Dalian 116044, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China; Department of Stomatology, Changhai hospital, Shanghai 200433, China
| | - Shaoyang Xu
- School of Stomatology, Dalian Medical University, Dalian 116044, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Chen Chen
- School of Stomatology, Dalian Medical University, Dalian 116044, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Donglei Liu
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; School of Basic Medicine, Binzhou Medical University, Yantai 264003, China
| | - Yuzhu He
- School of Stomatology, Dalian Medical University, Dalian 116044, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Yaran Zang
- School of Stomatology, Dalian Medical University, Dalian 116044, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Xufeng Dong
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Dalian 116044, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China.
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Dalian 116044, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
28
|
Dabke A, Ghosh S, Dabke P, Sawant K, Khopade A. Revisiting the in-vitro and in-vivo considerations for in-silico modelling of complex injectable drug products. J Control Release 2023; 360:185-211. [PMID: 37353161 DOI: 10.1016/j.jconrel.2023.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Complex injectable drug products (CIDPs) have often been developed to modulate the pharmacokinetics along with efficacy for therapeutic agents used for remediation of chronic disorders. The effective development of CIDPs has exhibited complex kinetics associated with multiphasic drug release from the prepared formulations. Consequently, predictability of pharmacokinetic modelling for such CIDPs has been difficult and there is need for advanced complex computational models for the establishment of accurate prediction models for in-vitro-in-vivo correlation (IVIVC). The computational modelling aims at supplementing the existing knowledge with mathematical equations to develop formulation strategies for generation of predictable and discriminatory IVIVC. Such an approach would help in reduction of the burden of effect of hidden factors on preclinical to clinical translations. Computational tools like physiologically based pharmacokinetics (PBPK) modelling have combined physicochemical and physiological properties along with IVIVC characteristics of clinically used formulations. Such techniques have helped in prediction and understanding of variability in pharmacodynamic parameters of potential generic products to clinically used formulations like Doxil®, Ambisome®, Abraxane® in healthy and diseased population using mathematical equations. The current review highlights the important formulation characteristics, in-vitro, preclinical in-vivo aspects which need to be considered while developing a stimulatory predictive PBPK model in establishment of an IVIVC and in-vitro-in-vivo relationship (IVIVR).
Collapse
Affiliation(s)
- Amit Dabke
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390001, India; Formulation Research & Development- Biopharmaceutics, Sun Pharmaceutical Industries Ltd, Vadodara, Gujarat 390012, India
| | - Saikat Ghosh
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390001, India
| | - Pallavi Dabke
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390001, India
| | - Krutika Sawant
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390001, India.
| | - Ajay Khopade
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390001, India; Formulation Research & Development- Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, Gujarat 390012, India.
| |
Collapse
|
29
|
Rahmani F, Naderpour S, Nejad BG, Rahimzadegan M, Ebrahimi ZN, Kamali H, Nosrati R. The recent insight in the release of anticancer drug loaded into PLGA microspheres. Med Oncol 2023; 40:229. [PMID: 37410278 DOI: 10.1007/s12032-023-02103-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Cancer is a series of diseases leading to a high rate of death worldwide. Microspheres display specific characteristics that make them appropriate for a variety of biomedical purposes such as cancer therapy. Newly, microspheres have the potentials to be used as controlled drug release carriers. Recently, PLGA-based microspheres have attracted exceptional attention relating to effective drug delivery systems (DDS) because of their distinctive properties for a simple preparation, biodegradability, and high capability of drug loading which might be increased drug delivery. In this line, the mechanisms of controlled drug release and parameters that influence the release features of loaded agents from PLGA-based microspheres should be mentioned. The current review is focused on the new development of the release features of anticancer drugs, which are loaded into PLGA-based microspheres. Consequently, future perspective and challenges of anticancer drug release from PLGA-based microspheres are mentioned concisely.
Collapse
Affiliation(s)
- Farzad Rahmani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saghi Naderpour
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Ghorbani Nejad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zivar Nejad Ebrahimi
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
30
|
Mahr K, Anzengruber M, Hellerschmid A, Slezacek J, Hoi H, Subbiahdoss G, Gabor F, Lendvai ÁZ. Biocompatible polymeric microparticles serve as novel and reliable vehicles for exogenous hormone manipulations in passerines. Gen Comp Endocrinol 2023; 336:114234. [PMID: 36791824 DOI: 10.1016/j.ygcen.2023.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The administration of exogenous hormones emerged as an essential tool for field studies in endocrinology. However, working with wild animals remains challenging, because under field conditions not every available method meets the necessary requirements. Achieving a sustained elevation in hormone levels, while simultaneously minimising handling time and invasiveness of the procedure is a difficult task in field endocrinology. Facing this challenge, we have investigated the suitability of biocompatible polymeric microparticles, a novel method for drug-administration, as a tool to manipulate hormones in small songbirds. We chose the insulin-like growth factor-1 (IGF-1) as target hormone, because it receives great interest from the research community due to its important role in shaping life-history traits. Moreover, its short half-life and hydrophilic properties imply a major challenge in finding a suitable method to achieve a sustained, systemic long-term release. To study the release kinetics, we injected either IGF-1 loaded polylactic-co-glycolic acid (PLGA) microparticles or dispersion medium (control group) in the skin pocket of the interscapular region of captive bearded reedlings (Panurus biarmicus). We collected blood samples for 7 consecutive days plus an additional sampling period after two weeks and complemented these with an in vitro experiment. Our results show that in vitro, PLGA microparticles allowed a stable IGF-1 release for more than 15 days, following a burst release at the beginning of the measurement. In vivo, the initial burst was followed by a drop to still elevated levels in circulating IGF-1 until the effect vanished by 16 days post-treatment. This study is the first to describe the use of PLGA-microparticles as a novel tool for exogenous hormone administration in a small passerine. We suggest that this method is highly suitable to achieve the systemic long-term release of hydrophilic hormones with short half-life and reduces overall handling time, as it requires only one subcutaneous injection.
Collapse
Affiliation(s)
- Katharina Mahr
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria.
| | - Maria Anzengruber
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| | - Anna Hellerschmid
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Julia Slezacek
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Herbert Hoi
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Guruprakash Subbiahdoss
- Institute of Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
31
|
Do UT, Kim J, Luu QS, Nguyen QT, Jang T, Park Y, Shin H, Whiting N, Kang DK, Kwon JS, Lee Y. Accurate detection of enzymatic degradation processes of gelatin-alginate microcapsule by 1H NMR spectroscopy: Probing biodegradation mechanism and kinetics. Carbohydr Polym 2023; 304:120490. [PMID: 36641177 DOI: 10.1016/j.carbpol.2022.120490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
With an increase in the severity of environmental pollution caused by microbeads, the development of biodegradable microcapsules that can be applied in diverse fields has attracted significant attention. The degradation processes are directly related to biodegradable microcapsule creation with high stability and persistence. In this study, biodegradable microcapsules are synthesized via a complex coacervation approach using gelatin and alginate as the capsule main wall materials; additionally, enzyme-induced decomposition mechanisms are proposed by observing spectral changes in proton nuclear magnetic resonance (1H NMR) analyses. Additional analytical techniques confirm the chemical structure, morphology, and size distribution of the synthesized capsules; these uniform spherical microcapsules are 20-30 μm in size and possess a smooth surface. In addition to characterization, the microcapsules were exposed to targeted enzymes to investigate enzymatic effects using short-term and long-term degradation kinetics. Close inspection reveals that determination of the degradation rate constant of the major components in the capsule is feasible, and suggests two types of 4-stage degradation mechanisms that are enzyme-specific. These investigations demonstrate that capsule degradation can be explored in detail using 1H NMR spectroscopy to provide a viable strategy for monitoring degradation properties in the development of new biodegradable polymers.
Collapse
Affiliation(s)
- Uyen Thi Do
- Department of Bionano Technology, Hanyang University, Ansan 15588, South Korea
| | - Jiwon Kim
- Department of Bionano Technology, Hanyang University, Ansan 15588, South Korea
| | - Quy Son Luu
- Department of Bionano Technology, Hanyang University, Ansan 15588, South Korea
| | - Quynh Thi Nguyen
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Taeho Jang
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Yeeun Park
- Department of Chemical and Molecular Engineering, Hanyang University, Ansan 15588, South Korea
| | - Hwicheol Shin
- Department of Chemistry, Incheon National University, Incheon 22012, South Korea
| | - Nicholas Whiting
- Department of Physics & Astronomy and Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Dong-Ku Kang
- Department of Chemistry, Incheon National University, Incheon 22012, South Korea.
| | - Jas-Sung Kwon
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, South Korea; Convergence Research Center for Insect Vectors(CRCIV), Incheon National University, Incheon 22012, South Korea.
| | - Youngbok Lee
- Department of Bionano Technology, Hanyang University, Ansan 15588, South Korea; Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea; Department of Chemical and Molecular Engineering, Hanyang University, Ansan 15588, South Korea.
| |
Collapse
|
32
|
Zhao J, Wei Y, Xiong J, Liu H, Lv G, Zhao J, He H, Gou J, Yin T, Tang X, Zhang Y. Antibacterial-Anti-Inflammatory-Bone Restoration Procedure Achieved by MIN-Loaded PLGA Microsphere for Efficient Treatment of Periodontitis. AAPS PharmSciTech 2023; 24:74. [PMID: 36890400 DOI: 10.1208/s12249-023-02538-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/12/2023] [Indexed: 03/10/2023] Open
Abstract
The main development process of periodontitis involves periodontal pathogenic bacteria as the initiating factor causing the onset of destructive inflammation, which in turn stimulates the destruction of periodontal tissue. It is difficult to achieve the eradication of periodontitis due to the complex interaction among antibacterial, anti-inflammatory, and bone restoration. Herein, we propose an antibacterial-anti-inflammatory-bone restoration procedural treatment strategy with minocycline (MIN) for the efficient treatment of periodontitis. In brief, MIN was prepared into PLGA microspheres with tunable release behavior using different species of PLGA, respectively. The optimally selected PLGA microspheres (LA:GA with 50:50, 10 kDa, and carboxyl group) had a drug loading of 16.91%, an in vitro release of approximately 30 days, which also had a particle size of approximately 11.8 µm with a smooth appearance and a rounded morphology. The DSC and XRD results showed that the MIN was completely encapsulated in the microspheres as an amorphous state. Cytotoxicity tests demonstrated the safety and biocompatibility of the microspheres (cell viabilities at a concentration of 1-200 μg/mL were greater than 97%), and in vitro bacterial inhibition tests showed that the selected microspheres could achieve effective bacterial inhibition at the initial stage after administration. The favorable anti-inflammatory (low TNF-α and IL-10 levels) and bone restoration effects (BV/TV: 71.8869%; BMD: 0.9782 g/cm3; TB.Th: 0.1366 mm; Tb.N: 6.9318 mm-1; Tb.Sp: 0.0735 mm) were achieved in a SD rat periodontitis model after administering once a week for four weeks. The MIN-loaded PLGA microspheres were proved to be an efficient and safe treatment for periodontitis by procedural antibacterial, anti-inflammatory, and bone restoration.
Collapse
Affiliation(s)
- Jiansong Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Ying Wei
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Jian Xiong
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Hongbing Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Gaoshuai Lv
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Jingyi Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
33
|
Negron K, Kwak G, Wang H, Li H, Huang YT, Chen SW, Tyler B, Eberhart CG, Hanes J, Suk JS. A Highly Translatable Dual-arm Local Delivery Strategy To Achieve Widespread Therapeutic Coverage in Healthy and Tumor-bearing Brain Tissues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207278. [PMID: 36651002 PMCID: PMC10082594 DOI: 10.1002/smll.202207278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Drug delivery nanoparticles (NPs) based entirely on materials generally recognized as safe that provide widespread parenchymal distribution following intracranial administration via convection-enhanced delivery (CED) are introduced. Poly(lactic-co-glycolic acid) (PLGA) NPs are coated with various poloxamers, including F68, F98, or F127, via physical adsorption to render particle surfaces non-adhesive, thereby resisting interactions with brain extracellular matrix. F127-coated PLGA (F127/PLGA) NPs provide markedly greater distribution in healthy rat brains compared to uncoated NPs and widespread coverage in orthotopically-established brain tumors. Distribution analysis of variously-sized F127/PLGA NPs determines the average rat brain tissue porosity to be between 135 and 170 nm while revealing unprecedented brain coverage of larger F127/PLGA NPs with an aid of hydraulic pressure provided by CED. Importantly, F127/PLGA NPs can be lyophilized for long-term storage without compromising their ability to penetrate the brain tissue. Further, 65- and 200-nm F127/PLGA NPs lyophilized-reconstituted and administered in a moderately hyperosmolar infusate solution show further enhance particle dissemination in the brain via osmotically-driven enlargement of the brain tissue porosity. Combination of F127/PLGA NPs and osmotic tissue modulation provides a means with a clear regulatory path to maximize the brain distribution of large NPs that enable greater drug loading and prolong drug release.
Collapse
Affiliation(s)
- Karina Negron
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231; Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Gijung Kwak
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Heng Wang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Haolin Li
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Yi-Ting Huang
- Department of Neuroscience & Behavioral Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Shun-Wen Chen
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Charles G. Eberhart
- Department of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231; Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Jung Soo Suk
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
34
|
Wu L, Seon GM, Ju S, Choi SH, Jiang ES, Kim Y, Chung SH, Ahn JS, Yang HC. Synergistic effects of arginine-glycine-aspartic acid and phosphatidylserine on the surface immunomodulation and osseointegration of titanium implants. Biomater Sci 2023; 11:1358-1372. [PMID: 36594560 DOI: 10.1039/d2bm01589g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The control of macrophage polarization is important in bone tissue regeneration such as osseointegration. In this study, a coating method was developed to improve the osseointegration of titanium (Ti) implants by generating an immunomodulatory effect. The surface of the Ti discs was coated with a poly(lactide-co-glycolide)(PLGA) polymer, phosphatidylserine (PS), and arginine-glycine-aspartic acid (RGD) peptide conjugated phospholipid. In in vitro assay using mouse bone marrow-derived macrophages (BMDMs), the most significant expression of the M2 marker genes (Arg-1, YM-1, FIZZ1) and CD206, an M2 surface marker, was obtained with coatings containing 6 mol% RGD conjugates and phospholipids consisting of 50 mol% PS. The M2-inducing effect of RGD and PS was also verified in rat femurs where coated Ti rods were implanted. The RGD and PS coating significantly enhanced the osseointegration of the Ti implants. Moreover, a biomechanical push-out test showed that the RGD and PS coating increased the interfacial binding force between the bone and implants. These results indicate that PS and RGD can be applied to the solid surface of implantable biomedical devices to improve immunomodulation and tissue regeneration.
Collapse
Affiliation(s)
- Lele Wu
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Gyeung Mi Seon
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Sungwon Ju
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Sang Hoon Choi
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - En-Shi Jiang
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Yongjoon Kim
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Shin Hye Chung
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Jin-Soo Ahn
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Hyeong-Cheol Yang
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| |
Collapse
|
35
|
Horvath D, Basler M. PLGA Particles in Immunotherapy. Pharmaceutics 2023; 15:pharmaceutics15020615. [PMID: 36839937 PMCID: PMC9965784 DOI: 10.3390/pharmaceutics15020615] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) particles are a widely used and extensively studied drug delivery system. The favorable properties of PLGA such as good bioavailability, controlled release, and an excellent safety profile due to the biodegradable polymer backbone qualified PLGA particles for approval by the authorities for the application as a drug delivery platform in humas. In recent years, immunotherapy has been established as a potent treatment option for a variety of diseases. However, immunomodulating drugs rely on targeted delivery to specific immune cell subsets and are often rapidly eliminated from the system. Loading of PLGA particles with drugs for immunotherapy can protect the therapeutic compounds from premature degradation, direct the drug delivery to specific tissues or cells, and ensure sustained and controlled drug release. These properties present PLGA particles as an ideal platform for immunotherapy. Here, we review recent advances of particulate PLGA delivery systems in the application for immunotherapy in the fields of allergy, autoimmunity, infectious diseases, and cancer.
Collapse
Affiliation(s)
- Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
- Correspondence:
| |
Collapse
|
36
|
Development of L-Lysine-Loaded PLGA Microparticles as a Controlled Release System for Angiogenesis Enhancement. Pharmaceutics 2023; 15:pharmaceutics15020479. [PMID: 36839801 PMCID: PMC9961840 DOI: 10.3390/pharmaceutics15020479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Vascularization is a highly conserved and considerably complex and precise process that is finely driven by endogenous regulatory processes at the tissue and systemic levels. However, it can reveal itself to be slow and inadequate for tissue repair and regeneration consequent to severe lesions/damages. Several biomaterial-based strategies were developed to support and enhance vasculogenesis by supplying pro-angiogenic agents. Several approaches were adopted to develop effective drug delivery systems for the controlled release of a huge variety of compounds. In this work, a microparticulate system was chosen to be loaded with the essential amino acid L-lysine, a molecule that has recently gained interest due to its involvement in pro-angiogenic, pro-regenerative, and anti-inflammatory mechanisms. Poly (lactic-co-glycolic acid), the most widely used FDA-approved biodegradable synthetic polymer for the development of drug delivery systems, was chosen due to its versatility and ability to promote neovascularization and wound healing. This study dealt with the development and the effectiveness evaluation of a PLGA-based microparticulate system for the controlled release of L-lysine. Therefore, in order to maximize L-lysine encapsulation efficiency and tune its release kinetics, the microparticle synthesis protocol was optimized by varying some processing parameters. All developed formulations were characterized from a morphological and physicochemical point of view. The optimized formulation was further characterized via the evaluation of its preliminary biological efficacy in vitro. The cellular and molecular studies revealed that the L-lysine-loaded PLGA microparticles were non-toxic, biocompatible, and supported cell proliferation and angiogenesis well by stimulating the expression of pro-angiogenic genes such as metalloproteinase-9, focal adhesion kinases, and different growth factors. Thus, this work showed the potential of delivering L-lysine encapsulated in PLGA microparticles as a cost-effective promoter system for angiogenesis enhancement and rapid healing.
Collapse
|
37
|
Aguiar A, Mariquito A, Gonçalves D, Pinho I, Marques AC. Biodegradable Microcapsules of Poly(Butylene Adipate- co-Terephthalate) (PBAT) as Isocyanate Carriers and the Effect of the Process Parameters. Polymers (Basel) 2023; 15:polym15030665. [PMID: 36771965 PMCID: PMC9921966 DOI: 10.3390/polym15030665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT), a biodegradable flexible, and tough polymer is herein used, for the first time, to encapsulate and protect isocyanate derivatives. Isocyanates are essential building blocks widely employed in the chemical industry for the production of high-performing materials. Microencapsulation of isocyanates eliminates the risks associated with their direct handling and protects them from moisture. In light of this, and having in mind eco-innovative products and sustainability, we present a straightforward process to encapsulate isophorone diisocyanate (IPDI) using this biodegradable polymer. Spherical and core-shell microcapsules (MCs) were produced by an emulsion system combined with the solvent evaporation method. The MCs present a regular surface, without holes or cracks, with a thin shell and high isocyanate loadings, up to 79 wt%. Additionally, the MCs showed very good isocyanate protection if not dispersed in organic or aqueous solutions. Effects of various process parameters were systematically studied, showing that a higher stirring speed (1000 rpm) and emulsifier amount (2.5 g), as well as a smaller PBAT amount (1.60 g), lead to smaller MCs and narrower size distribution.
Collapse
Affiliation(s)
- António Aguiar
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- CIPADE—Indústria e Investigação de Produtos Adesivos, SA., Av. Primeiro de Maio 121, 3700-227 São João da Madeira, Portugal
- Correspondence: (A.A.); (A.C.M.)
| | - António Mariquito
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Diogo Gonçalves
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Isabel Pinho
- CIPADE—Indústria e Investigação de Produtos Adesivos, SA., Av. Primeiro de Maio 121, 3700-227 São João da Madeira, Portugal
| | - Ana C. Marques
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (A.A.); (A.C.M.)
| |
Collapse
|
38
|
Wang P, Wang G, Tang H, Feng S, Tan L, Zhang P, Wei G, Wang C. Preparation of Ropivacaine Encapsulated by Zeolite Imidazole Framework Microspheres as Sustained-Release System and Efficacy Evaluation. Chemistry 2023; 29:e202203458. [PMID: 36700555 DOI: 10.1002/chem.202203458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
The management of persistent postoperative pain still remains a clinical challenge currently. Although ropivacaine (RVC) is widely used for postoperative analgesia as a local anesthetic, the short half-life makes it difficult to achieve the desired duration of analgesia. Herein, a RVC sustained-release microspheres encapsulated by zeolite imidazole framework-8 (RVC@ZIF-8) was synthesized for the first time, which prolonged the sustained-release of RVC and decreased the resulting drug toxicity. RVC can continuously release in vitro for at least 96 h with high drug loading of 30.6 % and RVC@ZIF-8 had excellent biocompatibility and low cytotoxicity. In sciatic nerve block model, the sensory block time of RVC@ZIF-8 was significantly prolonged compared with RVC, achieving more than 72 h post injection and no inflammation or lesion were found. Based on high drug loading, ideal sustained-release and superior biological safety, RVC@ZIF-8 will be a novel delivery material for local anesthetic with potential application.
Collapse
Affiliation(s)
- Peng Wang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Guangyu Wang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Hongwen Tang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Siwen Feng
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Lichuan Tan
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Pu Zhang
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing institute for Food and Drug Control, Chongqing, 401121, P. R. China
| | - Guihua Wei
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Cuijuan Wang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| |
Collapse
|
39
|
Mahar R, Chakraborty A, Nainwal N, Bahuguna R, Sajwan M, Jakhmola V. Application of PLGA as a Biodegradable and Biocompatible Polymer for Pulmonary Delivery of Drugs. AAPS PharmSciTech 2023; 24:39. [PMID: 36653547 DOI: 10.1208/s12249-023-02502-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Pulmonary administration of biodegradable polymeric formulation is beneficial in the treatment of various respiratory diseases. For respiratory delivery, the polymer must be non-toxic, biodegradable, biocompatible, and stable. Poly D, L-lactic-co-glycolic acid (PLGA) is a widely used polymer for inhalable formulations because of its attractive mechanical and processing characteristics which give great opportunities to pharmaceutical industries to formulate novel inhalable products. PLGA has many pharmaceutical applications and its biocompatible nature produces non-toxic degradation products. The degradation of PLGA takes place through the non-enzymatic hydrolytic breakdown of ester bonds to produce free lactic acid and glycolic acid. The biodegradation products of PLGA are eliminated in the form of carbon dioxide (CO2) and water (H2O) by the Krebs cycle. The biocompatible properties of PLGA are investigated in various in vivo and in vitro studies. The high structural integrity of PLGA particles provides better stability, excellent drug loading, and sustained drug release. This review provides detailed information about PLGA as an inhalable grade polymer, its synthesis, advantages, physicochemical properties, biodegradability, and biocompatible characteristics. The important formulation aspects that must be considered during the manufacturing of inhalable PLGA formulations and the toxicity of PLGA in the lungs are also discussed in this paper. Additionally, a thorough overview is given on the application of PLGA as a particulate carrier in the treatment of major respiratory diseases, such as cystic fibrosis, lung cancer, tuberculosis, asthma, and pulmonary hypertension.
Collapse
Affiliation(s)
- Riya Mahar
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| | - Arpita Chakraborty
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India.
| | - Richa Bahuguna
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Premnagar, Dehradun, 248007, Uttarakhand, India
| | - Meenakshi Sajwan
- Department of Pharmacy, GRD (PG) IMT, 214 Raipur Road, Dehradun, 248001, India
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
40
|
Feng C, Deng L, Yong YY, Wu JM, Qin DL, Yu L, Zhou XG, Wu AG. The Application of Biomaterials in Spinal Cord Injury. Int J Mol Sci 2023; 24:816. [PMID: 36614259 PMCID: PMC9821025 DOI: 10.3390/ijms24010816] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The spinal cord and the brain form the central nervous system (CNS), which is the most important part of the body. However, spinal cord injury (SCI) caused by external forces is one of the most difficult types of neurological injury to treat, resulting in reduced or even absent motor, sensory and autonomic functions. It leads to the reduction or even disappearance of motor, sensory and self-organizing nerve functions. Currently, its incidence is increasing each year worldwide. Therefore, the development of treatments for SCI is urgently needed in the clinic. To date, surgery, drug therapy, stem cell transplantation, regenerative medicine, and rehabilitation therapy have been developed for the treatment of SCI. Among them, regenerative biomaterials that use tissue engineering and bioscaffolds to transport cells or drugs to the injured site are considered the most promising option. In this review, we briefly introduce SCI and its molecular mechanism and summarize the application of biomaterials in the repair and regeneration of tissue in various models of SCI. However, there is still limited evidence about the treatment of SCI with biomaterials in the clinic. Finally, this review will provide inspiration and direction for the future study and application of biomaterials in the treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
41
|
Janrao C, Khopade S, Bavaskar A, Gomte SS, Agnihotri TG, Jain A. Recent advances of polymer based nanosystems in cancer management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-62. [PMID: 36542375 DOI: 10.1080/09205063.2022.2161780] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is still one of the leading causes of death worldwide. Nanotechnology, particularly nanoparticle-based platforms, is at the leading edge of current cancer management research. Polymer-based nanosystems have piqued the interest of researchers owing to their many benefits over other conventional drug delivery systems. Polymers derived from both natural and synthetic sources have various biomedical applications due to unique qualities like porosity, mechanical strength, biocompatibility, and biodegradability. Polymers such as poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and polyethylene glycol (PEG) have been approved by the USFDA and are being researched for drug delivery applications. They have been reported to be potential carriers for drug loading and are used in theranostic applications. In this review, we have primarily focused on the aforementioned polymers and their conjugates. In addition, the therapeutic and diagnostic implications of polymer-based nanosystems have been briefly reviewed. Furthermore, the safety of the developed polymeric formulations is crucial, and we have discussed their biocompatibility in detail. This article also discusses recent developments in block co-polymer-based nanosystems for cancer treatment. The review ends with the challenges of clinical translation of polymer-based nanosystems in drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Chetan Janrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shivani Khopade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Bavaskar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
42
|
Recent advances in nanomedicines for imaging and therapy of myocardial ischemia-reperfusion injury. J Control Release 2023; 353:563-590. [PMID: 36496052 DOI: 10.1016/j.jconrel.2022.11.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Myocardial ischemia-reperfusion injury (IRI) is becoming a typical cardiovascular disease with increasing worldwide incidence. It is usually induced by the restoration of normal blood flow to the ischemic myocardium after a period of recanalization and directly leads to myocardial damage. Notably, the pathological mechanism of myocardial IRI is closely related to inflammation, oxidative stress, Ca2+ overload, and the opening of mitochondrial permeability transition pore channels. Therefore, monitoring of these changes and imaging lesions is a key to timely clinical diagnosis. Nanomedicines have shown great value in the diagnosis and treatment of myocardial IRI, with advantages including passive/active targeting, prolonged circulation, improved bioavailability, versatile carrier selection, and synergistic integration of different imaging and therapeutic agents in single particles with the same pharmaceutics. Because theranostic nanomedicines for myocardial IRI have advanced rapidly, we conduct an updated review on this topic. The special focus is on how to rationally design the nanomedicines to achieve optimal imaging and therapy. We hope this review would stimulate the interest of researchers with different backgrounds and expedite the development of nanomedicines for myocardial IRI.
Collapse
|
43
|
Preliminary Assessment of Intramuscular Depot of Lipid-Based Decoquinate Formulation for Long-Term Chemoprophylaxis of Malaria. Pharmaceutics 2022; 14:pharmaceutics14122813. [PMID: 36559304 PMCID: PMC9782194 DOI: 10.3390/pharmaceutics14122813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Sustained-release formulations of decoquinate were evaluated for the long-term prophylaxis of malaria. In the initial experiment, mice were protected from liver-stage Plasmodium infection by intramuscular administration of a lipids-based formulation at a dose of decoquinate 200 mg/kg. The mice that were inoculated with Plasmodium berghei sporozoites 34 days after the administration of a one-time drug dose were continuously monitored for 60 days and shown to be free of Plasmodium parasites. The optimized formulation for the sustained release of decoquinate was prepared by hot melt extrusion, constructed by lipids including cholesterol and mono or diglycerides, and had a drug load of 20 to 40% and particle size of 30 to 50 μm. Decoquinate of the lipids-based formulation was slowly released in vitro at a constant rate for the duration of two months, and was examined and continuously exposed at a therapeutic level in the blood for as long as 4 to 6 months. Further evaluation showed that the lipids-based formulation at doses of decoquinate 100 to 150 mg/kg could protect mice from Plasmodium infection for a period of 120 days. It is the first time that cholesterol has been used for a controlled drug delivery system of decoquinate. The results may provide useful information, not only for preparing a formulation of long-acting decoquinate but also in general for developing a controlled drug release system. The one-time administration of pharmaceutical agents in such a slow-release system may serve patients with no concerns about compliance.
Collapse
|
44
|
Acharya AP, Sezginel KB, Gideon HP, Greene AC, Lawson HD, Inamdar S, Tang Y, Fraser AJ, Patel KV, Liu C, Rosi NL, Chan SY, Flynn JL, Wilmer CE, Little SR. In silico identification and synthesis of a multi-drug loaded MOF for treating tuberculosis. J Control Release 2022; 352:242-255. [PMID: 36273529 DOI: 10.1016/j.jconrel.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Conventional drug delivery systems have been applied to a myriad of active ingredients but may be difficult to tailor for a given drug. Herein, we put forth a new strategy, which designs and selects the drug delivery material by considering the properties of encapsulated drugs (even multiple drugs, simultaneously). Specifically, through an in-silico screening process of 5109 MOFs using grand canonical Monte Carlo simulations, a customized MOF (referred as BIO-MOF-100) was selected and experimentally verified to be biologically stable, and capable of loading 3 anti-Tuberculosis drugs Rifampicin+Isoniazid+Pyrazinamide at 10% + 28% + 23% wt/wt (total > 50% by weight). Notably, the customized BIO-MOF-100 delivery system cleared naturally Pyrazinamide-resistant Bacillus Calmette-Guérin, reduced growth of virulent Erdman infection in macaque macrophages 10-100-fold compared to soluble drugs in vitro and was also significantly reduced Erdman growth in mice. These data suggest that the methodology of identifying-synthesizing materials can be used to generate solutions for challenging applications such as simultaneous delivery of multiple, small hydrophilic and hydrophobic molecules in the same molecular framework.
Collapse
Affiliation(s)
- Abhinav P Acharya
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA; Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Kutay B Sezginel
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA
| | - Hannah P Gideon
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh School of Medicine, PA 15261, USA
| | - Ashlee C Greene
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA
| | - Harrison D Lawson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA
| | - Sahil Inamdar
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Ying Tang
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Amy J Fraser
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh School of Medicine, PA 15261, USA
| | - Kush V Patel
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh School of Medicine, PA 15261, USA
| | - Chong Liu
- Department of Chemistry, University of Pittsburgh, PA 15261, USA
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, PA 15261, USA
| | - Stephen Y Chan
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh School of Medicine, PA 15261, USA
| | - Christopher E Wilmer
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA; Department of Electrical and Computer Engineering, University of Pittsburgh, PA 15261, USA; Clinical and Translational Science Institute, University of Pittsburgh, PA 15261, USA
| | - Steven R Little
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA; Department of Bioengineering, University of Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, University of Pittsburgh, PA 15261, USA; Department of Ophthalmology, University of Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA 15261, USA; Department of Immunology, University of Pittsburgh School of Medicine, PA 15261, USA; Clinical and Translational Science Institute, University of Pittsburgh, PA 15261, USA.
| |
Collapse
|
45
|
Ruan L, Su M, Qin X, Ruan Q, Lang W, Wu M, Chen Y, Lv Q. Progress in the application of sustained-release drug microspheres in tissue engineering. Mater Today Bio 2022; 16:100394. [PMID: 36042853 PMCID: PMC9420381 DOI: 10.1016/j.mtbio.2022.100394] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 01/22/2023] Open
Abstract
Sustained-release drug-loaded microspheres provide a long-acting sustained release, with targeted and other effects. There are many types of sustained-release drug microspheres and various preparation methods, and they are easy to operate. For these reasons, they have attracted widespread interest and are widely used in tissue engineering and other fields. In this paper, we provide a systematic review of the application of sustained-release drug microspheres in tissue engineering. First, we introduce this new type of drug delivery system (sustained-release drug carriers), describe the types of sustained-release drug microspheres, and summarize the characteristics of different microspheres. Second, we summarize the preparation methods of sustained-release drug microspheres and summarize the materials required for preparing microspheres. Third, various applications of sustained-release drug microspheres in tissue engineering are summarized. Finally, we summarize the shortcomings and discuss future prospects in the development of sustained-release drug microspheres. The purpose of this paper was to provide a further systematic understanding of the application of sustained-release drug microspheres in tissue engineering for the personnel engaged in related fields and to provide inspiration and new ideas for studies in related fields.
Collapse
Affiliation(s)
- Lian Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Mengrong Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Xinyun Qin
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Qingting Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Wen Lang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Minhui Wu
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Yujie Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, China
| |
Collapse
|
46
|
Han Z, Dong L, Li A, Li Z, Fu L, Zhang Z, Li X, Li X. Efficient angiogenesis-based wound healing through hydrogel dressing with extracellular vesicles release. Mater Today Bio 2022; 16:100427. [PMID: 36193344 PMCID: PMC9526170 DOI: 10.1016/j.mtbio.2022.100427] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 10/27/2022] Open
Abstract
Wound healing and angiogenesis remain challenges for both clinical and experimental research worldwide. Periosteum-derived extracellular vesicles (P-sEVs) delivered by hydrogel dressings provide a potential strategy for wound defects to promote fast healing. In this study, we designed a NAGA/GelMA/Laponite/glycerol hydrogel wound dressing that can release P-sEVs to accelerate angiogenesis and wound healing (named P-sEVs@hydrogel) (N-acryloyl glycinamide, NAGA). The wound dressing showed multiple functions, including efficient angiogenesis, tissue adhesion and a physical barrier. P-sEVs significantly enhanced the proliferation, migration, and tube formation of endothelial cells in vitro. The results of in vivo experiments showed that P-sEVs@hydrogel accelerates the healing of a full-thickness defect wound model by stimulating the angiogenic process. The improved cell proliferation, tissue formation, remodeling, and re-epithelialization possibly resulted in the fast healing. This study shows that multifunctional hydrogel dressing combined with bioactive molecules can achieve fast and satisfactory wound healing in full-thickness wound defects and other related wounds.
Collapse
Affiliation(s)
- Zhengzhe Han
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Lanlan Dong
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Ang Li
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Zongyue Li
- Department of Rehabilitation Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, PR China
| | - Landie Fu
- North Cross School Shanghai, Building 2, Lane 803, Shuangcheng Road, Baoshan District, Shanghai, PR China
| | - Zhichang Zhang
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Xiang Li
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Xiaolin Li
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| |
Collapse
|
47
|
Rodrigues ML, Gomes ADJ, Funez MI, Marques MADS, Lunardi CN. Euphorbia tirucalli latex loaded polymer nanoparticles: Synthesis, characterization, in vitro release and in vivo antinociceptive action. PLoS One 2022; 17:e0274432. [PMID: 36445864 PMCID: PMC9707765 DOI: 10.1371/journal.pone.0274432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/28/2022] [Indexed: 12/03/2022] Open
Abstract
The encapsulation of drugs in micro and nanocarriers has helped to resolve mechanisms of cellular resistance and decrease drug side effects as well. In this study, poly(D,L-lactide-co-glycolide) (PLGA) was used to encapsulate the Euphol active substance-containing latex from Euphorbia tirucalli (E-latex). The nanoparticles (NP) were prepared using the solvent evaporation method and the physical and chemical properties were evaluated using spectrophotometric techniques. FTIR was used to prove the formation of the ester bond between the E-latex and PLGA-NP. The UV-Vis spectroscopic technique was used to show that more than 75% of the latex was encapsulated; the same technique was used to determine the release profile of the compound at different pH values, as well as determining the speed with which the process occurs through kinetic models, and it was observed that the best adjustments occurred for the Korsmeyer-Peppas model and the Higuchi model. The DLS technique was used to determine the diameter of the particles produced as well as their zeta potential (ZP). The sizes of the particles varied from 497 to 764 nm, and it was observed that the increase in E-latex concentration causes a reduction in the diameter of the NP and an increase in the ZP (-1.44 to -22.7 mV), due to more functional groups from latex film being adsorbed to the NPs surfaces. The thermogravimetric experiments exhibit the glass transition temperatures (Tg) that is appropriate for the use of formulated NPs as a stable drug delivery device before use. The in vivo activity of E-NPs (30 and 100 mg/Kg/p.o.) was tested against carrageenan-induced mechanical hypernociception. The data demonstrated a significantly antinociceptive effect for E-NPs, suggesting that E-latex nanoencapsulation preserved its desired properties.
Collapse
Affiliation(s)
- Marina Lima Rodrigues
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Ceilandia, Brasília, Federal District, Brazil
- Program in Nanoscience and Nanobiotechnology, University of Brasilia, Brasília, Federal District, Brazil
| | - Anderson de Jesus Gomes
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Ceilandia, Brasília, Federal District, Brazil
- Program in Nanoscience and Nanobiotechnology, University of Brasilia, Brasília, Federal District, Brazil
- Sciences and Technologies in Health Program, University of Brasilia, Campus Ceilandia, Brasilia, Federal District, Brazil
| | - Mani Indiana Funez
- Sciences and Technologies in Health Program, University of Brasilia, Campus Ceilandia, Brasilia, Federal District, Brazil
| | | | - Claure Nain Lunardi
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Ceilandia, Brasília, Federal District, Brazil
- Program in Nanoscience and Nanobiotechnology, University of Brasilia, Brasília, Federal District, Brazil
- Sciences and Technologies in Health Program, University of Brasilia, Campus Ceilandia, Brasilia, Federal District, Brazil
- * E-mail:
| |
Collapse
|
48
|
Yazdi MK, Sajadi SM, Seidi F, Rabiee N, Fatahi Y, Rabiee M, Dominic C.D. M, Zarrintaj P, Formela K, Saeb MR, Bencherif SA. Clickable Polysaccharides for Biomedical Applications: A Comprehensive Review. Prog Polym Sci 2022; 133:101590. [PMID: 37779922 PMCID: PMC10540641 DOI: 10.1016/j.progpolymsci.2022.101590] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in materials science and engineering highlight the importance of designing sophisticated biomaterials with well-defined architectures and tunable properties for emerging biomedical applications. Click chemistry, a powerful method allowing specific and controllable bioorthogonal reactions, has revolutionized our ability to make complex molecular structures with a high level of specificity, selectivity, and yield under mild conditions. These features combined with minimal byproduct formation have enabled the design of a wide range of macromolecular architectures from quick and versatile click reactions. Furthermore, copper-free click chemistry has resulted in a change of paradigm, allowing researchers to perform highly selective chemical reactions in biological environments to further understand the structure and function of cells. In living systems, introducing clickable groups into biomolecules such as polysaccharides (PSA) has been explored as a general approach to conduct medicinal chemistry and potentially help solve healthcare needs. De novo biosynthetic pathways for chemical synthesis have also been exploited and optimized to perform PSA-based bioconjugation inside living cells without interfering with their native processes or functions. This strategy obviates the need for laborious and costly chemical reactions which normally require extensive and time-consuming purification steps. Using these approaches, various PSA-based macromolecules have been manufactured as building blocks for the design of novel biomaterials. Clickable PSA provides a powerful and versatile toolbox for biomaterials scientists and will increasingly play a crucial role in the biomedical field. Specifically, bioclick reactions with PSA have been leveraged for the design of advanced drug delivery systems and minimally invasive injectable hydrogels. In this review article, we have outlined the key aspects and breadth of PSA-derived bioclick reactions as a powerful and versatile toolbox to design advanced polymeric biomaterials for biomedical applications such as molecular imaging, drug delivery, and tissue engineering. Additionally, we have also discussed the past achievements, present developments, and recent trends of clickable PSA-based biomaterials such as 3D printing, as well as their challenges, clinical translatability, and future perspectives.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - S. Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
- Department of Phytochemistry, SRC, Soran University, 624, KRG, Iraq
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Midhun Dominic C.D.
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
49
|
Allogeneic Bone Impregnated with Biodegradable Depot Delivery Systems for the Local Treatment of Joint Replacement Infections: An In Vitro Study. Molecules 2022; 27:molecules27196487. [PMID: 36235024 PMCID: PMC9571001 DOI: 10.3390/molecules27196487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Although progress is evident in the effective treatment of joint replacement-related infections, it still remains a serious issue in orthopedics. As an example, the local application of antibiotics-impregnated bone grafts supplies the high drug levels without systemic side effects. However, antibiotics in the powder or solution form could be a risk for local toxicity and do not allow sustained drug release. The present study evaluated the use of an antibiotic gel, a water-in-oil emulsion, and a PLGA microparticulate solid dispersion as depot delivery systems impregnating bone grafts for the treatment of joint replacement-related infections. The results of rheological and bioadhesive tests revealed the suitability of these formulations for the impregnation of bone grafts. Moreover, no negative effect on proliferation and viability of bone marrow mesenchymal stem cells was detected. An ex vivo dissolution test of vancomycin hydrochloride and gentamicin sulphate from the impregnated bone grafts showed a reduced burst and prolonged drug release. The PLGA-based formulation proved to be particularly promising, as one-day burst release drugs was only 15% followed with sustained antibiotics release with zero-order kinetics. The results of this study will be the basis for the development of a new product in the Tissue Section of the University Hospital for the treatment of bone defects and infections of joint replacements.
Collapse
|
50
|
Physical, Chemical, and Biological Properties of Chitosan-Coated Alginate Microparticles Loaded with Porcine Interleukin-1β: A Potential Protein Adjuvant Delivery System. Int J Mol Sci 2022; 23:ijms23179959. [PMID: 36077367 PMCID: PMC9456129 DOI: 10.3390/ijms23179959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
We previously developed chicken interleukin-1β (IL-1β) mutants as single-dose adjuvants that induce protective immunity when co-administered with an avian vaccine. However, livestock such as pigs may require a vaccine adjuvant delivery system that provides long-lasting protection to reduce the need for successive booster doses. Therefore, we developed chitosan-coated alginate microparticles as a carrier for bovine serum albumin (BSA) or porcine IL-1β (pIL-1β) and assessed their physical, chemical, and biological properties. Electrospraying of the BSA-loaded alginate microparticles (BSA/ALG MPs) resulted in an encapsulation efficiency of 50%, and those MPs were then coated with chitosan (BSA/ALG/CHI MPs). Optical and scanning electron microscopy, zeta potential analysis, and Fourier transform infrared spectroscopy were used to characterize these MPs. The BSA encapsulation parameters were applied to ALG/CHI MPs loaded with pIL-1β, which were not cytotoxic to porcine fibroblasts but had enhanced bio-activity over unencapsulated pIL-1β. The chitosan layer of the BSA/ALG/CHI MPs prevented burst release and facilitated sustained release of pIL-1β for at least 28 days. In conclusion, BSA/ALG/CHI MPs prepared as a carrier for pIL-1β may be used as an adjuvant for the formulation of pig vaccines.
Collapse
|