1
|
Shimizu S, Matubayasi N. Temperature Dependence of Hydrotropy. J Phys Chem B 2024. [PMID: 39466718 DOI: 10.1021/acs.jpcb.4c04619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The solubility of hydrophobic solutes increases dramatically with the temperature when hydrotropes are added to water. In this paper, the mechanism of this well-known observation will be explained via statistical thermodynamics through (i) enhanced enthalpy-hydrotrope number correlation locally (around the solute) that promotes the temperature dependence and (ii) hydrotrope self-association in the bulk solution that suppresses the temperature dependence. The contribution from (i), demonstrated to be dominant for urea as a hydrotrope, signifies the weakening of interaction energies around the solute (local) than in the bulk that accompanies incoming hydrotrope molecules. Thus, studying hydrotropic solubilization along the temperature and hydrotrope concentration provides complementary information on the local-bulk difference: the local accumulation of hydrotropes around the solute, driven by the enhanced local hydrotrope self-association, is also accompanied by the overall local weakening of energetic interactions, reflecting the fluctuational nature of hydrotrope association and the mediating role of water molecules.
Collapse
Affiliation(s)
- Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
2
|
Dos Santos KA, Chaves LL, Nadvorny D, de La Roca Soares MF, Sobrinho JLS. Exploring Co-Amorphous Formulations Of Nevirapine: Insights From Computational, Thermal, And Solubility Analyses. AAPS PharmSciTech 2024; 25:214. [PMID: 39266781 DOI: 10.1208/s12249-024-02932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
This study aimed to assess the formation of nevirapine (NVP) co-amorphs systems (CAM) with different co-formers (lamivudine-3TC, citric acid-CAc, and urea) through combined screening techniques as computational and thermal studies, solubility studies; in addition to develop and characterize suitable NVP-CAM. NVP-CAM were obtained using the quench-cooling method, and characterized by differential scanning calorimetry (DSC), X-ray diffractometry (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and polarized light microscopy (PLM), in addition to in vitro dissolution in pH 6.8. The screening results indicated intermolecular interactions occurring between NVP and 3TC; NVP and CAc, where shifts in the melting temperature of NVP were verified. The presence of CAc impacted the NVP equilibrium solubility, due to hydrogen bonds. DSC thermograms evidenced the reduction and shifting of the endothermic peaks of NVP in the presence of its co-formers, suggesting partial miscibility of the compounds. Amorphization was proven by XRD and PLM assays. In vitro dissolution study exhibited a significant increase in solubility and dissolution efficiency of NVP-CAM compared to free NVP. Combined use of screening studies was useful for the development of stable and amorphous NVP-CAM, with increased NVP solubility, making CAM promising systems for combined antiretroviral therapy.
Collapse
Affiliation(s)
- Kayque Almeida Dos Santos
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Luíse Lopes Chaves
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Daniela Nadvorny
- Postgraduate Program in Pharmaceutical Sciences, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Mônica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - José Lamartine Soares Sobrinho
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
3
|
Nainwal N, Jawla S, Singh R, Banerjee S, Saharan VA. Solubility-permeability interplay of hydrotropic solubilization of piroxicam. Drug Dev Ind Pharm 2024; 50:481-494. [PMID: 38717346 DOI: 10.1080/03639045.2024.2349576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/25/2024] [Indexed: 05/15/2024]
Abstract
OBJECTIVES In this research paper, an investigation has been made to assess the simultaneous effect of a solubility enhancement approach, i.e., hydrotropy on the solubility and apparent permeability of piroxicam. The solubility of piroxicam (PRX) a BCS (biopharmaceutics classification system) class II drug has been increased using a mixed hydrotropy approach. This study is based on identifying the pattern of solubility-permeability interplay and confirming whether every solubility gain results in a concomitant decrease in permeability or permeability remains unaffected. METHOD Solid dispersions of PRX were formulated using two hydrotropes, viz., sodium benzoate (SB) and piperazine (PP) by solvent evaporation method. A comprehensive 32factorial design was employed to study the effect of hydrotropes on the solubility and permeability of PRX. Subsequently, PRX tablets containing these solid dispersions were formulated and evaluated. KEY FINDINGS SB and PP displayed a significant increase in the solubility of PRX ranging from 0.99 to 2.21 mg/mL for F1-F9 batches attributed to the synergistic effect of hydrotropes. However, there is a reduction in PRX permeability with increasing hydrotrope levels. The decline in permeability was notably less pronounced compared to the simultaneous rise in aqueous solubility of PRX. CONCLUSION An evident tradeoff between permeability and solubility emerged through the mixed hydrotropic solubilization for PRX. As PRX has generally higher intrinsic permeability, it has been assumed that this permeability loss will not affect the overall absorption of PRX. However, it may affect the absorption of drugs with limited permeability. Therefore, solubility permeability interplay should be investigated during solubility enhancement.
Collapse
Affiliation(s)
- Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, Uttar Pradesh, India
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Sunil Jawla
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, Uttar Pradesh, India
- Geeta Institute of Pharmacy, Geeta University, Panipat, Haryana, India
| | - Ranjit Singh
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, Uttar Pradesh, India
| | - Surojit Banerjee
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Vikas Anand Saharan
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Guwahati, Assam, India
| |
Collapse
|
4
|
Sirvi A, Jadhav K, Sangamwar AT. Enabling superior drug loading in lipid-based formulations with lipophilic salts for a brick dust molecule: Exploration of lipophilic counterions and in vitro-in vivo evaluation. Int J Pharm 2024; 656:124108. [PMID: 38604540 DOI: 10.1016/j.ijpharm.2024.124108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Lipid-based formulations (LbFs) are an extensively used approach for oral delivery of poorly soluble drug compounds in the form of lipid suspension and lipid solution. However, the high target dose and inadequate lipid solubility limit the potential of brick dust molecules to be formulated as LbFs. Thus, the complexation of such molecules with a lipophilic counterion can be a plausible approach to improve the solubility in lipid-based solutions via reducing drug crystallinity and polar surface area. The study aimed to enhance drug loading in lipid solution for Nilotinib (Nil) through complexation or salt formation with different lipophilic counterions. We synthesized different lipophilic salts/ complexes via metathesis reactions and confirmed their formation by 1H NMR and FTIR. Docusate-based lipophilic salt showed improved solubility in medium-chain triglycerides (∼7 to 7.5-fold) and long-chain triglycerides (∼30 to 35-fold) based lipids compared to unformulated crystalline Nil. The increased lipid solubility could be attributed to the reduction in drug crystallinity which was further confirmed by the PXRD and DSC. Prototype LbFs were prepared to evaluate drug loading and their physicochemical characteristics. The findings suggested that structural features of counterion including chain length and lipophilicity affect the drug loading in LbF. In addition, physical stability testing of formulations was performed, inferring that aliphatic sulfate-based LbFs were stable with no sign of drug precipitation or salt disproportionation. An in vitro lipolysis-permeation study revealed that the primary driver of absorptive flux is the solubilization of the drug and reduced amount of lipid. Further, the in vivo characterization was conducted to measure the influence of increased drug load on oral bioavailability. Overall, the results revealed enhanced absorption of lipophilic salt-based LbF over unformulated crystalline Nil and conventional LbF (drug load equivalent to equilibrium solubility) which supports the idea that lipophilic salt-based LbF enhances drug loading, and supersaturation-mediated drug solubilization, unlocking the full potential of LbF.
Collapse
Affiliation(s)
- Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Karan Jadhav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India.
| |
Collapse
|
5
|
Fine-Shamir N, Dahan A. Ethanol-based solubility-enabling oral drug formulation development: Accounting for the solubility-permeability interplay. Int J Pharm 2024; 653:123893. [PMID: 38346600 DOI: 10.1016/j.ijpharm.2024.123893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
The aim of the current work was to investigate the key factors that govern the success/failure of an ethanol-based solubility-enabling oral drug formulation, including the effects of the ethanol on the solubility of the drug, the permeability across the intestinal membrane, the drug's dissolution in the aqueous milieu of the gastrointestinal tract (GIT), and the resulting solubility-permeability interplay. The concentration-dependent effects of ethanol-based vehicles on the solubility, the in-vitro Caco-2 permeability, the in-vivo rat permeability, and the biorelevant dissolution of the BCS class II antiepileptic drug carbamazepine were studied, and a predictive model describing the solubility-permeability relationship was developed. Significant concentration-dependent solubility increase of CBZ was obtained with increasing ethanol levels, that was accompanied by permeability decrease, both in Caco-2 and in rat perfusion studies, demonstrating a tradeoff between the increased solubility afforded by the ethanol and a concomitant permeability decrease. When ethanol absorption was accounted for, an excellent agreement was achieved between the predicted permeability and the experimental data. Biorelevant dissolution studies revealed that minimal ethanol levels of 30 % and 50 % were needed to fully dissolve 1 and 5 mg CBZ dose respectively, with no drug precipitation.In conclusion, key factors to be accounted for when developing ethanol-based formulation include the drug's solubility, permeability, the solubility-permeability interplay, and the drug dose intended to be delivered. Only the minimal amount of ethanol sufficient to solubilize the drug dose throughout the GIT should be used, and not more than that, to avoid unnecessarily permeability loss, and to maximize overall drug absorption.
Collapse
Affiliation(s)
- Noa Fine-Shamir
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
6
|
Fine-Shamir N, Dahan A. Solubility-enabling formulations for oral delivery of lipophilic drugs: considering the solubility-permeability interplay for accelerated formulation development. Expert Opin Drug Deliv 2024; 21:13-29. [PMID: 38124383 DOI: 10.1080/17425247.2023.2298247] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Tackling low water solubility of drug candidates is a major challenge in today's pharmaceutics/biopharmaceutics, especially by means of modern solubility-enabling formulations. However, drug absorption from these formulations oftentimes remains unchanged or even decreases, despite substantial solubility enhancement. AREAS COVERED In this article, we overview the simultaneous effects of the formulation on the solubility and the apparent permeability of the drug, and analyze the contribution of this solubility-permeability interplay to the success/failure of the formulation to increase the overall absorption and bioavailability. Three different patterns of interplay were identified: (1) solubility-permeability tradeoff in which every solubility gain comes with a price of concomitant permeability loss; (2) an advantageous interplay pattern in which the permeability remains unchanged alongside the solubility gain; and (3) an optimal interplay pattern in which the formulation increases both the solubility and the permeability. Passive vs. active intestinal permeability considerations in the context of the solubility-permeability interplay are also thoroughly discussed. EXPERT OPINION The solubility-permeability interplay pattern of a given formulation has a critical effect on its overall success/failure, and hence, taking into account both parameters in solubility-enabling formulation development is prudent and highly recommended.
Collapse
Affiliation(s)
- Noa Fine-Shamir
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
7
|
Zalcman N, Larush L, Ovadia H, Charbit H, Magdassi S, Lavon I. Intracranial Assessment of Androgen Receptor Antagonists in Mice Bearing Human Glioblastoma Implants. Int J Mol Sci 2023; 25:332. [PMID: 38203506 PMCID: PMC10779261 DOI: 10.3390/ijms25010332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The median survival time of patients with an aggressive brain tumor, glioblastoma, is still poor due to ineffective treatment. The discovery of androgen receptor (AR) expression in 56% of cases offers a potential breakthrough. AR antagonists, including bicalutamide and enzalutamide, induce dose-dependent cell death in glioblastoma and glioblastoma-initiating cell lines (GIC). Oral enzalutamide at 20 mg/kg reduces subcutaneous human glioblastoma xenografts by 72% (p = 0.0027). We aimed to further investigate the efficacy of AR antagonists in intracranial models of human glioblastoma. In U87MG intracranial models, nude mice administered Xtandi (enzalutamide) at 20 mg/kg and 50 mg/kg demonstrated a significant improvement in survival compared to the control group (p = 0.24 and p < 0.001, respectively), confirming a dose-response relationship. Additionally, we developed a newly reformulated version of bicalutamide, named "soluble bicalutamide (Bic-sol)", with a remarkable 1000-fold increase in solubility. This reformulation significantly enhanced bicalutamide levels within brain tissue, reaching 176% of the control formulation's area under the curve. In the U87MG intracranial model, both 2 mg/kg and 4 mg/kg of Bic-sol exhibited significant efficacy compared to the vehicle-treated group (p = 0.0177 and p = 0.00364, respectively). Furthermore, combination therapy with 8 mg/kg Bic-sol and Temozolomide (TMZ) demonstrated superior efficacy compared to either Bic-sol or TMZ as monotherapies (p = 0.00706 and p = 0.0184, respectively). In the ZH-161 GIC mouse model, the group treated with 8 mg/kg Bic-sol as monotherapy had a significantly longer lifespan than the groups treated with TMZ or the vehicle (p < 0.001). Our study demonstrated the efficacy of androgen receptor antagonists in extending the lifespan of mice with intracranial human glioblastoma, suggesting a promising approach to enhance patient outcomes in the fight against this challenging disease.
Collapse
Affiliation(s)
- Nomi Zalcman
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.Z.)
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Liraz Larush
- Casali Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (L.L.); (S.M.)
| | - Haim Ovadia
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Hanna Charbit
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.Z.)
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Shlomo Magdassi
- Casali Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (L.L.); (S.M.)
| | - Iris Lavon
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.Z.)
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| |
Collapse
|
8
|
De Gaetano F, Cristiano MC, Paolino D, Celesti C, Iannazzo D, Pistarà V, Iraci N, Ventura CA. Bicalutamide Anticancer Activity Enhancement by Formulation of Soluble Inclusion Complexes with Cyclodextrins. Biomolecules 2022; 12:1716. [PMID: 36421730 PMCID: PMC9687945 DOI: 10.3390/biom12111716] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 08/27/2023] Open
Abstract
Bicalutamide (BCL) is a nonsteroidal antiandrogen drug that represents an alternative to castration in the treatment of prostate cancer, due to its relatively long half-life and tolerable side effects. However, it possesses a very low water solubility that can affect its oral bioavailability. In this work, we developed inclusion complexes of BCL with the highly soluble hydroxypropyl-β-cyclodextrin (HP-β-CyD) and sulfobutylether-β-cyclodextrin (SBE-β-CyD) to increase the water solubility and anticancer activity of BCL. The inclusion complexes were prepared using the freeze-drying method and were then characterized in a solid state via differential scanning calorimetry and X-ray analysis and in solution via phase-solubility studies and UV-vis and NMR spectroscopy. The BCL/HP-β-CyD and BCL/SBE-β-CyD inclusion complexes were amorphous and rapidly dissolved in water. Both the 1H-NMR spectra and molecular modeling studies confirmed the penetration of the 2-(trifluoromethyl)benzonitrile ring of BCL within the cavity of both cyclodextrins (CyDs). Due to the consistent improvement of the water solubility of BCL, the inclusion complexes showed higher antiproliferative activity toward the human prostate androgen-independent cell lines, DU-145 and PC-3, with respect to free BCL. These results demonstrate the ability of HP-β-CyD and SBE-β-CyD to complex BCL, permitting the realization of liquid formulations with potentially high oral bioavailability and/or possible parenteral administration.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Maria Chiara Cristiano
- Department of Clinical and Experimental Medicine, University ‘Magna Græcia’ of Catanzaro, I-88100 Catanzaro, Italy
| | - Donatella Paolino
- Department of Clinical and Experimental Medicine, University ‘Magna Græcia’ of Catanzaro, I-88100 Catanzaro, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, I-98125 Messina, Italy
| | - Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy
| | - Venerando Pistarà
- Department of Pharmaceutical and Health Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| |
Collapse
|
9
|
Carbamazepine Therapy After Bariatric Surgery: Eight Sleeve Gastrectomy Cases and Review of the Literature. Obes Surg 2022; 32:3481-3486. [PMID: 35994180 DOI: 10.1007/s11695-022-06247-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Bariatric surgery modifies the anatomy and physiology of the gastrointestinal tract. Carbamazepine (CBZ) is an anticonvulsant with multiple neuropsychiatric indications. Given CBZ physicochemical properties and narrow therapeutic index, bariatric surgery may potentially introduce clinically significant changes in CBZ oral absorption and bioavailability. In this communication, we describe eight patients undergoing sleeve gastrectomy (SG) and treated with CBZ, including therapeutic drug monitoring (TDM) and dosage adjustments at different timeframes before vs. after the surgery (< 3, 4-6, and 7-12 months post-SG), as well as clinical outcomes. We then provide a review of the available literature on CBZ therapy among bariatric patients, concluding with a mechanistic analysis of the results. Four of the eight patients presented with decreased post-SG CBZ levels, and two of them also experienced significant worsening of their previously well-controlled disease. Overall, altered CBZ levels are likely for at least a year after SG. Clinical recommendations include consultation with a clinical pharmacist, careful clinical monitoring, and periodic TDM after (vs. before) the bariatric surgery.
Collapse
|
10
|
Charoenchaitrakool M, Roubroum T, Sudsakorn K. Processing of a novel mefenamic acid−paracetamol−nicotinamide cocrystal using gas anti-solvent process. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Preparation, Characterization, Solubility, and Antioxidant Capacity of Ellagic Acid-Urea Complex. MATERIALS 2022; 15:ma15082836. [PMID: 35454528 PMCID: PMC9032788 DOI: 10.3390/ma15082836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022]
Abstract
Ellagic acid (EA), a natural polyphenol found in berries, has high antioxidant capacity. This study aimed to improve EA solubility by complex formation with urea (UR) using solvent evaporation method and evaluate its solubility, antioxidant capacity, and physical properties. The solubility test (25 °C, 72 h) showed that the solubility of EVP (EA/UR = 1/1) was approximately two-fold higher than that of EA (7.13 µg/mL versus 3.99 µg/mL). Moreover, the IC50 values of EA and EVP (EA/UR = 1/1) (1.50 µg/mL and 1.30 µg/mL, respectively) showed higher antioxidant capacity of EVP than that of EA. DSC analysis revealed that the UR peak at 134 °C disappeared, and a new endothermic peak was observed at approximately 250 °C for EVP (EA/UR = 1/1). PXRD measurements showed that the characteristic peaks of EA at 2θ = 12.0° and 28.0° and of UR at 2θ = 22.0°, 24.3°, and 29.1° disappeared and that new peaks were identified at 2θ = 10.6°, 18.7°, and 26.8° for EVP (EA/UR = 1/1). According to 2D NOESY NMR spectroscopy, cross-peaks were observed between the -NH and -OH groups, suggesting intermolecular interactions between EA and UR. Therefore, complexation was confirmed in EA/UR = 1/1 prepared by solvent evaporation, suggesting that it contributed to the improvement in solubility and antioxidant capacity of EA.
Collapse
|
12
|
Patel AD, Desai MA. Progress in the field of hydrotropy: mechanism, applications and green concepts. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Sustainability and greenness are the concepts of growing interest in the area of research as well as industries. One of the frequently encountered challenges faced in research and industrial fields is the solubility of the hydrophobic compound. Conventionally organic solvents are used in various applications; however, their contribution to environmental pollution, the huge energy requirement for separation and higher consumption lead to unsustainable practice. We require solvents that curtail the usage of hazardous material, increase the competency of mass and energy and embrace the concept of recyclability or renewability. Hydrotropy is one of the approaches for fulfilling these requirements. The phenomenon of solubilizing hydrophobic compound using hydrotrope is termed hydrotropy. Researchers of various fields are attracted to hydrotropy due to its unique physicochemical properties. In this review article, fundamentals about hydrotropes and various mechanisms involved in hydrotropy have been discussed. Hydrotropes are widely used in separation, heterogeneous chemical reactions, natural product extraction and pharmaceuticals. Applications of hydrotropes in these fields are discussed at length. We have examined the significant outcomes and correlated them with green engineering and green chemistry principles, which could give an overall picture of hydrotropy as a green and sustainable approach for the above applications.
Collapse
Affiliation(s)
- Akash D. Patel
- Department of Chemical Engineering , Sardar Vallabhbhai National Institute of Technology , Surat 395007 , Gujarat , India
| | - Meghal A. Desai
- Department of Chemical Engineering , Sardar Vallabhbhai National Institute of Technology , Surat 395007 , Gujarat , India
| |
Collapse
|
13
|
Understanding the relationship between solubility and permeability of γ-cyclodextrin-based systems embedded with poorly aqueous soluble benznidazole. Int J Pharm 2022; 616:121487. [DOI: 10.1016/j.ijpharm.2022.121487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/23/2022]
|
14
|
Ramachandran G, Sudheesh MS. Role of Permeability on the Biopredictive Dissolution of Amorphous Solid Dispersions. AAPS PharmSciTech 2021; 22:243. [PMID: 34595565 DOI: 10.1208/s12249-021-02125-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
An ideal dissolution test for amorphous solid dispersions (ASDs) should reflect physicochemical, physiological, and hydrodynamic conditions which accurately represent in vivo dissolution. However, this is confounded by the evolution of different molecular and colloidal species during dissolution, generating a supersaturated state of the drug. The supersaturated state of a drug is thermodynamically unstable which drives the process of precipitation resulting in a loss of solubility advantage. Maintaining a supersaturated state of the drug with the help of precipitation inhibiting excipients is a key component in the design of ASDs. Therefore, a biopredictive dissolution test is critical for proper risk assessment during the development of an optimal ASD formulation. One of the overlooked components of biopredictive dissolution is the role of drug permeability. The kinetic changes in the phase behavior of a drug during dissolution of ASDs are influenced by drug permeability across a membrane. Conventionally, drug dissolution and permeation are analyzed separately although they occur simultaneously in vivo. The kinetic phase changes occurring during dissolution of ASDs can influence the thermodynamic activity and membrane flux of a drug. The present review evaluates the feasibility, predictability, and practicability of permeability/dissolution for the optimal development and risk assessment of ASD formulations.
Collapse
|
15
|
Yang X, Tang Y, Wang M, Wang Y, Wang W, Pang M, Xu Y. Co-delivery of methotrexate and nicotinamide by cerosomes for topical psoriasis treatment with enhanced efficacy. Int J Pharm 2021; 605:120826. [PMID: 34171426 DOI: 10.1016/j.ijpharm.2021.120826] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/30/2021] [Accepted: 06/20/2021] [Indexed: 12/23/2022]
Abstract
Psoriasis is an immune-mediated skin disorder that affects populations worldwide. Methotrexate (MTX) is a cytotoxic drug with powerful anti-proliferative and anti-inflammatory effects that has gained prominence in treating inflammatory diseases including psoriasis. However, low solubility and side effects through oral administration hinder its systemic application. In this study, we developed a novel niosomes based on ceramide (cerosomes) to co-deliver MTX and nicotinamide (NIC), i.e., MTX/NIC cerosomes, for topically treating psoriasis with the aim to enhancing the efficacy and reducing the toxicity. NIC significantly solublized MTX by forming hydrogen bonds with MTX. In vitro and in vivo permeation studies showed that the cerosomes significantly promoted drug permeation through and retention in the skin, and the enhancing mechanism was clarified by Fourier transform infraredand Raman spectroscopy. MTX/NIC cerosomes exhibited strong anti-proliferation effect on lipopolysaccharide- irritated HaCaT cells by arresting the cell cycle at S phase and inducing apoptosis. Importantly, compared to MTX oral administration, topical application of MTX/NIC cerosomes on imiquimod (IMQ)-induced psoriatic mouse model exhibited a superior performance in ameliorating skin lesions, reducing spleen index and epidermal thickness, and downregulating the mRNA expression levels of proinflammatory cytokines including TNFα, IL-23, IL-17A, IL-6, IL-1β, and IL-22. Taken together, MTX/NIC cerosomes is a promising approach for psoriasis topical treatment.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yujia Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Meng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixuan Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenxiu Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Meilu Pang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuehong Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
16
|
Paul R, Chattaraj KG, Paul S. Role of Hydrotropes in Sparingly Soluble Drug Solubilization: Insight from a Molecular Dynamics Simulation and Experimental Perspectives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4745-4762. [PMID: 33853331 DOI: 10.1021/acs.langmuir.1c00169] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Drug molecules' therapeutic efficacy depends on their bioavailability and solubility. But more than 70% of the formulated drug molecules show limited effectiveness due to low water solubility. Thus, the water solubility enhancement technique of drug molecules becomes the need of time. One such way is hydrotropy. The solubilizing agent of a hydrophobic molecule is generally referred to as a hydrotrope, and this phenomenon is termed hydrotropy. This method has high industrial demand, as hydrotropes are noninflammable, readily available, environmentally friendly, quickly recovered, cost-effective, and not involved in solid emulsification. The endless importance of hydrotropes in industry (especially in the pharmaceutical industry) motivated us to prepare a feature article with a clear introduction, detailed mechanistic insights into the hydrotropic solubilization of drug molecules, applications in pharma industries, and some future directions of this technique. Thus, we believe that this feature article will become an adequate manual for the pharmaceutical researchers who want to explore all of the past perspectives of the hydrotropic action of hydrotropes in pharmaceutics.
Collapse
Affiliation(s)
- Rabindranath Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | | | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
17
|
Sintra TE, Abranches DO, Benfica J, Soares BP, Ventura SPM, Coutinho JAP. Cholinium-based ionic liquids as bioinspired hydrotropes to tackle solubility challenges in drug formulation. Eur J Pharm Biopharm 2021; 164:86-92. [PMID: 33895294 DOI: 10.1016/j.ejpb.2021.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/04/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
Hydrotropy is a well-established strategy to enhance the aqueous solubility of hydrophobic drugs, facilitating their formulation for oral and dermal delivery. However, most hydrotropes studied so far possess toxicity issues and are inefficient, with large amounts being needed to achieve significant solubility increases. Inspired by recent developments in the understanding of the mechanism of hydrotropy that reveal ionic liquids as powerful hydrotropes, in the present work the use of cholinium vanillate, cholinium gallate, and cholinium salicylate to enhance the aqueous solubility of two model drugs, ibuprofen and naproxen, is investigated. It is shown that cholinium vanillate and cholinium gallate are able to increase the solubility of ibuprofen up to 500-fold, while all three ionic liquids revealed solubility enhancements up to 600-fold in the case of naproxen. Remarkably, cholinium salicylate increases the solubility of ibuprofen up to 6000-fold. The results obtained reveal the exceptional hydrotropic ability of cholinium-based ionic liquids to increase the solubility of hydrophobic drugs, even at diluted concentrations (below 1 mol·kg-1), when compared with conventional hydrotropes. These results are especially relevant in the field of drug formulation due to the bio-based nature of these ionic liquids and their low toxicity profiles. Finally, the solubility mechanism in these novel hydrotropes is shown to depend on synergism between both amphiphilic ions.
Collapse
Affiliation(s)
- Tânia E Sintra
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Dinis O Abranches
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jordana Benfica
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruna P Soares
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sónia P M Ventura
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João A P Coutinho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
18
|
Li P, Peng J, Li Y, Gong L, Lv Y, Liu H, Zhang T, Yang S, Liu H, Li J, Liu L. Pharmacokinetics, Bioavailability, Excretion and Metabolism Studies of Akebia Saponin D in Rats: Causes of the Ultra-Low Oral Bioavailability and Metabolic Pathway. Front Pharmacol 2021; 12:621003. [PMID: 33935711 PMCID: PMC8082176 DOI: 10.3389/fphar.2021.621003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/15/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Akebia saponin D (ASD) has a variety of biological activities and great medicinal potential, but its oral bioavailability is so low as to limit its development. Its pharmacokinetic profiles and excretion and metabolism in vivo have not been fully elucidated. This study was an attempt in this area. Methods: A simple LC-MS/MS method to simultaneously quantify ASD and its metabolites M1∼M5 in rat plasma, feces, urine and bile was established with a negative ESI model using dexketoprofen as the internal standard. Meanwhile, the UPLC-HR/MS system was used to screen all possible metabolites in the urine, feces and bile of rats, as compared with blank samples collected before administration. Absolute quantitative analysis was for M0, M3, M4, and M5, while semi-quantitative analysis was for M1, M2, and Orbitrap data. Results: The AUC0-t values after intravenous administration of 10 mg/kg and intragastrical administration of 100 mg/kg ASD were 19.05 ± 8.64 and 0.047 ± 0.030 h*μg/ml respectively. The oral bioavailability was determined to be extremely low (0.025%) in rats. The exposure of M4 and M5 in the oral group was higher than that of M0 in the terminal phase of the plasma concentration time profile, and ASD was stable in the liver microsome incubation system of rats, but metabolism was relatively rapid during anaerobic incubation of intestinal contents of rats, suggesting that the low bioavailability of ASD might have been attributed to the poor gastrointestinal permeability and extensive pre-absorption degradation rather than to the potent first pass metabolism. This assertion was further verified by a series of intervention studies, where improvement of lipid solubility and intestinal permeability as well as inhibition of intestinal flora increased the relative bioavailability to different extents without being changed by P-gp inhibition. After intravenous administration, the cumulative excretion rates of ASD in the urine and bile were 14.79 ± 1.87%, and 21.76 ± 17.61% respectively, but only 0.011% in feces, suggesting that the urine and bile were the main excretion pathways and that there was a large amount of biotransformation in the gastrointestinal tract. Fifteen possible metabolites were observed in the urine, feces and bile. The main metabolites were ASD deglycosylation, demethylation, dehydroxylation, decarbonylation, decarboxylation, hydroxylation, hydroxymethylation, hydroxyethylation and hydrolysis. Conclusion: The pharmacokinetics, bioavailability, metabolism and excretion of ASD in rats were systematically evaluated for the first time in this study. It has been confirmed that the ultra-low oral bioavailability is due to poor gastrointestinal permeability, extensive pre-absorption degradation and biotransformation. ASD after iv administration is not only excreted by the urine and bile, but possibly undergoes complex metabolic elimination.
Collapse
Affiliation(s)
- Pengfei Li
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun Peng
- Guollence Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Yuexin Li
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi City, China
| | - Lili Gong
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yali Lv
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - He Liu
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Tianhong Zhang
- Guollence Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Song Yang
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hongchuan Liu
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jinglai Li
- Guollence Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Lihong Liu
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Peptidomimetics Therapeutics for Retinal Disease. Biomolecules 2021; 11:biom11030339. [PMID: 33668179 PMCID: PMC7995992 DOI: 10.3390/biom11030339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/11/2021] [Accepted: 02/20/2021] [Indexed: 12/28/2022] Open
Abstract
Ocular disorders originating in the retina can result in a partial or total loss of vision, making drug delivery to the retina of vital importance. However, effectively delivering drugs to the retina remains a challenge for ophthalmologists due to various anatomical and physicochemical barriers in the eye. This review introduces diverse administration routes and the accordant pharmacokinetic profiles of ocular drugs to aid in the development of safe and efficient drug delivery systems to the retina with a focus on peptidomimetics as a growing class of retinal drugs, which have great therapeutic potential and a high degree of specificity. We also discuss the pharmacokinetic profiles of small molecule drugs due to their structural similarity to small peptidomimetics. Lastly, various formulation strategies are suggested to overcome pharmacokinetic hurdles such as solubility, retention time, enzymatic degradation, tissue targeting, and membrane permeability. This knowledge can be used to help design ocular delivery platforms for peptidomimetics, not only for the treatment of various retinal diseases, but also for the selection of potential peptidomimetic drug targets.
Collapse
|
20
|
Experimental and theoretical studies on the Sulfamethazine-Urea and Sulfamethizole-Urea solid-liquid equilibria. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Fine-Shamir N, Beig A, Dahan A. Adequate formulation approach for oral chemotherapy: Etoposide solubility, permeability, and overall bioavailability from cosolvent- vs. vitamin E TPGS-based delivery systems. Int J Pharm 2021; 597:120295. [PMID: 33497706 DOI: 10.1016/j.ijpharm.2021.120295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
Injectable-to-oral conversions for anticancer drugs represent an important trend. The goal of this research was to investigate the suitability of formulation approaches for anticancer oral drug delivery, aiming to reveal mechanistic insights that may guide oral chemotherapy development. TPGS vs. PEG-400 were studied as oral formulations for the anticancer drug etoposide, accounting for drug solubility, biorelevant dissolution, permeability, solubility-permeability interplay, and overall bioavailability. Increased etoposide solubility was demonstrated with both excipients. Biorelevant dissolution revealed that TPGS or PEG-400, but not aqueous suspension, allowed complete dissolution of the entire drug dose. Both TPGS and PEG-400 resulted in decreased in-vitro etoposide permeability across artificial membrane, i.e. solubility-permeability tradeoff. While PEG-400 resulted in the same solubility-permeability tradeoff also in-vivo, TPGS showed the opposite trend: the in-vivo permeability of etoposide was markedly increased in the presence of TPGS. This increased permeability was similar to the drug permeability under P-gp inhibition. Rat PK study demonstrated significantly higher etoposide bioavailability from TPGS vs. PEG-400 or suspension (AUC of 72, 41, and 26 µg·min/mL, respectively). All in all, TPGS-based delivery system allows overcoming the solubility-permeability tradeoff, increasing systemic etoposide exposure. Since poor solubility and strong efflux are common to many anticancer agents, this work can aid in the development of better oral delivery approach for chemotherapeutic drugs.
Collapse
Affiliation(s)
- Noa Fine-Shamir
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Avital Beig
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
22
|
Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res 2020; 10:354-367. [PMID: 31788762 PMCID: PMC7097340 DOI: 10.1007/s13346-019-00691-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viral infections affect three to five million patients annually. While commonly used antivirals often show limited efficacy and serious adverse effects, herbal extracts have been in use for medicinal purposes since ancient times and are known for their antiviral properties and more tolerable side effects. Thus, naturally based pharmacotherapy may be a proper alternative for treating viral diseases. With that in mind, various pharmaceutical formulations and delivery systems including micelles, nanoparticles, nanosuspensions, solid dispersions, microspheres and crystals, self-nanoemulsifying and self-microemulsifying drug delivery systems (SNEDDS and SMEDDS) have been developed and used for antiviral delivery of natural products. These diverse technologies offer effective and reliable delivery of medicinal phytochemicals. Given the challenges and possibilities of antiviral treatment, this review provides the verified data on the medicinal plants and related herbal substances with antiviral activity, as well as applied strategies for the delivery of these plant extracts and biologically active phytochemicals. Graphical Abstract.
Collapse
Affiliation(s)
- Shimon Ben-Shabat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| | | | - Daniel Porat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Arik Dahan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
23
|
Omori M, Watanabe T, Uekusa T, Oki J, Inoue D, Sugano K. Effects of Coformer and Polymer on Particle Surface Solution-Mediated Phase Transformation of Cocrystals in Aqueous Media. Mol Pharm 2020; 17:3825-3836. [PMID: 32870691 DOI: 10.1021/acs.molpharmaceut.0c00587] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The purpose of the present study was to investigate the effect of the coformer difference on particle surface solution-mediated phase transformation (PS-SMPT) during cocrystal particle dissolution in aqueous media in the absence and presence of polymers. SMPT can occur either in the bulk phase or at the particle surface because drug molecules can be supersaturated at the dissolving cocrystal surface, as well as in the bulk phase. Previously, bulk phase SMPT has been primarily investigated in formulation development. However, little is known about the effects of coformers and polymers on PS-SMPT of cocrystals. In this study, six carbamazepine (CBZ) cocrystals were used as model cocrystals (malonic acid (MAL), succinic acid (SUC), glutaric acid (GLA), adipic acid (ADP), saccharin (SAC), and nicotinamide (NCT); nonsink dissolution tests were performed with or without a precipitation inhibitor (hydroxypropyl methylcellulose (HPMC)) at pH 6.5. The residual particles were analyzed by powder X-ray diffraction, differential scanning calorimetry, polarized light microscopy (PLM), and scanning electron microscopy. Real-time PLM was used to directly observe rapid PS-SMPT. In the absence of HPMC, supersaturation was not observed in the bulk phase for all cocrystals. All cocrystals rapidly transformed to CBZ dihydrate aggregates via PS-SMPT (mostly within 1 min). In contrast, in the presence of 0.1% HPMC, supersaturation was observed for CBZ-SUC, CBZ-ADP, CBZ-SAC, and CBZ-NCT but not for CBZ-MAL and CBZ-GLA. The cocrystals with lower solubility coformers tended to induce higher supersaturation in the bulk phase. The PS-SMPT of CBZ-SUC, CBZ-ADP, and CBZ-SAC was slowed down by HPMC. By suppressing PS-SMPT, the cocrystals exhibited its supersaturation potential, depending on the properties of each coformer. To take advantage of the supersaturation potential of cocrystals to improve oral drug absorption, it is important to suppress particle surface SMPT in addition to bulk phase SMPT.
Collapse
Affiliation(s)
- Maaya Omori
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Tomohiro Watanabe
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Taiga Uekusa
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Jumpei Oki
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Daisuke Inoue
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
24
|
Nainwal N, Singh R, Jawla S, Saharan VA. The Solubility-Permeability Interplay for Solubility-Enabling Oral Formulations. Curr Drug Targets 2020; 20:1434-1446. [PMID: 31333138 DOI: 10.2174/1389450120666190717114521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 02/01/2023]
Abstract
The Biopharmaceutical classification system (BCS) classifies the drugs based on their intrinsic solubility and intestinal permeability. The drugs with good solubility and intestinal permeability have good bioavailability. The drugs with poor solubility and poor permeability have solubility dependent and permeability dependent bioavailability, respectively. In the current pharmaceutical field, most of the drugs have poor solubility. To solve the problem of poor solubility, various solubility enhancement approaches have been successfully used. The effects of these solubility enhancing approaches on the intestinal permeability of the drugs are a matter of concern, and must not be overlooked. The current review article focuses on the effect of various solubility enhancing approaches viz. cyclodextrin, surfactant, cosolvent, hydrotropes, and amorphous solid dispersion, on the intestinal permeability of drugs. This article will help in the designing of the optimized formulations having balanced solubility enhancement without affecting the permeability of drugs.
Collapse
Affiliation(s)
- Nidhi Nainwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, India
| | - Ranjit Singh
- School of Pharmacy, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University Gangoh, Saharanpur, India
| | - Sunil Jawla
- School of Pharmacy, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University Gangoh, Saharanpur, India
| | - Vikas Anand Saharan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, India
| |
Collapse
|
25
|
Alelwani W, Elmorsy E, Kattan SW, Babteen NA, Alnajeebi AM, Al-Ghafari A, Carter WG. Carbamazepine induces a bioenergetics disruption to microvascular endothelial cells from the blood-brain barrier. Toxicol Lett 2020; 333:184-191. [PMID: 32805338 DOI: 10.1016/j.toxlet.2020.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/15/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Carbamazepine (CBZ) is a widely employed anti-seizure medication that crosses the blood-brain barrier (BBB) to exert its anti-convulsant action. The effects of CBZ on components of the BBB have yet to be completely delineated. Hence the current study evaluated the effects of CBZ upon mitochondrial functionality of BBB-derived microvascular endothelial cells isolated from Albino rats. The influence of CBZ on cell viability and barrier functions were evaluated by 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), lactate dehydrogenase, and electrophysiological assays over a drug concentration range of 0.1-1000 μM. Bioenergetics effects were measured via ATP production, mitochondrial complexes I and III activities, lactate production, and oxygen consumption rates (OCRs), and mitochondrial membrane potential, fluidity and lipid content. CBZ was cytotoxic to microvascular endothelial cells in a concentration and duration dependent manner. CBZ significantly diminished the endothelial cell's barrier functions, and impacted upon cellular bioenergetics: reducing mitochondrial complex activities with a parallel decrease in OCRs and increased anaerobic lactate production. CBZ significantly decreased mitochondrial membrane potential and induced an increase of membrane fluidity and decrease in levels of mitochondrial saturated and unsaturated fatty acids. In summary, CBZ disrupted functional activity of BBB endothelial cells via damage and modification of mitochondria functionality at therapeutically relevant concentrations.
Collapse
Affiliation(s)
- Walla Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Shahad W Kattan
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Nouf Abubakr Babteen
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Afnan M Alnajeebi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Ayat Al-Ghafari
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wayne G Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK.
| |
Collapse
|
26
|
Patel AD, Desai MA. Aggregation Behavior and Thermodynamic Studies of Hydrotropes: A Review. TENSIDE SURFACT DET 2020. [DOI: 10.3139/113.110686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Under the aspect of strict environmental regulations, hydrotropy is accepted as an environmentally friendly (“green”) approach to solubilise hydrophobic compounds. Above the minimum hydrotrope concentration (MHC), hydrotropes are capable of self-aggregation; the MHC is considered the minimum requirement for solubilisation. In this article a comprehensive overview of the aggregation behaviour of different hydrotropes is presented. Details about the methods used for aggregation are given. The role of additives is discussed with respect to their influence on the MHC. Thermodynamic studies are used to evaluate the stability of a hydrotrope at different temperatures. A modern approach to the solubilization mechanism using hydrotropes is also presented in this review article. The aim of this article is to provide guidance for conducting such studies on a number of hydrotropes.
Collapse
|
27
|
The solubility, permeability and the dose as key factors in formulation development for oral lipophilic drugs: Maximizing the bioavailability of carbamazepine with a cosolvent-based formulation. Int J Pharm 2020; 582:119307. [PMID: 32276090 DOI: 10.1016/j.ijpharm.2020.119307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 02/01/2023]
Abstract
The purpose of this research was to investigate drug dose, solubility, permeability, and their interplay, as key factors in oral formulation development for lipophilic drugs. A PEG400-based formulation was studied for five doses of the lipophilic drug carbamazepine, accounting for biorelevant dissolution of the dose in the GIT, and in-vivo bioavailability in rats. With the three lower doses (10, 25 and 50 mg/kg), complete in-vitro dissolution was achieved and maintained throughout the experiment with this formulation, while significant precipitation was obtained with higher doses (100 and 200 mg/kg). Likewise, the studied formulation allowed complete bioavailability in-vivo with the three lower doses, while the same formulation allowed only 76% and 42% bioavailability for the 100 and 200 mg/kg doses, respectively. There was good correlation between the in-vitro and in-vivo results. In conclusion, this work demonstrates that the dose is a crucial factor in formulation development; while a given formulation may be optimal for a certain drug dose, it may no longer be optimal for higher doses of the same drug. Hence, the solubility, the permeability, and their interplay, have to be considered in light of the drug dose intended to be administered in order to achieve successful oral formulation development.
Collapse
|
28
|
An overview of techniques for multifold enhancement in solubility of poorly soluble drugs. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2019. [DOI: 10.2478/cipms-2019-0035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Poor water solubility of newly discovered compounds has become the most common challenge in the drug development process. Indeed, poor solubility is considered as the root cause of failure of drug during drug development phases. Moreover, it has also been reported to be the main reason for bioavailability issues such as poor, inconsistent, incomplete and highly variable bioavailability of the marketed products. As per an estimate, approximately 90% of drug molecules suffer with poor water solubility at early stage and approximately 40% of the marketed drugs have bioavailability problems mainly due to poor water solubility. Solubility enhancement of the newly discovered compounds is primary research area for the pharmaceutical industries and research institutions. The conventional techniques to improve aqueous solubility of drugs employ salt formation, prodrug formation, co-crystallization, complexation, amorphous solid dispersion and use of co-solvent, surfactants or hydrotropic agents. Current advancement in the science and technology has enabled the use of relatively new techniques under the umbrella of nanotechnology. These include the development of nanocrystals, nanosuspensions, nanoemulsions, microemulsions, liposomes and nanoparticles to enhance the solubility. This review focuses on the conventional and current approaches of multifold enhancement in the solubility of poorly soluble marketed drugs, including newly discovered compounds.
Collapse
|
29
|
Fine-Shamir N, Dahan A. Methacrylate-Copolymer Eudragit EPO as a Solubility-Enabling Excipient for Anionic Drugs: Investigation of Drug Solubility, Intestinal Permeability, and Their Interplay. Mol Pharm 2019; 16:2884-2891. [PMID: 31120762 DOI: 10.1021/acs.molpharmaceut.9b00057] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The purpose of this work was to investigate the use of the dimethylaminoethyl methacrylate-copolymer Eudragit EPO (EPO) in oral solubility-enabling formulations for anionic lipophilic drugs, aiming to guide optional formulation design and maximize oral bioavailability. We have studied the solubility, the permeability, and their interplay, using the low-solubility nonsteroidal anti-inflammatory drug mefenamic acid as a model drug. Then, we studied the biorelevant solubility enhancement of mefenamic acid from EPO-based formulations throughout the gastrointestinal tract (GIT), using the pH-dilution dissolution method. EPO allowed a profound and linear solubility increase of mefenamic acid, from 10 μg/mL without EPO to 9.41 mg/mL in the presence of 7.5% EPO (∼940-fold; 37 °C); however, a concomitant decrease of the drug permeability was obtained, both in vitro and in vivo in rats, indicating a solubility-permeability trade-off. In the absence of an excipient, the unstirred water layer (UWL) adjacent to the GI membrane was found to hinder the permeability of the drug, accounting for this UWL effect and revealing that the true membrane permeability allowed good prediction of the solubility-permeability trade-off as a function of EPO level using a direct relationship between the increased solubility afforded by a given EPO level and the consequent decreased permeability. Biorelevant dissolution studies revealed that EPO levels of 0.05 and 0.1% were insufficient to dissolve mefenamic acid dose during the entire dissolution time course, whereas 0.5 and 1% EPO allowed complete solubility with no drug precipitation. In conclusion, EPO may serve as a potent solubility-enabling excipient for BCS class II/IV acidic drugs; however, it should be used carefully. It is prudent to use the minimal EPO amounts just sufficient to dissolve the drug dose throughout the GIT and not more than that. Excess amounts of EPO provide no solubility gain and cause further permeability loss, jeopardizing the overall success of the formulation. This work may help the formulator to hit the optimal solubility-permeability balance, maximizing the oral bioavailability afforded by the formulation.
Collapse
Affiliation(s)
- Noa Fine-Shamir
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| |
Collapse
|
30
|
Guo M, Wang K, Qiao N, Yardley V, Li M. Investigating Permeation Behavior of Flufenamic Acid Cocrystals Using a Dissolution and Permeation System. Mol Pharm 2018; 15:4257-4272. [PMID: 30080976 DOI: 10.1021/acs.molpharmaceut.8b00670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The dissolution and permeation of the cocrystals, flufenamic acid-nicotinamide (FFA-NIC) and flufenamic acid-theophylline (FFA-TP), have been investigated in the presence of two polymers, polyvinylpyrrolidone (PVP) and copolymer of vinylpyrrolidone/vinyl acetate (PVP-VA), using a dissolution/permeation (D/P) system. It showed that the types and concentrations of the polymers and their interactions with the coformers had significant effects on the dissolution and permeation of the FFA cocrystals. The role of PVP as a stabilizing agent was not altered in spite of its interaction with the coformer of NIC or TP, which was supported by the proportional flux rate of FFA to the dissolution performance parameter (DPP). With an appropriate PVP concentration, the maximal flux rate of FFA could be obtained for a given FFA cocrystal. The situation was complicated in the presence of PVP-VA. The role of PVP-VA could change because of its association with the coformers, i.e., from a stabilizing agent to a solubilization agent. In addition, PVP-VA reduced the flux rate of FFA, in contrast to its DPP for FFA cocrystals. Finally, 1H NMR provided evidence regarding the molecular interactions between FFA, coformers, and polymers at the atomic level and gave insight into the mechanism underlying the supersaturated solution and subsequent permeation behavior of the cocrystals.
Collapse
Affiliation(s)
- Minshan Guo
- School of Pharmacy , De Montfort University , Leicester LE1 9BH , U.K
| | - Ke Wang
- School of Pharmacy , De Montfort University , Leicester LE1 9BH , U.K
| | - Ning Qiao
- College of Materials Science and Engineering , North China University of Science and Technology , Tangshan 063210 , Hebei , China
| | - Vanessa Yardley
- Department of Infection & Immunity, Faculty of Infectious & Tropical Diseases , London School of Hygiene and Tropical Medicine , Keppel Street , London WC1E 7HT , U.K
| | - Mingzhong Li
- School of Pharmacy , De Montfort University , Leicester LE1 9BH , U.K
| |
Collapse
|
31
|
Singh H, Kumar M, Gupta S, Sekharan TR, Tamilvanan S. Influence of hydrophilic polymers addition into cinnarizine–β-cyclodextrin complexes on drug solubility, drug liberation behaviour and drug permeability. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-017-2203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Tsinman K, Tsinman O, Lingamaneni R, Zhu S, Riebesehl B, Grandeury A, Juhnke M, Van Eerdenbrugh B. Ranking Itraconazole Formulations Based on the Flux through Artificial Lipophilic Membrane. Pharm Res 2018; 35:161. [PMID: 29926245 DOI: 10.1007/s11095-018-2440-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/05/2018] [Indexed: 11/28/2022]
Abstract
PURPOSE The goal of the study was to evaluate a miniaturized dissolution-permeation apparatus (μFLUX™ apparatus) for its ability to benchmark several itraconazole (ITZ) formulations for which in vivo PK data was available in the literature. METHOD Untreated and micronized powders of ITZ and various enabling formulations of ITZ (commercial Sporanox® solid dispersion, a Soluplus®-based solid dispersion and a nanosuspension) were introduced to the donor compartment of μFLUX™ apparatus. Donor and acceptor chambers were divided from each other by a lipophilic membrane. In addition to the flux evaluations, changes in solid state as a function of time were investigated to gain further insight into the flux changes observed over time for the solid dispersion formulations. RESULTS Initial flux values from Sporanox®, the nanosuspension and the micronized ITZ showed ratios of 52/4/1 with a decreasing flux from nanosuspension and both solid dispersions after 2.5-3 h. Although the initial flux from the Soluplus® formulation was 2.2 times lower than the one observed for Sporanox®, the decrease in flux observed was milder and became ~ 2 times higher than Sporanox® after approximately 2.5 h. The total amounts of ITZ in the receiver compartment after 240 min showed the same rank order as the rodent AUCs of these formulations reported in literature. CONCLUSIONS It was demonstrated that in vitro flux measurements using lipophilic artificial membranes could correctly reproduce the rank order of PK results for ITZ formulations. The drop in flux over time for solid dispersions could be backed by experimental indications of crystallization.
Collapse
Affiliation(s)
| | - Oksana Tsinman
- Pion Inc., 10 Cook St, Billerica, Massachusetts, 01821, USA
| | | | - Saijie Zhu
- Technical R&D Shangai Novartis Trading Ltd., Novartis Pharma AG, Shangai, China
| | | | | | | | | |
Collapse
|
33
|
Palcsó B, Zelkó R. Different types, applications and limits of enabling excipients of pharmaceutical dosage forms. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 27:21-39. [PMID: 30103860 DOI: 10.1016/j.ddtec.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 01/10/2023]
Abstract
Along with the development of novel drug delivery systems the material science is also advancing. Conventional and novel synthetic or natural excipients provide opportunities to design dosage forms of the required features including their bioavailability. Emerging trends in the design and development of drug products indicate an increasing need for the functionality-related characterization of excipients. The purpose of this review is to provide an overview of different types of excipients in relation to their application possibilities in various dosage forms with special focus on the enabling excipients. The study also summarizes the applied excipient systems of research formulations and dosage forms available on the market.
Collapse
Affiliation(s)
- Barnabás Palcsó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hogyes E. Street 7-9, H-1092 Budapest, Hungary
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hogyes E. Street 7-9, H-1092 Budapest, Hungary.
| |
Collapse
|
34
|
Lozoya-Agullo I, Gonzalez-Alvarez I, Zur M, Fine-Shamir N, Cohen Y, Markovic M, Garrigues TM, Dahan A, Gonzalez-Alvarez M, Merino-Sanjuán M, Bermejo M, Avdeef A. Closed-Loop Doluisio (Colon, Small Intestine) and Single-Pass Intestinal Perfusion (Colon, Jejunum) in Rat-Biophysical Model and Predictions Based on Caco-2. Pharm Res 2017; 35:2. [PMID: 29288412 DOI: 10.1007/s11095-017-2331-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/18/2017] [Indexed: 01/05/2023]
Abstract
PURPOSE The effective rat intestinal permeability (P eff ) was deconvolved using a biophysical model based on parameterized paracellular, aqueous boundary layer, transcellular permeabilities, and the villus-fold surface area expansion factor. METHODS Four types of rat intestinal perfusion data were considered: single-pass intestinal perfusion (SPIP) in the jejunum (n = 40), and colon (n = 15), closed-loop (Doluisio type) in the small intestine (n = 78), and colon (n = 74). Moreover, in vitro Caco-2 permeability values were used to predict rat in vivo values in the rat data studied. RESULTS Comparable number of molecules permeate via paracellular water channels as by the lipoidal transcellular route in the SPIP method, although in the closed-loop method, the paracellular route appears dominant in the colon. The aqueous boundary layer thickness in the small intestine is comparable to that found in unstirred in vitro monolayer assays; it is thinner in the colon. The mucosal surface area in anaesthetized rats is 0.96-1.4 times the smooth cylinder calculated value in the colon, and it is 3.1-3.6 times in the small intestine. The paracellular permeability of the intestine appeared to be greater in rat than human, with the colon showing more leakiness (higher P para ) than the small intestine. CONCLUSION Based on log intrinsic permeability values, the correlations between the in vitro and in vivo models ranged from r2 0.82 to 0.92. The SPIP-Doluisio method comparison indicated identical log permeability selectivity trend with negligible bias.
Collapse
Affiliation(s)
- Isabel Lozoya-Agullo
- Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, Alicante, Spain.,Pharmacokinetics and Pharmaceutical Technology, University of Valencia, Valencia, Spain
| | - Isabel Gonzalez-Alvarez
- Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, Alicante, Spain
| | - Moran Zur
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Noa Fine-Shamir
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yael Cohen
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Milica Markovic
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Teresa M Garrigues
- Pharmacokinetics and Pharmaceutical Technology, University of Valencia, Valencia, Spain
| | - Arik Dahan
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marta Gonzalez-Alvarez
- Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, Alicante, Spain
| | | | - Marival Bermejo
- Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, Alicante, Spain.
| | - Alex Avdeef
- in-ADME Research, 1732 First Avenue, No.102, New York, New York, 10128, USA
| |
Collapse
|
35
|
Concomitant solubility-permeability increase: Vitamin E TPGS vs. amorphous solid dispersion as oral delivery systems for etoposide. Eur J Pharm Biopharm 2017; 121:97-103. [DOI: 10.1016/j.ejpb.2017.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/15/2017] [Accepted: 09/24/2017] [Indexed: 12/24/2022]
|
36
|
Porat D, Dahan A. Active intestinal drug absorption and the solubility-permeability interplay. Int J Pharm 2017; 537:84-93. [PMID: 29102702 DOI: 10.1016/j.ijpharm.2017.10.058] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 01/08/2023]
Abstract
The solubility-permeability interplay deals with the question: what is the concomitant effect on the drug's apparent permeability when increasing the apparent solubility with a solubility-enabling formulation? The solubility and the permeability are closely related, exhibit certain interplay between them, and ongoing research throughout the past decade shows that treating the one irrespectively of the other may be insufficient. The aim of this article is to provide an overview of the current knowledge on the solubility-permeability interplay when using solubility-enabling formulations for oral lipophilic drugs, highlighting active permeability aspects. A solubility-enabling formulation may affect the permeability in opposite directions; the passive permeability may decrease as a result of the apparent solubility increase, according to the solubility-permeability tradeoff, but at the same time, certain components of the formulation may inhibit/saturate efflux transporters (when relevant), resulting in significant apparent permeability increase. In these cases, excipients with both solubilizing and e.g. P-gp inhibitory properties may lead to concomitant increase of both the solubility and the permeability. Intelligent development of such formulation will account for the simultaneous effects of the excipients' nature/concentrations on the two arms composing the overall permeability: the passive and the active arms. Overall, thorough mechanistic understanding of the various factors involved in the solubility-permeability interplay may allow developing better solubility-enabling formulations, thereby exploiting the advantages analyzed in this article, offering oral delivery solution even for BCS class IV drugs.
Collapse
Affiliation(s)
- Daniel Porat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
37
|
Fine-Shamir N, Beig A, Zur M, Lindley D, Miller JM, Dahan A. Toward Successful Cyclodextrin Based Solubility-Enabling Formulations for Oral Delivery of Lipophilic Drugs: Solubility–Permeability Trade-Off, Biorelevant Dissolution, and the Unstirred Water Layer. Mol Pharm 2017; 14:2138-2146. [DOI: 10.1021/acs.molpharmaceut.7b00275] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Noa Fine-Shamir
- Department
of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Avital Beig
- Department
of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Moran Zur
- Department
of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - David Lindley
- AbbVie Inc., North Chicago, Illinois 60064, United States
| | | | - Arik Dahan
- Department
of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
38
|
Beig A, Fine-Shamir N, Lindley D, Miller JM, Dahan A. Advantageous Solubility-Permeability Interplay When Using Amorphous Solid Dispersion (ASD) Formulation for the BCS Class IV P-gp Substrate Rifaximin: Simultaneous Increase of Both the Solubility and the Permeability. AAPS JOURNAL 2017; 19:806-813. [PMID: 28204967 DOI: 10.1208/s12248-017-0052-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/31/2017] [Indexed: 02/08/2023]
Abstract
Rifaximin is a BCS class IV (low-solubility, low-permeability) drug and also a P-gp substrate. The aims of this work were to assess the efficiency of different rifaximin amorphous solid dispersion (ASDs) formulations in achieving and maintaining supersaturation and to investigate the consequent solubility-permeability interplay. Spray-dried rifaximin ASDs were prepared with different hydrophilic polymers and their ability to achieve and maintain supersaturation was assessed. Then, rifaximin's apparent intestinal permeability was investigated as a function of increasing supersaturation both in vitro using the parallel artificial membrane permeability assay (PAMPA) and in vivo using the single-pass rat intestinal perfusion (SPIP) model. The efficiency of the different ASDs to achieve and maintain supersaturation of rifaximin was found to be highly polymer dependent, and the copovidone/HPC-SL formulation was found to be superior to the other two, allowing supersaturation of 200× that of the crystalline solubility for 20 h. In vitro, rifaximin flux was increased and the apparent permeability was constant as a function of increasing supersaturation level. In vivo, on the other hand, absorption rate coefficient (k a) was first constant as a function of increasing supersaturation, but at 250×, the crystalline solubility k a was doubled, similar to the k a in the presence of the strong P-gp inhibitor GF120918. In conclusion, a new and favorable nature of solubility-permeability interplay was revealed in this work: delivering high supersaturation level of the BCS class IV drug rifaximin via ASD, thereby saturating the drugs' P-gp-mediated efflux transport, led to the favorable unique win-win situation, where both the solubility and the permeability increased simultaneously.
Collapse
Affiliation(s)
- Avital Beig
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.Box 653, 84105, Beer-Sheva, Israel
| | - Noa Fine-Shamir
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.Box 653, 84105, Beer-Sheva, Israel
| | | | - Jonathan M Miller
- AbbVie Inc., North Chicago, Illinois, 60064, USA.,Vertex Pharmaceuticals Inc., 50 Northern Ave, Boston, Massachusetts, 02210, USA
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.Box 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
39
|
Beig A, Miller JM, Lindley D, Dahan A. Striking the Optimal Solubility-Permeability Balance in Oral Formulation Development for Lipophilic Drugs: Maximizing Carbamazepine Blood Levels. Mol Pharm 2016; 14:319-327. [PMID: 27981848 DOI: 10.1021/acs.molpharmaceut.6b00967] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The purpose of this research was to investigate the performance of cosolvent based solubility-enabling formulations in oral delivery of lipophilic drugs, accounting for the gastrointestinal tract (GIT) luminal solubilization processes, the solubility-permeability interplay, and the overall in vivo systemic absorption. The poorly soluble antiepileptic agent carbamazepine was formulated in three cosolvent-based formulations: 20%, 60%, and 100% PEG-400, and the apparent solubility and rat permeability of the drug in these formulations were evaluated. The performance of the formulations in the dynamic GIT environment was assessed utilizing the biorelevant pH-dilution method. Then, the overall in vivo drug exposure was investigated following oral administration to rats. The three formulations showed dramatic solubility and permeability differences; the 100% PEG-400 provided the highest solubility enhancement and the 20% the poorest, while the exact opposite was evident from the permeability point of view. The dissolution results indicated that the 20% PEG-400 formulation crashes quickly following oral administration, but both the 60% and the 100% PEG-400 formulations allowed full solubilization of the dose throughout the entire GIT-like journey. The best in vivo performing formulation was the 60% PEG-400 (Fsys > 90%), followed by the 100% PEG-400 (Fsys = 76%), and the 20% PEG-400 formulation (Fsys ≈ 60%). In conclusion, this work demonstrates the in vivo solubility-permeability trade-off in oral delivery of lipophilic drugs; when a solubility-enabling formulation is developed, minimal threshold solubility should be targeted, that is just enough to allow solubilization of the drug dose throughout the GIT, while excess solubilizer should be avoided.
Collapse
Affiliation(s)
- Avital Beig
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Jonathan M Miller
- AbbVie Incorporation , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - David Lindley
- AbbVie Incorporation , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| |
Collapse
|