1
|
Patel P, Jinugu ME, Thareja P. Rheology and Extrusion Printing of κ-Carrageenan/Olive Oil Emulsion Gel Tablets with Varying Surface Area to Volume Ratios for Release of Vitamin C and Curcumin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16069-16084. [PMID: 39058356 DOI: 10.1021/acs.langmuir.4c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In this work, κ-carrageenan and olive oil at different oil to κ-carrageenan ratios (OCR) are homogenized to create emulsion gels. Interestingly, confocal imaging shows that the oil droplets are stabilized in the κ-carrageenan-structured gel matrix without using any surfactants. Rheological studies show that the oil droplets enhanced the oscillatory yield stress and the maximum printable height of the emulsion gels. The creation of the emulsion gels with an OCR of 1:9-3:7 led to an improvement in the structural integrity of extrusion printed structures. The emulsion gel with an OCR of 3:7 efficiently encapsulates vitamin C in the aqueous phase and curcumin in the hydrophobic oil phase, enabling the extrusion 3D printing of tablets with varying surface area to volume (SA/V) ratios. The release of vitamin C and curcumin is influenced by the preparation method of printing versus casting and the SA/V ratio of the tablets. The hollow cylinder with the highest SA/V ratio was observed to have the highest vitamin C release, whereas for curcumin, the printed tablets had a higher release compared to the cast tablet. Additionally, through rheo-dissolution experiments, we observe a lower modulus and higher vitamin C release from the 3D-printed disc versus the higher modulus and lower vitamin C release from the cast disc tablet.
Collapse
Affiliation(s)
- Panchami Patel
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Manasi Esther Jinugu
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Prachi Thareja
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
- Dr. Kiran C. Patel Centre for Sustainable Development, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
2
|
Sharma AN, Dewangan HK, Upadhyay PK. Comprehensive Review on Herbal Medicine: Emphasis on Current Therapy and Role of Phytoconstituents for Cancer Treatment. Chem Biodivers 2024; 21:e202301468. [PMID: 38206170 DOI: 10.1002/cbdv.202301468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Cancer poses a significant public health challenge in both developed and developing nations, with a rising global incidence of patients facing the threat of death due to abnormal cell proliferation. AIM Review explores the utilization of different parts of herbal medicinal plants and their active pharmaceutical constituents in the prevention and treatment of various types of cancer. METHODOLOGY Various anticancer medicinal plants have been identified, demonstrating their therapeutic effects by inhibiting cancer-stimulating enzymes and hormones, activating DNA repair processes, boosting the synthesis of protective stimulants, reducing the formation of free radicals, and enhancing individual immunity. Data for this study were gathered from diverse online bibliographic and databases, including Google, Google Scholar, Mendeley, Springer Link, Research Gate, and PubMed. RESULT Herbal drugs have a huge contribution to the inhibition of the progression of cancer.A large volume of clinical studies has reported the beneficial effects of herbal medicines on the survival, immune modulation, and quality of life (QOL) of cancer patients, when these herbal medicines are used in combination with conventional therapeutics. CONCLUSION The latest medicines for the clinical purpose (Above 50 %) are derived from herbal products. Furthermore, combination of these herbs with nanotechnology shows promise in treating specific carcinomas.
Collapse
Affiliation(s)
- Alok Nath Sharma
- Institute of Pharmaceutical Research(IPR), GLA University, NH-2 Mathura Delhi Road, P.O.-Chaumuhan, Mathura, 281406 (U.P.), India
- Faculty of Pharmacy, Raja Balwant Singh Engineering Technical Campus, Bichpuri, Agra, 283102
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Panjab, NH-95 Mohali Ludhiana Road
| | - Prabhat Kumar Upadhyay
- Institute of Pharmaceutical Research(IPR), GLA University, NH-2 Mathura Delhi Road, P.O.-Chaumuhan, Mathura, 281406 (U.P.), India
| |
Collapse
|
3
|
Wang J, Yu Z, Wu W, He S, Xie B, Wu M, Sun Z. Molecular mechanism of epicatechin gallate binding with carboxymethyl β-glucan and its effect on antibacterial activity. Carbohydr Polym 2022; 298:120105. [PMID: 36241282 DOI: 10.1016/j.carbpol.2022.120105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 01/05/2023]
Abstract
The non-covalent binding between flavanols and polysaccharides has impacts on their bioactivities, but the binding mechanism is less understood. This work aimed to unveil the non-covalent interactions between epicatechin gallate (ECG) and anionic carboxymethyl Poria cocos polysaccharide (CMPN) at the structural and molecular level based on the synergistic antibacterial effect between them. The results suggested that there was hydrogen bonding, hydrophobic and electrostatic interaction between ECG and CMPN, which was also supported by the results of molecular dynamics simulations. The resulting changes in physicochemical properties enhanced the antibacterial activity of the ECG-CMPN mixture. More specifically, through two-dimensional Fourier transform infrared correlation spectrum (2D-FT-IR) and nuclear magnetic resonance spectroscopy (NMR) analysis, COO- in CMPN carboxymethyl and CO in ECG galloyl had the highest response priority and binding strength in the interaction, allowing us to conclude the critical functional groups that affect the non-covalent interactions of polysaccharide and flavanols and their bioactivities.
Collapse
Affiliation(s)
- Jingyi Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Zuwei Yu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Wenjuan Wu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Shumin He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Bijun Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muci Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
In Silico and In Vitro Screening of 50 Curcumin Compounds as EGFR and NF-κB Inhibitors. Int J Mol Sci 2022; 23:ijms23073966. [PMID: 35409325 PMCID: PMC9000198 DOI: 10.3390/ijms23073966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
The improvement of cancer chemotherapy remains a major challenge, and thus new drugs are urgently required to develop new treatment regimes. Curcumin, a polyphenolic antioxidant derived from the rhizome of turmeric (Curcuma longa L.), has undergone extensive preclinical investigations and, thereby, displayed remarkable efficacy in vitro and in vivo against cancer and other disorders. However, pharmacological limitations of curcumin stimulated the synthesis of numerous novel curcumin analogs, which need to be evaluated for their therapeutic potential. In the present study, we calculated the binding affinities of 50 curcumin derivatives to known cancer-related target proteins of curcumin, i.e., epidermal growth factor receptor (EGFR) and nuclear factor κB (NF-κB) by using a molecular docking approach. The binding energies for EGFR were in a range of −12.12 (±0.21) to −7.34 (±0.07) kcal/mol and those for NF-κB ranged from −12.97 (±0.47) to −6.24 (±0.06) kcal/mol, indicating similar binding affinities of the curcumin compounds for both target proteins. The predicted receptor-ligand binding constants for EGFR and curcumin derivatives were in a range of 0.00013 (±0.00006) to 3.45 (±0.10) µM and for NF-κB in a range of 0.0004 (±0.0003) to 10.05 (±4.03) µM, indicating that the receptor-ligand binding was more stable for EGFR than for NF-κB. Twenty out of 50 curcumin compounds showed binding energies to NF-κB smaller than −10 kcal/mol, while curcumin as a lead compound revealed free binding energies of >−10 kcal/mol. Comparable data were obtained for EGFR: 15 out of 50 curcumin compounds were bound to EGFR with free binding energies of <−10 kcal/mol, while the binding affinity of curcumin itself was >−10 kcal/mol. This indicates that the derivatization of curcumin may indeed be a promising strategy to improve targe specificity and to obtain more effective anticancer drug candidates. The in silico results have been exemplarily validated using microscale thermophoresis. The bioactivity has been further investigated by using resazurin cell viability assay, lactate dehydrogenase assay, flow cytometric measurement of reactive oxygen species, and annexin V/propidium iodide assay. In conclusion, molecular docking represents a valuable approach to facilitate and speed up the identification of novel targeted curcumin-based drugs to treat cancer.
Collapse
|
5
|
Węsierska M, Kloska A, Medina DL, Jakóbkiewicz-Banecka J, Gabig-Cimińska M, Radzińska M, Moskot M, Malinowska M. Cellular and Gene Expression Response to the Combination of Genistein and Kaempferol in the Treatment of Mucopolysaccharidosis Type I. Int J Mol Sci 2022; 23:ijms23031058. [PMID: 35162981 PMCID: PMC8834790 DOI: 10.3390/ijms23031058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 01/28/2023] Open
Abstract
Flavonoids are investigated as therapeutics for mucopolysaccharidosis, a metabolic disorder with impaired glycosaminoglycan degradation. Here we determined the effects of genistein and kaempferol, used alone or in combination, on cellular response and gene expression in a mucopolysaccharidosis type I model. We assessed the cell cycle, viability, proliferation, subcellular localization of the translocation factor EB (TFEB), number and distribution of lysosomes, and glycosaminoglycan synthesis after exposure to flavonoids. Global gene expression was analysed using DNA microarray and quantitative PCR. The type and degree of flavonoid interaction were determined based on the combination and dose reduction indexes. The combination of both flavonoids synergistically inhibits glycosaminoglycan synthesis, modulates TFEB localization, lysosomal number, and distribution. Genistein and kaempferol in a 1:1 ratio regulate the expression of 52% of glycosaminoglycan metabolism genes. Flavonoids show synergy, additivity, or slight antagonism in all analysed parameters, and the type of interaction depends on the concentration and component ratios. With the simultaneous use of genistein and kaempferol in a ratio of 4:1, even a 10-fold reduction in the concentration of kaempferol is possible. Flavonoid mixtures, used as the treatment of mucopolysaccharidosis, are effective in reducing glycosaminoglycan production and storage and show a slight cytotoxic effect compared to single-flavonoid usage.
Collapse
Affiliation(s)
- Magdalena Węsierska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
| | - Diego L. Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Naples, Italy;
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
- Laboratory of Molecular Biology of Human Skin Diseases, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Marta Radzińska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
| | - Marta Moskot
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
- Laboratory of Molecular Biology of Human Skin Diseases, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
- Correspondence: (M.M.); (M.M.); Tel.: +48-58-5236045 (M.M.); +48-58-5236046 (M.M.); Fax: +48-58-5236025 (M.M. & M.M.)
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
- Correspondence: (M.M.); (M.M.); Tel.: +48-58-5236045 (M.M.); +48-58-5236046 (M.M.); Fax: +48-58-5236025 (M.M. & M.M.)
| |
Collapse
|
6
|
WANG GY, ZHANG L, GENG YD, WANG B, FENG XJ, CHEN ZL, WEI W, JIANG L. β-Elemene induces apoptosis and autophagy in colorectal cancer cells through regulating the ROS/AMPK/mTOR pathway. Chin J Nat Med 2022; 20:9-21. [DOI: 10.1016/s1875-5364(21)60118-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/24/2022]
|
7
|
Wang T, Zhang P, Chen L, Qi H, Chen H, Zhu Y, Zhang L, Zhong M, Shi X, Li Q. Ixazomib induces apoptosis and suppresses proliferation in esophageal squamous cell carcinoma through activation of the c-Myc/NOXA pathway. J Pharmacol Exp Ther 2021; 380:15-25. [PMID: 34740946 DOI: 10.1124/jpet.121.000837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the major subtypes of esophageal cancer. More than half of the ESCC patients in the world are in China, and the 5-year survival rate is less than 10%. As a new oral proteasome inhibitor, ixazomib has shown strong therapeutic effect in many solid tumors. In this study, we aimed to investigate the effects of ixazomib on the proliferation inhibition and apoptosis of ESCC cells.We used four human ESCC cell lines, cell viability assay, cell cycle and apoptosis assay, RT-PCR, Western blot, immunohistochemistry and ESCC xenografts model to clarify the roles of the therapeutic effect and mechanism of ixazomib in ESCC. Ixazomib significantly inhibited the proliferation and induced apoptosis in ESCC cells. RT-PCR results showed that the expression of endoplasmic reticulum stress-related gene NOXA and c-Myc significant increase after treatment with ixazomib in ESCC cell. Then we knockdown the NOXA and c-Myc by siRNA, the therapeutic effect of ixazomib markedly decrease, which confirmed that c-Myc/NOXA pathway played a key role in the treatment of ESCC with ixazomib. In vivo, the xenograft ESCC model mice were given 10 mg/kg of ixazomib every other day for 30 days. The results showed that the tumor size in the treatment group was significantly smaller than the control group. These results suggested that ixazomib is known to suppress proliferation and induce apoptosis in an ESCC cell lines, and this effect was likely mediated by increased activation of the c-Myc/NOXA signaling pathways. Significance Statement Esophageal squamous cell carcinoma (ESCC) is the common worldwide malignant tumors,but conventional chemotherapeutics suffer from a number of limitations. In this study, our results suggested that ixazomib is known to suppress proliferation and induce apoptosis in an ESCC cell lines. Therefore, ixazomib may be a potential new stratgegy for ESCC therapy.
Collapse
|
8
|
Chauhan A, Islam AU, Prakash H, Singh S. Phytochemicals targeting NF-κB signaling: Potential anti-cancer interventions. J Pharm Anal 2021; 12:394-405. [PMID: 35811622 PMCID: PMC9257438 DOI: 10.1016/j.jpha.2021.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor κB (NF-κB) is a ubiquitous regulator of the signalome and is indispensable for various biological cell functions. NF-κB consists of five transcription factors that execute both cytoplasmic and nuclear signaling processes in cells. NF-κB is the only signaling molecule that governs both pro- and anti-apoptotic, and pro- and anti-inflammatory responses. This is due to the canonical and non-canonical components of the NF-κB signaling pathway. Together, these pathways orchestrate cancer-related inflammation, hyperplasia, neoplasia, and metastasis. Non-canonical NF-κB pathways are particularly involved in the chemoresistance of cancer cells. In view of its pivotal role in cancer progression, NF-κB represents a potentially significant therapeutic target for modifying tumor cell behavior. Several phytochemicals are known to modulate NF-κB pathways through the stabilization of its inhibitor, IκB, by inhibiting phosphorylation and ubiquitination thereof. Several natural pharmacophores are known to inhibit the nuclear translocation of NF-κB and associated pro-inflammatory responses and cell survival pathways. In view of this and the high degree of specificity exhibited by various phytochemicals for the NF-κB component, we herein present an in-depth overview of these phytochemicals and discuss their mode of interaction with the NF-κB signaling pathways for controlling the fate of tumor cells for cancer-directed interventions. NF-κB plays a pivotal role in the maintenance of homeostasis and various inflammation-mediated pathologies. NF-κB is involved in cancer development and progression by modulating growth signaling and apoptosis pathways. Phytochemicals modulating NF-κB activity should be exploited to design anticancer drugs with minimal side effects. Use of these phytochemicals in adjunctive chemotherapy may enhance the chemosensitivity of existing chemotherapeutic drugs.
Collapse
Affiliation(s)
- Akansha Chauhan
- Amity Institute of Physiology & Allied Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Asim Ul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Hridayesh Prakash
- Amity Institute of Virology & Immunology, Amity University, Noida, Uttar Pradesh, India
| | - Sandhya Singh
- Amity Institute of Physiology & Allied Sciences, Amity University, Noida, Uttar Pradesh, India
- Corresponding author.
| |
Collapse
|
9
|
Uddin MS, Hasana S, Ahmad J, Hossain MF, Rahman MM, Behl T, Rauf A, Ahmad A, Hafeez A, Perveen A, Ashraf GM. Anti-Neuroinflammatory Potential of Polyphenols by Inhibiting NF-κB to Halt Alzheimer's Disease. Curr Pharm Des 2021; 27:402-414. [PMID: 33213314 DOI: 10.2174/1381612826666201118092422] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an irrevocable chronic brain disorder featured by neuronal loss, microglial accumulation, and progressive cognitive impairment. The proper pathophysiology of this life-threatening disorder is not completely understood and no exact remedies have been found yet. Over the last few decades, research on AD has mainly highlighted pathomechanisms linked to a couple of the major pathological hallmarks, including extracellular senile plaques made of amyloid-β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs) made of tau proteins. Aβ can induce apoptosis, trigger an inflammatory response, and inhibit the synaptic plasticity of the hippocampus, which ultimately contributes to reducing cognitive functions and memory impairment. Recently, a third disease hallmark, the neuroinflammatory reaction that is mediated by cerebral innate immune cells, has become a spotlight in the current research area, assured by pre-clinical, clinical, and genetic investigations. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a cytokine producer, is significantly associated with physiological inflammatory proceedings and thus shows a promising candidate for inflammation- based AD therapy. Recent data reveal that phytochemicals, mainly polyphenol compounds, exhibit potential neuroprotective functions and these may be considered as a vital resource for discovering several drug candidates against AD. Interestingly, phytochemicals can easily interfere with the signaling pathway of NF-κB. This review represents the anti-neuroinflammatory potential of polyphenols as inhibitors of NF-κB to combat AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Sharifa Hasana
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Uttar Pradesh, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Yao J, Tang YC, Yi B, Yang J, Chai Y, Yin N, Zhang ZX, Wei YJ, Li DC, Zhou J. Signature of gene aberrant alternative splicing events in pancreatic adenocarcinoma prognosis. J Cancer 2021; 12:3164-3179. [PMID: 33976726 PMCID: PMC8100795 DOI: 10.7150/jca.48661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing (AS), as an effective and universal mechanism of transcriptional regulation, is involved in the development and progression of cancer. Therefore, systematic analysis of alternative splicing in pancreatic adenocarcinoma (PAAD) is warranted. The corresponding clinical information of the RNA-Seq data and PAAD cohort was downloaded from the TCGA data portal. Then, a java application, SpliceSeq, was used to evaluate the RNA splicing pattern and calculate the splicing percentage index (PSI). Differentially expressed AS events (DEAS) were identified based on PSI values between PAAD cancer samples and normal samples of adjacent tissues. Kaplan-Meier and Cox regression analyses were used to assess the association between DEAS and patient clinical characteristics. Unsupervised cluster analysis used to reveal four clusters with different survival patterns. At the same time, GEO and TCGA combined with GTEx to verify the differential expression of AS gene and splicing factor. After rigorous filtering, a total of 45,313 AS events were identified, 1,546 of which were differentially expressed AS events. Nineteen DEAS were found to be associated with OS with a five-year overall survival rate of 0.946. And the subtype clusters results indicate that there are differences in the nature of individual AS that affect clinical outcomes. Results also identified 15 splicing factors associated with the prognosis of PAAD. And the splicing factors ESRP1 and RBM5 played an important role in the PAAD-associated AS events. The PAAD-associated AS events, splicing networks, and clusters identified in this study are valuable for deciphering the underlying mechanisms of AS in PAAD and may facilitate the establishment of therapeutic goals for further validation.
Collapse
Affiliation(s)
- Jun Yao
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yu-Chen Tang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Yi
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jian Yang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yun Chai
- Department of Plastic Surgery, Suzhou Municipal Hospital, Suzhou, Jiangsu, 215006, China
| | - Ni Yin
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zi-Xiang Zhang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yi-Jun Wei
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - De-Chun Li
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jian Zhou
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| |
Collapse
|
11
|
Dombe S, Shirote P. Nanosponges Encapsulated Phytochemicals for Targeting Cancer: A Review. Curr Drug Targets 2021; 22:443-462. [PMID: 33045959 DOI: 10.2174/1389450121999201012201455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/16/2020] [Accepted: 09/02/2020] [Indexed: 11/22/2022]
Abstract
Cancer is the most ruinous disease globally. Natural products have impressive characteristics, such as exceptional chemical versatility, chemical and biological properties of macromolecular specificity and less toxicity which make them good leads in finding novel drugs. The phytochemicals not only help to prevent but also treat chronic cancerous conditions. The present review attempts to put forth some selected anticancer phytochemicals that had reported omics characteristic and specifically suppressed cancer with in vitro and in vivo activity. Certain issues pertaining to anticancer phytochemicals like delivery to target site in the body and achieving controlled release in order to prevent overdoses have been a major concern for medical researchers worldwide. The most conventional chemotherapy protocols for the treatment of cancer lead to adverse effects that limit biological efficacy and compromise patient outcomes. In order to defeat incompetency of current and upcoming natural anticancer agents and to attain targeted drug delivery with good efficacy and fewer side effects, there is a special focus on novel nanostructured particles and nano approaches consisting of carrier system. Recent studies have led to the discovery of mesoporous and nanoporous drug delivery mechanisms, such as inorganic or organic-based nanosponges. The metal based inorganic systems have exhibited toxicity and non-biodegradable character in vivo. As a result of problems related to inorganic systems, major shift of research from inorganic to organic nanosystems has occurred. About decades ago, researchers developed organic nanosponges to control the limitation of drug delivery and cancer therapies. This review article discusses the development and application of nanosponges encapsulated phytochemicals for cancer therapy.
Collapse
Affiliation(s)
- Shailaja Dombe
- Department of Pharmaceutics, Arvind Gavali College of Pharmacy, Satara, Shivaji University, Satara-415004, India
| | - Pramodkumar Shirote
- Department of Pharmaceutical Chemistry, Arvind Gavali College of Pharmacy, Satara, Shivaji University, Satara- 415004, India
| |
Collapse
|
12
|
Alami Merrouni I, Elachouri M. Anticancer medicinal plants used by Moroccan people: Ethnobotanical, preclinical, phytochemical and clinical evidence. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113435. [PMID: 33022340 DOI: 10.1016/j.jep.2020.113435] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cancer is a major health problem worldwide. Drugs' side effects and high cost of treatment remain the main limitations of conventional therapy. Nowadays, developing new therapeutic strategies is necessary. Therefore, medicinal plants can be used to promote novel, safe, and potent anticancer drugs through their natural compounds. AIM OF THE STUDY This review aims to provide scientific evidence related to the anticancer activities of medicinal plants used by Moroccan people as well as approving their efficiency as an alternative cancer therapy. METHODS An ethnopharmacological review approach was conducted by analyzing Moroccan published ethnobotanical surveys from 1991 to 2019 and consulting peer-reviewed articles worldwide to investigate the pharmacological, phytochemical, and clinical effects related to the anticancer activities. Plants with anticancer proprieties were classified into four groups: (a) plants only cited as anticancer, (b) plants pharmacologically investigated, (c) plants with bioactive compounds tested as anticancer, and (d) plants clinically investigated. RESULTS A total of 103 plant species belonging to 47 botanical families used by Moroccans to treat cancer have been recorded. Aristolochia fontanesii Boiss. & Reut, Marrubium vulgare L., and Allium sativum L. are the most referred species in Morocco. Medicinal plants used for cancer treatment were classified into four groups: 48 species were used traditionally as anticancer (group a), 41 species pharmacologically investigated for their anticancer activities (group b), 32 plants with bioactive compounds tested against cancer (group c), and eight plants were clinically investigated for their anticancer effects (group d). Out of 82 plants' extracts pharmacologically tested (from plants of group b), only 24 ones show a significant cytotoxic effect. A total of seventy-seven compounds are isolated from plants of group (c). However, only six ones were clinically evaluated, and most of them exhibit a beneficial effect on cancerous patients with few side effects. CONCLUSION Medicinal plants can be a promising candidate for alternative cancer therapy. Nevertheless, it is critical to increasing the clinical trials to confirm their beneficial effect on patients with cancer. Overall, this review can serve as a database for further studies.
Collapse
Affiliation(s)
- Ilyass Alami Merrouni
- Laboratory of Physiology, Genetics, and Ethnopharmacology, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Mostafa Elachouri
- Laboratory of Physiology, Genetics, and Ethnopharmacology, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| |
Collapse
|
13
|
Pathak GA, Polimanti R, Silzer TK, Wendt FR, Chakraborty R, Phillips NR. Genetically-regulated transcriptomics & copy number variation of proctitis points to altered mitochondrial and DNA repair mechanisms in individuals of European ancestry. BMC Cancer 2020; 20:954. [PMID: 33008348 PMCID: PMC7530964 DOI: 10.1186/s12885-020-07457-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023] Open
Abstract
Background Proctitis is an inflammation of the rectum and may be induced by radiation treatment for cancer. The genetic heritability of developing radiotoxicity and prior role of genetic variants as being associated with side-effects of radiotherapy necessitates further investigation for underlying molecular mechanisms. In this study, we investigated gene expression regulated by genetic variants, and copy number variation in prostate cancer survivors with radiotoxicity. Methods We investigated proctitis as a radiotoxic endpoint in prostate cancer patients who received radiotherapy (n = 222). We analyzed the copy number variation and genetically regulated gene expression profiles of whole-blood and prostate tissue associated with proctitis. The SNP and copy number data were genotyped on Affymetrix® Genome-wide Human SNP Array 6.0. Following QC measures, the genotypes were used to obtain gene expression by leveraging GTEx, a reference dataset for gene expression association based on genotype and RNA-seq information for prostate (n = 132) and whole-blood tissue (n = 369). Results In prostate tissue, 62 genes were significantly associated with proctitis, and 98 genes in whole-blood tissue. Six genes - CABLES2, ATP6AP1L, IFIT5, ATRIP, TELO2, and PARD6G were common to both tissues. The copy number analysis identified seven regions associated with proctitis, one of which (ALG1L2) was also associated with proctitis based on transcriptomic profiles in the whole-blood tissue. The genes identified via transcriptomics and copy number variation association were further investigated for enriched pathways and gene ontology. Some of the enriched processes were DNA repair, mitochondrial apoptosis regulation, cell-to-cell signaling interaction processes for renal and urological system, and organismal injury. Conclusions We report gene expression changes based on genetic polymorphisms. Integrating gene-network information identified these genes to relate to canonical DNA repair genes and processes. This investigation highlights genes involved in DNA repair processes and mitochondrial malfunction possibly via inflammation. Therefore, it is suggested that larger studies will provide more power to infer the extent of underlying genetic contribution for an individual’s susceptibility to developing radiotoxicity.
Collapse
Affiliation(s)
- Gita A Pathak
- Department of Microbiology, Immunology & Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, USA.,Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Talisa K Silzer
- Department of Microbiology, Immunology & Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, USA.,Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Ranajit Chakraborty
- Department of Microbiology, Immunology & Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Nicole R Phillips
- Department of Microbiology, Immunology & Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
14
|
Kadioglu O, Saeed MEM, Munder M, Spuller A, Greten HJ, Efferth T. Effect of ABC transporter expression and mutational status on survival rates of cancer patients. Biomed Pharmacother 2020; 131:110718. [PMID: 32932043 DOI: 10.1016/j.biopha.2020.110718] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023] Open
Abstract
ATP-binding cassette (ABC) transporters mediate multidrug resistance in cancer. In contrast to DNA single nucleotide polymorphisms in normal tissues, the role of mutations in tumors is unknown. Furthermore, the significance of their expression for prediction of chemoresistance and survival prognosis is still under debate. We investigated 18 tumors by RNA-sequencing. The mutation rate varied from 27,507 to 300885. In ABCB1, three hotspots with novel mutations were in transmembrane domains 3, 8, and 9. We also mined the cBioPortal database with 11,814 patients from 23 different tumor entities. We performed Kaplan-Meier survival analyses to investigate the effect of ABC transporter expression on survival rates of cancer patients. Novel mutations were also found in ABCA2, ABCA3, ABCB2, ABCB5, ABCC1-6, and ABCG2. Mining the cBioPortal database with 11,814 patients from 23 different tumor entities validated our results. Missense and in-frame mutations led to altered binding of anticancer drugs in molecular docking approaches. The ABCB1 nonsense mutation Q856* led to a truncated P-glycoprotein, which may sensitize tumors to anticancer drugs. The search for ABC transporter nonsense mutations represents a novel approach for precision medicine.. Low ABCB1 mRNA expression correlated with significantly longer survival in ovarian or kidney cancer and thymoma. In cancers of breast, kidney or lung, ABC transporter expression correlated with different tumor stages and human populations as further parameters to refine strategies for more individualized chemotherapy.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Markus Munder
- Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Henry Johannes Greten
- Abel Salazar Biomedical Sciences Institute, University of Porto, Portugal; Heidelberg School of Chinese Medicine, Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
15
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
16
|
Identification of Novel Rare ABCC1 Transporter Mutations in Tumor Biopsies of Cancer Patients. Cells 2020; 9:cells9020299. [PMID: 31991926 PMCID: PMC7072590 DOI: 10.3390/cells9020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 11/17/2022] Open
Abstract
The efficiency of chemotherapy drugs can be affected by ATP-binding cassette (ABC) transporter expression or by their mutation status. Multidrug resistance is linked with ABC transporter overexpression. In the present study, we performed rare mutation analyses for 12 ABC transporters related to drug resistance (ABCA2, -A3, -B1, -B2, -B5, -C1, -C2, -C3, -C4, -C5, -C6, -G2) in a dataset of 18 cancer patients. We focused on rare mutations resembling tumor heterogeneity of ABC transporters in small tumor subpopulations. Novel rare mutations were found in ABCC1, but not in the other ABC transporters investigated. Diverse ABCC1 mutations were found, including nonsense mutations causing premature stop codons, and compared with the wild-type protein in terms of their protein structure. Nonsense mutations lead to truncated protein structures. Molecular docking and heat map analyses of ABCC1/MRP1 pointed out that Lys498* appeared in a separate cluster branch due to the large deletion, leading to a massive disruption in the protein conformation. The resulting proteins, which are nonfunctional due to nonsense mutations in tumors, offer a promising chemotherapy strategy since tumors with nonsense mutations may be more sensitive to anticancer drugs than wild-type ABCC1-expressing tumors. This could provide a novel tumor-specific toxicity strategy and a way to overcome drug resistance.
Collapse
|
17
|
Shirsath NR, Goswami AK. Natural Phytochemicals and Their Therapeutic Role in Management of Several Diseases: A Review. CURRENT TRADITIONAL MEDICINE 2020. [DOI: 10.2174/2215083805666190807111817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction:These days, a lot of people face some health-related problems in day to day life. The conventional synthetic medicine is not effective enough to cure them alone. The conventional therapy for the management of these health-related issues involves the use of hazardous synthetic chemicals and surgical diagnosis, which have lots of serious side effects. It is necessary to conduct research on herbal medicines, this is an alternative approach to avoid the side effects of synthetic medicines to achieve high effectiveness, low cost and improve patient compliance.Methods:The present survey is an analysis of some of the available data on the use of plants with their biological source, active phytochemicals constituents and a probable activity/ mechanism of action of several classes of drugs. This work also focused on highlighting the advantages of natural medicines for maximum utilization.Results:This article aims to increase awareness about natural medicine and help people find a suitable herbal medicine for the treatment of specific diseases.Conclusion:This article also exhibits the scope for further process in the development of new natural substance for the management of several diseases.
Collapse
Affiliation(s)
- Nitin R. Shirsath
- University Institute of Chemical Technology (UICT), Kavayitri Bahinabai Chaudhari North Maharashtra University (KBCNMU), Jalgaon, Maharashtra-425001, India
| | - Ajaygiri K. Goswami
- University Institute of Chemical Technology (UICT), Kavayitri Bahinabai Chaudhari North Maharashtra University (KBCNMU), Jalgaon, Maharashtra-425001, India
| |
Collapse
|
18
|
Farooq S, Sehgal A. Scrutinizing antioxidant interactions between green tea and some medicinal plants commonly used as herbal teas. J Food Biochem 2019; 43:e12984. [PMID: 31489661 DOI: 10.1111/jfbc.12984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/18/2019] [Accepted: 06/30/2019] [Indexed: 01/11/2023]
Abstract
Meta-analysis reports suggested that green tea (GT) consumption is associated with mild to moderate effects on major global killers. To enhance the health promoting potential of GT, one of the strategies is to combine it with traditionally used medicinal plants (Ocimum gratissimum, Cymbopogon citratus, Cymbopogon flexuosus, and Hibiscus rosa-sinensis). The aim of this investigation was to evaluate and compare the possible synergistic antioxidant interaction of binary combinations of GT with medicinal plants. Overall, GT and O. gratissimum combination showed the highest antioxidant potential and strongest synergistic interaction at EC50 . A strong correlation was found between antioxidant capacity (DPPH, ABTS, NO, and hemolysis) and total phenolic content (TPC) (except lipid peroxidation) for individual infusions, but very weak correlation was observed for GT combinations. Whereas, for both individual and binary aqueous infusions, moderate to strong correlation was observed between antioxidant parameters and FTIR-selected peak (3250-3290 cm-1 ) omitting lipid peroxidation for single infusions. PRACTICAL APPLICATIONS: The combination of GT with certain medicinal plants used as herbal teas can demonstrate synergistic interactions that may boost the health promoting potential of GT. This study provides basis for future designing and formulation of beverages containing GT combinations based on their antioxidant interactions that can potentially enhance the efficacy of GT as a chemopreventive agent. It may also promote the consumption of GT combinations that may help in realizing untapped potential of underutilized plants.
Collapse
Affiliation(s)
- Sumaya Farooq
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Amit Sehgal
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
19
|
A practical guide for designing effective nutraceutical combinations in the form of foods, beverages, and dietary supplements against chronic degenerative diseases. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Interaction between carboxymethyl pachyman and lotus seedpod oligomeric procyanidins with superior synergistic antibacterial activity. Carbohydr Polym 2019; 212:11-20. [PMID: 30832837 DOI: 10.1016/j.carbpol.2019.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/29/2019] [Accepted: 02/10/2019] [Indexed: 12/19/2022]
Abstract
The inhibitory effect of carboxymethyl pachyman (CMP) mixed with lotus seedpod oligomeric procyanidins (LSPC) in certain ratios against E. coli 10899 was determined. Added low concentration of LSPC could improve the antibacterial activity of CMP, and a significant synergistic effect could be observed between them, especially when the concentration of CMP was below its critical concentration (1.35 mg/mL). Then, the interaction between CMP and LSPC was characterized after mixing; the changes in spectral characteristics, thermal properties, crystallinity pattern, molecular weight, chain morphology and microrheological behaviour explained the influence of interaction on the structure of CMP and LSPC. The smaller molecular size, electrostatic interaction and stronger hydrophobic interaction might play important roles in improving the antibacterial activity of mixture. The dissociation constant (Kd) was determined to be 0.102±0.0008 mg/mL using MicroScale Thermophoresis (MST), and the micromorphology was observed by SEM. Therefore, this mixture might be an effective natural bacteriostat.
Collapse
|
21
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernández TY, Cianciosi D, Reboredo-Rodriguez P, Zhang J, Manna PP, Daglia M, Atanasov AG, Battino M. Dietary phytochemicals in colorectal cancer prevention and treatment: A focus on the molecular mechanisms involved. Biotechnol Adv 2018; 38:107322. [PMID: 30476540 DOI: 10.1016/j.biotechadv.2018.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Worldwide, colorectal cancer (CRC) remains a major cancer type and leading cause of death. Unfortunately, current medical treatments are not sufficient due to lack of effective therapy, adverse side effects, chemoresistance and disease recurrence. In recent decades, epidemiologic observations have highlighted the association between the ingestion of several phytochemical-enriched foods and nutrients and the lower risk of CRC. According to preclinical studies, dietary phytochemicals exert chemopreventive effects on CRC by regulating different markers and signaling pathways; additionally, the gut microbiota plays a role as vital effector in CRC onset and progression, therefore, any dietary alterations in it may affect CRC occurrence. A high number of studies have displayed a key role of growth factors and their signaling pathways in the pathogenesis of CRC. Indeed, the efficiency of dietary phytochemicals to modulate carcinogenic processes through the alteration of different molecular targets, such as Wnt/β-catenin, PI3K/Akt/mTOR, MAPK (p38, JNK and Erk1/2), EGFR/Kras/Braf, TGF-β/Smad2/3, STAT1-STAT3, NF-кB, Nrf2 and cyclin-CDK complexes, has been proven, whereby many of these targets also represent the backbone of modern drug discovery programs. Furthermore, epigenetic analysis showed modified or reversed aberrant epigenetic changes exerted by dietary phytochemicals that led to possible CRC prevention or treatment. Therefore, our aim is to discuss the effects of some common dietary phytochemicals that might be useful in CRC as preventive or therapeutic agents. This review will provide new guidance for research, in order to identify the most studied phytochemicals, their occurrence in foods and to evaluate the therapeutic potential of dietary phytochemicals for the prevention or treatment of CRC by targeting several genes and signaling pathways, as well as epigenetic modifications. In addition, the results obtained by recent investigations aimed at improving the production of these phytochemicals in genetically modified plants have been reported. Overall, clinical data on phytochemicals against CRC are still not sufficient and therefore the preventive impacts of dietary phytochemicals on CRC development deserve further research so as to provide additional insights for human prospective studies.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Francesca Giampieri
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Patricia Reboredo-Rodriguez
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Jiaojiao Zhang
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Piera Pia Manna
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia 27100, Italy
| | - Atanas Georgiev Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, Jastrzebiec 05-552, Poland.
| | - Maurizio Battino
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| |
Collapse
|
22
|
Chio CC, Tai YT, Mohanraj M, Liu SH, Yang ST, Chen RM. Honokiol enhances temozolomide-induced apoptotic insults to malignant glioma cells via an intrinsic mitochondrion-dependent pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 49:41-51. [PMID: 30217261 DOI: 10.1016/j.phymed.2018.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/24/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Temozolomide (TMZ) is a first-line chemotherapeutic drug for malignant gliomas. Nonetheless, TMZ-induced side effects and drug resistance remain challenges. Our previous study showed the suppressive effects of honokiol on growth of gliomas. PURPOSE This study was further aimed to evaluate if honokiol could enhance TMZ-induced insults toward malignant glioma cells and its possible mechanisms. METHODS Human U87 MG glioma cells were exposed to TMZ, honokiol, and a combination of TMZ and honokiol. Cell survival, apoptosis, necrosis, and proliferation were successively assayed. Fluorometric substrate assays were conducted to determine activities of caspase-3, -6, -8, and -9. Levels of Fas ligand, Bax, and cytochrome c were immunodetected. Translocation of Bax to mitochondria were examined using confocal microscopy. Mitochondrial function was evaluated by assaying the mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and complex I enzyme activity. Caspase-6 activity was suppressed using specific peptide inhibitors. The honokiol-induced effects were further confirmed using human U373 MG and murine GL261 cells. RESULTS Exposure of human U87 MG glioma cells to honokiol significantly increased TMZ-induced DNA fragmentation and cell apoptosis. Interestingly, honokiol enhanced intrinsic caspase-9 activity without affecting extrinsic Fas ligand levels and caspase-8 activity. Sequentially, TMZ-induced changes in Bax translocation, the MMP, mitochondrial complex I enzyme activity, intracellular ROS levels, and cytochrome c release were enhanced by honokiol. Consequently, honokiol amplified TMZ-induced activation of caspases-3 and -6 in human U87 MG cells. Fascinatingly, suppressing caspase-6 activity concurrently decreased honokiol-induced DNA fragmentation and cell apoptosis. The honokiol-involved improvement in TMZ-induced intrinsic apoptosis was also confirmed in human U373 MG and murine GL261 glioma cells. CONCLUSIONS This study showed that honokiol can enhance TMZ-induced apoptotic insults to glioma cells via an intrinsic mitochondrion-dependent mechanism. Our results suggest the therapeutic potential of honokiol to attenuate TMZ-induced side effects.
Collapse
Affiliation(s)
- Chung-Ching Chio
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ting Tai
- Department of Anesthesiology, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Mahendravarman Mohanraj
- Graduate Institute of Medical Sciences, College of Medicine, Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shun-Tai Yang
- Department of Neurosurgery, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Brain Disease Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
23
|
Fischer N, Seo EJ, Efferth T. Prevention from radiation damage by natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 47:192-200. [PMID: 30166104 DOI: 10.1016/j.phymed.2017.11.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/20/2017] [Accepted: 11/12/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Radiotherapy is a mainstay of cancer treatment since decades. Ionizing radiation (IR) is used for destruction of cancer cells and shrinkage of tumors. However, the increase of radioresistance in cancer cells and radiation toxicity to normal tissues are severe concerns. The exposure to radiation generates intracellular reactive oxygen species (ROS), which leads to DNA damage by lipid peroxidation, removal of thiol groups from cellular and membrane proteins, strand breaks and base alterations. HYPOTHESIS Plants have to deal with radiation-induced damage (UV-light of sun, other natural radiation sources). Therefore, it is worth speculating that radioprotective mechanisms have evolved during evolution of life. We hypothesize that natural products from plants may also protect from radiation damage caused as adverse side effects of cancer radiotherapy. METHODS The basis of this systematic review, we searched the relevant literature in the PubMed database. RESULTS Flavonoids, such as genistein, epigallocatechin-3-gallate, epicatechin, apigenin and silibinin mainly act as antioxidant, free radical scavenging and anti-inflammatory compounds, thus, providing cytoprotection in addition to downregulation of several pro-inflammatory cytokines. Comparable effects have been found in phenylpropanoids, especially caffeic acid phenylethylester, curcumin, thymol and zingerone. Besides, resveratrol and quercetin are the most important cytoprotective polyphenols. Their radioprotective effects are mediated by a wide range of mechanisms mainly leading to direct or indirect reduction of cellular stress. Ascorbic acid is broadly used as antioxidant, but it has also shown activity in reducing cellular damage after irradiation mainly due to its antioxidant capabilities. The metal ion chelator, gallic acid, represents another natural product attenuating cellular damage caused by radiation. CONCLUSIONS Some secondary metabolites from plants reveal radioprotective features against cellular damage caused by irradiation. These results warrant further analysis to develop phytochemicals as radioprotectors for clinical use.
Collapse
Affiliation(s)
- Nicolas Fischer
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
24
|
Mirza-Aghazadeh-Attari M, Darband SG, Kaviani M, Mihanfar A, Aghazadeh Attari J, Yousefi B, Majidinia M. DNA damage response and repair in colorectal cancer: Defects, regulation and therapeutic implications. DNA Repair (Amst) 2018; 69:34-52. [PMID: 30055507 DOI: 10.1016/j.dnarep.2018.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022]
Abstract
DNA damage response, a key factor involved in maintaining genome integrity and stability, consists of several kinase-dependent signaling pathways, which sense and transduce DNA damage signal. The severity of damage appears to determine DNA damage responses, which can include cell cycle arrest, damage repair and apoptosis. A number of recent studies have demonstrated that defection in signaling through this network is thought to be an underlying mechanism behind the development and progression of various types of human malignancies, including colorectal cancer. In this review, colorectal cancer and its molecular pathology as well as DNA damage response is briefly introduced. Finally, the involvement of key components of this network in the initiation/progression, prognosis, response to treatment and development of drug resistance is comprehensively discussed.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Ainaz Mihanfar
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
25
|
Özenver N, Saeed M, Demirezer LÖ, Efferth T. Aloe-emodin as drug candidate for cancer therapy. Oncotarget 2018; 9:17770-17796. [PMID: 29707146 PMCID: PMC5915154 DOI: 10.18632/oncotarget.24880] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
As a leading cause of global mortality, cancer frequently cannot be cured due to the development of drug resistance. Therefore, novel drugs are required. Naturally occurring anthraquinones are mostly present in Rumex and Rhamnus species and are of interest because of their structural similarity to anthracyclines as well established anticancer drugs. In the present study, we focused on the structural elucidation of phytochemicals from R. acetosella as well as the investigation of cytotoxicity and modes of action of the main anthraquinone aglycons (emodin, Aloe-emodin, physcion, rhein). Resazurin reduction and protease viability marker assays were conducted to test their cytotoxicity. Microarray-based gene expression profiling was performed to identify cellular pathways affected by the compounds, which was validated by qPCR analyses and functional assays. Flow cytometry was used to measure cell cycle distribution, apoptosis and necrosis, induction of reactive oxygen species (ROS) and disruption of mitochondrial membrane potential (MMP). The comet assay was used to detect DNA damage. Aloe-emodin as the most cytotoxic compound revealed IC50 values from 9.872 μM to 22.3 μM in drug-sensitive wild-type cell lines and from 11.19 μM to 33.76 μM in drug-resistant sublines, was selected to investigate its mechanism against cancer. Aloe-emodin-induced S phase arrest, ROS generation, DNA damage and apoptosis. Microarray hybridization revealed a profile of deregulated genes in Aloe-emodin-treated CCRF-CEM cells with diverse functions such as cell death and survival, cellular growth and proliferation, cellular development, gene expression, cellular function and maintenance. Aloe-emodin as well as R. acetosella deserve further investigations as possible antineoplastic drug candidates.
Collapse
Affiliation(s)
- Nadire Özenver
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Mohamed Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Lütfiye Ömur Demirezer
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
26
|
Seo EJ, Fischer N, Efferth T. Phytochemicals as inhibitors of NF-κB for treatment of Alzheimer’s disease. Pharmacol Res 2018; 129:262-273. [DOI: 10.1016/j.phrs.2017.11.030] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022]
|
27
|
Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ali B, Shah SA, Khalil AT. Plant-derived anticancer agents: A green anticancer approach. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.10.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
28
|
Kong R, Kang OH, Seo YS, Zhou T, Kim SA, Shin DW, Kwon DY. MAPKs and NF‑κB pathway inhibitory effect of bisdemethoxycurcumin on phorbol‑12‑myristate‑13‑acetate and A23187‑induced inflammation in human mast cells. Mol Med Rep 2017; 17:630-635. [PMID: 29115448 DOI: 10.3892/mmr.2017.7852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/21/2017] [Indexed: 11/05/2022] Open
Abstract
Inflammation‑associated damage may occur in any tissue following infection, exposure to toxins, following ischemia, and in allergic and auto‑immune reactions. Inflammation may also result from mast cell degranulation induced by the intracellular calcium concentration. The inflammatory process may be inhibited by compounds that affect mast cells. Bisdemethoxycurcumin [1,7‑bis(4‑hydroxyphenyl) hepta‑1,6‑diene‑3,5‑dione, BDCM] is the active component of turmeric. It has anticancer, antioxidant and antibacterial properties. To investigate the molecular mechanism associated with the anti‑inflammatory activity of BDCM, human mast cell line 1 (HMC‑1) cells were treated with phorbol‑12‑myristate‑13‑acetate (PMA) and calcium ionophore A23187 (A23187) to induce the inflammatory process. Various HMC‑1 cells were pretreated with BDCM prior to stimulation of inflammation. BDCM inhibited the inflammation‑triggered production of cytokines including interleukin (IL)‑6, IL‑8, and tumor necrosis factor (TNF)‑α. BDCM inhibition extended to the gene level. In activated HMC‑1 cells, phosphorylation levels of extracellular signal‑regulated kinase, c‑jun N‑terminal kinase and p38 mitogen‑activated protein kinase were decreased by treatment with BDCM. BDCM also inhibited nuclear factor‑(NF)‑κB activation and IκB degradation. In conclusion, BDCM suppresses the expression of TNF‑α, IL‑8, and IL‑6 by inhibiting the NF‑κB and mitogen activated protein kinase signaling pathways.
Collapse
Affiliation(s)
- Ryong Kong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Yun-Soo Seo
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Tian Zhou
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sang-A Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Dong-Won Shin
- Department of Oriental Medicine Resources, College of Bio Industry Science, Sunchon National University, Sunchon, Jeonnam 57922, Republic of Korea
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|