1
|
Kainuma M, Kawakatsu S, Kim JD, Ouma S, Iritani O, Yamashita KI, Ohara T, Hirano S, Suda S, Hamano T, Hieda S, Yasui M, Yoshiiwa A, Shiota S, Hironishi M, Wada-Isoe K, Sasabayashi D, Yamasaki S, Murata M, Funakoshi K, Hayashi K, Shirafuji N, Sasaki H, Kajimoto Y, Mori Y, Suzuki M, Ito H, Ono K, Tsuboi Y. Metabolic changes in the plasma of mild Alzheimer's disease patients treated with Hachimijiogan. Front Pharmacol 2023; 14:1203349. [PMID: 37377927 PMCID: PMC10292017 DOI: 10.3389/fphar.2023.1203349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Background: Alzheimer's disease (AD), the most prevalent form of dementia, is a debilitating, progressive neurodegeneration. Amino acids play a wide variety of physiological and pathophysiological roles in the nervous system, and their levels and disorders related to their synthesis have been related to cognitive impairment, the core feature of AD. Our previous multicenter trial showed that hachimijiogan (HJG), a traditional Japanese herbal medicine (Kampo), has an adjuvant effect for Acetylcholine estelase inhibitors (AChEIs) and that it delays the deterioration of the cognitive dysfunction of female patients with mild AD. However, there are aspects of the molecular mechanism(s) by which HJG improves cognitive dysfunction that remain unclear. Objectives: To elucidate through metabolomic analysis the mechanism(s) of HJG for mild AD based on changes in plasma metabolites. Methods: Sixty-seven patients with mild AD were randomly assigned to either an HJG group taking HJG extract 7.5 g/day in addition to AChEI or to a control group treated only with AChEI (HJG:33, Control:34). Blood samples were collected before, 3 months, and 6 months after the first drug administration. Comprehensive metabolomic analyses of plasma samples were done by optimized LC-MS/MS and GC-MS/MS methods. The web-based software MetaboAnalyst 5.0 was used for partial least square-discriminant analysis (PLS-DA) to visualize and compare the dynamics of changes in the concentrations of the identified metabolites. Results: The VIP (Variable Importance in Projection) score of the PLS-DA analysis of female participants revealed a significantly higher increase in plasma metabolite levels after HJG administration for 6 months than was seen in the control group. In univariate analysis, the aspartic acid level of female participants showed a significantly higher increase from baseline after HJG administration for 6 months when compared with the control group. Conclusion: Aspartic acid was a major contributor to the difference between the female HJG and control group participants of this study. Several metabolites were shown to be related to the mechanism of HJG effectiveness for mild AD.
Collapse
Affiliation(s)
- Mosaburo Kainuma
- Department of Japanese Oriental Medicine Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shinobu Kawakatsu
- Aizu Medical Center, Department of Neuropsychiatry, Fukushima Medical University, Aizuwakamatsu, Japan
| | - Jun-Dal Kim
- Department of Research and Development, Division of Complex Biosystem Research (CBR), Institute of National Medicine (INM), University of Toyama, Toyama, Japan
| | - Shinji Ouma
- Department of Neurology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Osamu Iritani
- Department of Geriatric Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Ken-Ichiro Yamashita
- Translational Neuroscience Center, Graduate School of Medicine, International University of Health and Welfare, Tochigi, Japan
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shiro Suda
- Department of Psychiatry, Jichi Medical University, Tochigi, Japan
| | - Tadanori Hamano
- Second Department of Internal Medicine, Division of Neurology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Sotaro Hieda
- Department of Medicine, Division of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Masaaki Yasui
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Aoi Yoshiiwa
- Department of General Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Seiji Shiota
- Department of General Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Masaya Hironishi
- Department of Internal Medicine, Wakayama Medical University Kihoku Hospital, Wakayama, Japan
| | - Kenji Wada-Isoe
- Department of Dementia Medicine, Kawasaki Medical School, Okayama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Sho Yamasaki
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Masayuki Murata
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Kouta Funakoshi
- Department of Clinical Research Promotion, Kyushu University Hospital, Fukuoka, Japan
| | - Kouji Hayashi
- Department of Rehabilitation, Fukui Health Science University, Fukui, Japan
| | - Norimichi Shirafuji
- Second Department of Internal Medicine, Division of Neurology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hirohito Sasaki
- Second Department of Internal Medicine, Division of Neurology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yoshinori Kajimoto
- Department of Internal Medicine, Wakayama Medical University Kihoku Hospital, Wakayama, Japan
| | - Yukiko Mori
- Department of Medicine, Division of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Yoshio Tsuboi
- Department of Neurology, School of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
2
|
Kagawa S, Tanabe K, Hiromura M, Ogawa K, Koga T, Maeda T, Amo-Shiinoki K, Ochi H, Ichiki Y, Fukuyama S, Suzuki S, Suizu N, Ohmine T, Hamachi S, Tsuneki H, Okuya S, Sasaoka T, Tanizawa Y, Nagashima F. Hachimijiogan, a traditional herbal medicine, modulates adipose cell function and ameliorates diet-induced obesity and insulin resistance in mice. Front Pharmacol 2023; 14:1167934. [PMID: 37251332 PMCID: PMC10217779 DOI: 10.3389/fphar.2023.1167934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Hachimijiogan (HJG) has originally been used to ameliorate a variety of symptoms associated with low ambient temperatures. However, its pharmacological action in metabolic organs remains unclear. We hypothesized that HJG may modulate metabolic function and have a potential therapeutic application to metabolic diseases. To test this hypothesis, we investigated metabolic action of HJG in mice. Male C57BL/6J mice chronically administered with HJG showed a reduction in adipocyte size with increased transcription of beige adipocyte-related genes in subcutaneous white adipose tissue. HJG-mixed high-fat diet (HFD)-fed mice showed alleviation of HFD-induced weight gain, adipocyte hypertrophy, liver steatosis with a significant reduction in circulating leptin and Fibroblast growth factor 21 despite no changes in food intake or oxygen consumption. Feeding an HJG-mixed HFD following 4-weeks of HFD feeding, while a limited effect on body weight, improved insulin sensitivity with a reversal of decreased circulating adiponectin. In addition, HJG improved insulin sensitivity in the leptin-deficient mice without significant effects on body weight. Treatment with n-butanol soluble extracts of HJG potentiated transcription of Uncoupling protein 1 mediated by β3-adrenergic agonism in 3T3L1 adipocytes. These findings provide evidence that HJG modulates adipocyte function and may exert preventive or therapeutic effects against obesity and insulin resistance.
Collapse
Affiliation(s)
- Syota Kagawa
- Department of Natural Products Chemistry, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Katsuya Tanabe
- Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Makoto Hiromura
- Department of Pharmaceutics and Biochemistry, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Kakuyou Ogawa
- Department of Natural Medicine, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Takayuki Koga
- Department of Hygienic Chemistry, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Takahiro Maeda
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Kikuko Amo-Shiinoki
- Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hiroyuki Ochi
- Department of Natural Products Chemistry, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Yui Ichiki
- Department of Natural Products Chemistry, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Shogo Fukuyama
- Department of Natural Products Chemistry, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Saori Suzuki
- Department of Natural Products Chemistry, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Natsuki Suizu
- Department of Natural Products Chemistry, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Takaaki Ohmine
- Department of Natural Products Chemistry, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Sakurako Hamachi
- Department of Natural Products Chemistry, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Shigeru Okuya
- Health Administration Centre, Organisation for University Education, Yamaguchi University, Yamaguchi, Japan
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Yukio Tanizawa
- Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Fumihiro Nagashima
- Department of Natural Products Chemistry, Daiichi University of Pharmacy, Fukuoka, Japan
| |
Collapse
|
3
|
Kainuma M, Ouma S, Kawakatsu S, Iritani O, Yamashita KI, Ohara T, Hirano S, Suda S, Hamano T, Hieda S, Yasui M, Yoshiiwa A, Shiota S, Hironishi M, Wada-Isoe K, Sasabayashi D, Yamasaki S, Murata M, Funakoshi K, Hayashi K, Shirafuji N, Sasaki H, Kajimoto Y, Mori Y, Suzuki M, Ito H, Ono K, Tsuboi Y. An exploratory, open-label, randomized, multicenter trial of hachimijiogan for mild Alzheimer’s disease. Front Pharmacol 2022; 13:991982. [PMID: 36313371 PMCID: PMC9616163 DOI: 10.3389/fphar.2022.991982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Alzheimer’s disease (AD) is a progressive neurodegeneration and is the most prevalent form of dementia. Intervention at an early stage is imperative. Although three acetylcholinesterase inhibitors (AChEIs) are currently approved for the treatment of mild AD, they are not sufficiently effective. Novel treatments for mild AD are of utmost importance. Objective: To assess the effectiveness of hachimijiogan (HJG), a traditional Japanese herbal medicine (Kampo), in the treatment of mild AD. Methods: This exploratory, open-label, randomized, multicenter trial enrolled patients with mild AD whose score on the Mini Mental State Examination (MMSE) was over 21points. All participants had been taking the same dosage of AChEI for more than 3 months. The participants were randomly assigned to an HJG group taking HJG extract 7.5 g/day in addition to AChEI or to a control group treated only with AChEI. The primary outcome was the change from baseline to 6 months post treatment initiation on the Alzheimer’s Disease Assessment Scale-cognitive component- Japanese version(ADAS-Jcog). The secondary outcomes were change from baseline of the Instrumental Activity of Daily Life (IADL), Apathy scale, and Neuropsychiatric Inventory (NPI) -Q score. Results: Among the 77 enrollees, the data of 69(34 HJG and 35 control)were available for analysis. The difference in the change of ADAS-Jcog from baseline to 6 months of the HJG and control groups was 1.29 (90% Confidence interval (CI), −0.74 to 3.32 p = 0.293). In the subgroup analysis, the differences in the change from baseline to 3 and 6 months for women were 3.70 (90% CI ,0.50 to 6.91, p = 0.059) and 2.90 (90% CI,0.09 to 5.71, p = 0.090), respectively. For patients over 65 years, the difference at 3 months was 2.35 (90%CI, 0.01 to 4.68 p = 0.099). No significant differences were found between the HJG and control groups in IADL score, Apathy scale, or NPI-Q score. Conclusion: Although not conclusive, our data indicate that HJG has an adjuvant effect for acetylcholinesterase inhibitors and that it delays the deterioration of the cognitive dysfunction of mild Altzheimer’s disease patients. Clinical Trial Registration:http://clinicaltrials.gov Japan Registry of clinical trials, identifier jRCTs 071190018
Collapse
Affiliation(s)
- Mosaburo Kainuma
- Department of Japanese Oriental Medicine, Toyama University Hospital, Toyama, Japan
- *Correspondence: Mosaburo Kainuma,
| | - Shinji Ouma
- Department of Neurology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shinobu Kawakatsu
- Department of Neuropsychiatry, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu, Japan
| | - Osamu Iritani
- Department of Geriatric Medicine, Kanazawa Medical University, Kanazawa, Ishikawa, Japan
| | - Ken-Ichiro Yamashita
- Translational Neuroscience Center, Graduate School of Medicine, International University of Health and Welfare, Tochigi, Japan
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shiro Suda
- Department of Psychiatry, Jichi Medical University, Tochigi, Japan
| | - Tadanori Hamano
- Division of Neurology, Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Sotaro Hieda
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masaaki Yasui
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Aoi Yoshiiwa
- Department of General Medicine, Oita UniversityFaculty of Medicine, Oita, Japan
| | - Seiji Shiota
- Department of General Medicine, Oita UniversityFaculty of Medicine, Oita, Japan
| | - Masaya Hironishi
- Department of Internal Medicine, Wakayama Medical University Kihoku Hospital, Wakayama, Japan
| | - Kenji Wada-Isoe
- Department of Dementia Medicine, Kawasaki Medical School, Okayama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Sho Yamasaki
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Masayuki Murata
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Kouta Funakoshi
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan
| | - Kouji Hayashi
- Department of Rehabilitation, Fukui Health Science University, Fukui, Japan
| | - Norimichi Shirafuji
- Division of Neurology, Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hirohito Sasaki
- Division of Neurology, Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yoshinori Kajimoto
- Department of Internal Medicine, Wakayama Medical University Kihoku Hospital, Wakayama, Japan
| | - Yukiko Mori
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Yoshio Tsuboi
- Department of Neurology, School of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
4
|
Bailly C. Pharmacological Properties and Molecular Targets of Alisol Triterpenoids from Alismatis Rhizoma. Biomedicines 2022; 10:biomedicines10081945. [PMID: 36009492 PMCID: PMC9406200 DOI: 10.3390/biomedicines10081945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
More than 100 protostane triterpenoids have been isolated from the dried rhizomes of Alisma species, designated Alismatis rhizoma (AR), commonly used in Asian traditional medicine to treat inflammatory and vascular diseases. The main products are the alisols, with the lead compounds alisol-A/-B and their acetate derivatives being the most abundant products in the plant and the best-known bioactive products. The pharmacological effects of Ali-A, Ali-A 24-acetate, Ali-B, Ali-B 23-acetate, and derivatives have been analyzed to provide an overview of the medicinal properties, signaling pathways, and molecular targets at the origin of those activities. Diverse protein targets have been proposed for these natural products, including the farnesoid X receptor, soluble epoxide hydrolase, and other enzymes (AMPK, HCE-2) and functional proteins (YAP, LXR) at the origin of the anti-atherosclerosis, anti-inflammatory, antioxidant, anti-fibrotic, and anti-proliferative activities. Activities were classified in two groups. The lipid-lowering and anti-atherosclerosis effects benefit from robust in vitro and in vivo data (group 1). The anticancer effects of alisols have been largely reported, but, essentially, studies using tumor cell lines and solid in vivo data are lacking (group 2). The survey shed light on the pharmacological properties of alisol triterpenoids frequently found in traditional phytomedicines.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille (Wasquehal), France
| |
Collapse
|
5
|
Intron retention is a stress response in sensor genes and is restored by Japanese herbal medicines: A basis for future clinical applications. Gene X 2022; 830:146496. [PMID: 35504437 DOI: 10.1016/j.gene.2022.146496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Intron retention (IR) is a regulatory mechanism that can retard protein production by acting at the level of mRNA processing. We recently demonstrated that IR occurs at the pre-symptomatic state during the aging process of a mouse model of aging, providing a promising biomarker for that state, and can be restored to the normal state by juzentaihoto (JTT), a Japanese herbal medicine (Kampo) (Okada et al. 2021). Here we characterized the genes that accumulate retained introns, examined the biological significance of increased IR in these genes for the host, and determined whether drugs other than JTT can have this effect. By analyzing RNA-sequencing data generated from the hippocampus of the 19-week-old SAMP8 mouse, a model for studying age-related depression and Alzheimer's disease, we showed that genes with increased IR are generally involved in multiple metabolic pathways and have pivotal roles in sensing homeostasis. We thus propose that IR is a stress response and works to fine-tune the expression of many downstream target genes, leading to lower levels of their translation under stress conditions. Interestingly, Kampo medicines, as well as other organic compounds, restored splicing of a specific set of retained introns in these sensor genes in accordance with the physiological recovery conditions of the host, which corresponds with the recovery of transcripts represented by differentially expressed genes. Thus, analysis of IR genes may have broad applicability in evaluating the pre-symptomatic state based on the extent of IR of selective sensor genes, opening a promising early diagnosis of any diseases and a strategy for evaluating efficacies of several drugs based on the extent of IR restoration of these sensor genes.
Collapse
|
6
|
Jeon J, Mony TJ, Cho E, Kwon H, Cho WS, Choi JW, Kim BC, Ryu JH, Jeon SJ, Kwon KJ, Shin CY, Park SJ, Kim DH. Role of extracellular signal-regulated kinase in rubrofusarin-enhanced cognitive functions and neurite outgrowth. Biomed Pharmacother 2022; 147:112663. [DOI: 10.1016/j.biopha.2022.112663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
|
7
|
Iba H, Watanabe T, Motomura S, Harada K, Uesugi H, Shibahara T, Kubota K, Katsurabayashi S, Iwasaki K. A Japanese herbal medicine attenuates anxiety-like behavior through GABA A receptor and brain-derived neurotrophic factor expression in a rat model of premenstrual syndrome. J Pharmacol Sci 2021; 145:140-149. [PMID: 33357772 DOI: 10.1016/j.jphs.2020.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 11/28/2022] Open
Abstract
Inochinohaha White (IHW) is a Japanese herbal medicine for treating women with anxiety associated with premenstrual syndrome (PMS). In this study, we examined the effects of IHW on anxiety-like behavior in rats undergoing progesterone withdrawal (PWD), a model for PMS. Female rats were injected daily with progesterone for 21 days. Water and ethanol extracts of IHW (WE-IHW and EE-IHW, respectively) were administered orally 15 days after the initiation of progesterone injections. Anxiety-like behavior in an elevated plus maze was evaluated 48 h after the final injection of progesterone. PWD induced anxiety-like behavior, and EE-IHW (300 mg/kg), but not WE-IHW, significantly attenuated this behavior. Administration of the GABA agonists, diazepam or muscimol, significantly attenuated PWD-induced anxiety-like behavior. To investigate the underlying mechanisms of IHW action, we analyzed GABAA receptor expression in the amygdala of these rats. EE-IHW ameliorated the PWD-induced decrease in GABAA receptor β2-subunit mRNA, although β2-subunit protein was unchanged. Brain-derived neurotrophic factor (BDNF) has been reported to have anxiolytic effects and enhance GABAergic synaptic transmission. We found that EE-IHW increased BDNF levels in a dose-dependent manner. Our results suggest that EE-IHW attenuates PWD-induced anxiety-like behavior by increasing GABAA receptor-mediated signaling via increases in β2-subunit and BDNF in the amygdala.
Collapse
Affiliation(s)
- Hikari Iba
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Takuya Watanabe
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan; A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Saori Motomura
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Kyoka Harada
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Haruka Uesugi
- R&D Center, Kobayashi Pharmaceutical Co., Ltd., 4-10 Doshomachi 4-chome, Chuo-ku, Osaka, Japan.
| | - Takenori Shibahara
- R&D Center, Kobayashi Pharmaceutical Co., Ltd., 4-10 Doshomachi 4-chome, Chuo-ku, Osaka, Japan.
| | - Kaori Kubota
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan; A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan; A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
8
|
Steven A, Friedrich M, Jank P, Heimer N, Budczies J, Denkert C, Seliger B. What turns CREB on? And off? And why does it matter? Cell Mol Life Sci 2020; 77:4049-4067. [PMID: 32347317 PMCID: PMC7532970 DOI: 10.1007/s00018-020-03525-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Altered expression and function of the transcription factor cyclic AMP response-binding protein (CREB) has been identified to play an important role in cancer and is associated with the overall survival and therapy response of tumor patients. This review focuses on the expression and activation of CREB under physiologic conditions and in tumors of distinct origin as well as the underlying mechanisms of CREB regulation by diverse stimuli and inhibitors. In addition, the clinical relevance of CREB is summarized, including its use as a prognostic and/or predictive marker as well as a therapeutic target.
Collapse
Affiliation(s)
- André Steven
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Michael Friedrich
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Paul Jank
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Nadine Heimer
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Jan Budczies
- Institute of Pathology, University Clinic Heidelberg, 69120, Heidelberg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
| |
Collapse
|
9
|
Yang X, Nomoto K, Tohda C. Diosgenin content is a novel criterion to assess memory enhancement effect of yam extracts. J Nat Med 2020; 75:207-216. [PMID: 32979168 DOI: 10.1007/s11418-020-01451-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Several studies have suggested that some kind of Dioscorea species (yam) or yam-contained herbal medicines have cognitive enhancement effect. However, it has been unknown what is a crucial factor for cognitive enhancement in each Dioscorea species. In this study, we aimed to investigate whether one of the main and brain-penetrating components in yams, diosgenin, can be a novel criterion to assess memory enhancement effect of yam extracts. Although our previous studies showed that administration of diosgenin or diosgenin-rich yam extract enhanced cognitive function in normal mice and healthy humans, we have never evaluated whether the effect depends on diosgenin content or not. Therefore, we compared memory enhancement effects of low diosgenin-contained general yam water extract with diosgenin-rich yam extract on cognitive function in normal mice. We found that unlike diosgenin-rich yam, administration of general yam water extract did not enhance object recognition memory in normal mice. LC-MS/MS analyses revealed that after administration of general yam, diosgenin concentration in the brain did not reach to the effective dose because of the low diosgenin content in the original yam extract. On the other hand, when diosgenin was artificially added into general yam, the extract showed memory enhancement in normal mice and promoted neurite outgrowth in neurons. Our study suggests that diosgenin is actually an active compound in yams for memory enhancement, and diosgenin content can be a criterion for predicting cognitive enhancement effect of yam extracts.
Collapse
Affiliation(s)
- Ximeng Yang
- Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kaori Nomoto
- Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Chihiro Tohda
- Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
10
|
Kainuma M, Funakoshi K, Ouma S, Yamashita KI, Ohara T, Yoshiiwa A, Murata M, Tsuboi Y. The efficacy and safety of hachimijiogan for mild Alzheimer disease in an exploratory, open standard treatment controlled, randomized allocation, multicenter trial: A study protocol. Medicine (Baltimore) 2020; 99:e22370. [PMID: 32957414 PMCID: PMC7505293 DOI: 10.1097/md.0000000000022370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Dementia among the Japanese aged 65 years or over population is estimated to approach about 700 million cases by 2025, and a corresponding rapid increase in Alzheimer disease (AD) can also be expected. The ballooning number of dementia patients, including AD, is creating major medical and social challenges. At present, only 3 drugs are recognized for the treatment of mild AD, and these are only used to alleviate symptoms. Although new therapies are needed to treat mild AD, insufficient development of disease-modifying drugs is being done. METHODS/DESIGN The aim of this exploratory, open standard, treatment-controlled, randomized allocation, multicenter trial is to determine the efficacy of the traditional Japanese Kampo medicine hachimijiogan (HJG) on the cognitive dysfunction of mild AD.Eighty-six patients with AD diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 and as mild AD according to the Mini Mental State Examination (MMSE ≥21) will be included. All will already have been taking the same dose of Donepezil, Galantamine, or Rivastigmine for more than 3 months. The patients will be randomly assigned to receive additional treatment with HJG or to continue mild AD treatment without additional HJG. The primary endpoint is the change from baseline of the Alzheimer's Disease Assessment Scale-cognitive component- Japanese version (ADAS-Jcog). ADAS-Jcog is a useful index for detecting change over time that investigates memory and visuospatial cognition injury from the early stage. The secondary endpoints are the changes from baseline of the Instrumental Activity of Daily Life, Apathy scale, and Nueropsychiatric Inventory scores. In this protocol, we will examine the Geriatric depression scale and do Metabolome analysis as exploratory endpoints. The recruitment period will be from August 2019 to July 2021. DISCUSSION This is the first trial of Kampo medicine designed to examine the efficacy of HJG for the cognitive dysfunction of patients with mild AD. TRIAL REGISTRATION This trial was registered on the Japan Registry of Clinical trials on 2 August 2, 2019 (jRCTs 071190018).
Collapse
Affiliation(s)
- Mosaburo Kainuma
- Community Medicine Education Unit, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kouta Funakoshi
- Department of Clinical Research Promotion, Kyushu University Hospital, Fukuoka, Japan
| | - Shinji Ouma
- Department of Neurology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Ken-ichiro Yamashita
- Department of Clinical Neurophysiology, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aoi Yoshiiwa
- Department of General Medicine, Oita University, Faculty of Medicine, Oita, Japan
| | - Masayuki Murata
- Department of General Internal Medicine, Kyushu University Hospital, Japan
| | - Yoshio Tsuboi
- Department of Neurology, School of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
11
|
Yu ZR, Jia WH, Liu C, Wang HQ, Yang HG, He GR, Chen RY, Du GH. Ganoderic acid A protects neural cells against NO stress injury in vitro via stimulating β adrenergic receptors. Acta Pharmacol Sin 2020; 41:516-522. [PMID: 32047262 PMCID: PMC7468326 DOI: 10.1038/s41401-020-0356-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/01/2020] [Indexed: 11/09/2022] Open
Abstract
Excessive nitric oxide (NO) causes extensive damage to the nervous system, and the adrenergic system is disordered in many neuropsychiatric diseases. However, the role of the adrenergic system in protection of the nervous system against sodium nitroprusside (SNP) injury remains unclear. In this study, we investigated the effect of ganoderic acid A (GA A) against SNP injury in neural cells and the role of adrenergic receptors in GA A neuroprotection. We found that SNP (0.125-2 mM) dose-dependently decreased the viability of both SH-SY5Y and PC12 cells and markedly increased NO contents. Pretreatment with GA A (10 μM) significantly attenuated SNP-induced cytotoxicity and NO increase in SH-SY5Y cells, but not in PC12 cells. Furthermore, pretreatment with GA A caused significantly higher adrenaline content in SH-SY5Y cells than in PC12 cells. In order to elucidate the mechanism of GA A-protecting SH-SY5Y cells, we added adrenaline, phentolamine, metoprolol, or ICI 118551 1 h before GA A was added to the culture medium. We found that addition of adrenaline (10 μM) significantly improved GA A protection in PC12 cells. The addition of β1-adrenergic receptor antagonist metoprolol (10 μM) or β2-adrenergic receptor antagonist ICI 118551 (0.1 μM) blocked the protective effect of GA A, whereas the addition of α-adrenergic receptor antagonist phentolamine (0.1 μM) did not affect GA A protection in SH-SY5Y cells. These results suggest that β-adrenergic receptors play an important role in the protection of GA A in SH-SY5Y cells against SNP injuries, and excessive adrenaline system activation caused great damage to the nervous system.
Collapse
|
12
|
Husna Ibrahim N, Yahaya MF, Mohamed W, Teoh SL, Hui CK, Kumar J. Pharmacotherapy of Alzheimer's Disease: Seeking Clarity in a Time of Uncertainty. Front Pharmacol 2020; 11:261. [PMID: 32265696 PMCID: PMC7105678 DOI: 10.3389/fphar.2020.00261] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is recognized as a major health hazard that mostly affects people older than 60 years. AD is one of the biggest medical, economic, and social concerns to patients and their caregivers. AD was ranked as the 5th leading cause of global deaths in 2016 by the World Health Organization (WHO). Many drugs targeting the production, aggregation, and clearance of Aβ plaques failed to give any conclusive clinical outcomes. This mainly stems from the fact that AD is not a disease attributed to a single-gene mutation. Two hallmarks of AD, Aβ plaques and neurofibrillary tangles (NFTs), can simultaneously induce other AD etiologies where every pathway is a loop of consequential events. Therefore, the focus of recent AD research has shifted to exploring other etiologies, such as neuroinflammation and central hyperexcitability. Neuroinflammation results from the hyperactivation of microglia and astrocytes that release pro-inflammatory cytokines due to the neurological insults caused by Aβ plaques and NFTs, eventually leading to synaptic dysfunction and neuronal death. This review will report the failures and side effects of many anti-Aβ drugs. In addition, emerging treatments targeting neuroinflammation in AD, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and receptor-interacting serine/threonine protein kinase 1 (RIPK1), that restore calcium dyshomeostasis and microglia physiological function in clearing Aβ plaques, respectively, will be deliberately discussed. Other novel pharmacotherapy strategies in treating AD, including disease-modifying agents (DMTs), repurposing of medications used to treat non-AD illnesses, and multi target-directed ligands (MTDLs) are also reviewed. These approaches open new doors to the development of AD therapy, especially combination therapy that can cater for several targets simultaneously, hence effectively slowing or stopping AD.
Collapse
Affiliation(s)
- Nurul Husna Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wael Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Faculty of Medicine, Department of Clinical Pharmacology, Menoufia University, Shebin El-Kom, Egypt
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Chua Kien Hui
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
- Glycofood Sdn Bhd, Selangor, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Shrestha T, Takahashi T, Li C, Matsumoto M, Maruyama H. Nicotine-induced upregulation of miR-132-5p enhances cell survival in PC12 cells by targeting the anti-apoptotic protein Bcl-2. Neurol Res 2020; 42:405-414. [DOI: 10.1080/01616412.2020.1735817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Tejashwi Shrestha
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Chengyu Li
- Department of Internal Medicine, The Second Hospital of Jilin University, Jilin Changchun, People's Republic of China
| | - Masayasu Matsumoto
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Sakai City Medical Center, Sakai City Hospital, Osaka, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
14
|
Zhou F, Du G, Xie J, Gu J, Jia Q, Fan Y, Yu H, Zha Z, Wang K, Ouyang L, Shao L, Feng C, Fan G. RyRs mediate lead-induced neurodegenerative disorders through calcium signaling pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134901. [PMID: 31710906 DOI: 10.1016/j.scitotenv.2019.134901] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/21/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal lead (Pb) is widely distributed in the environment and can induce neurodegeneration. Accumulating evidence has shown that ryanodine receptors (RyRs) play vital roles in neurodegenerative brain. However, whether aberrant RyRs levels contribute to Pb-induced neurodegeneration has largely remained unknown. In the present study, we report the important role of elevated levels of RyRs in Pb-induced neurodegeneration. Pb was found to upregulate the levels of RyRs in the rat hippocampal tissues and rat pheochromocytoma (PC12) cells. Furthermore, exposure to Pb induced neurodegenerative cognitive impairment in rats, depressed the long-term potentiation (LTP) in the rat brain slices, increased the neuronal intracellular free calcium concentration ([Ca2+]i), inhibited the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclic adenosine 3',5'-monophosphate (cAMP) response element binding protein (CREB) as well as the expression of anti-apoptotic protein B-cell lymphoma 2 (Bcl2), and activated the phosphorylation of extracellular regulated protein kinases (Erk) protein both in vitro and in vivo. In addition, the knockdown of RyR3 in PC12 cells significantly decreased the [Ca2+]i levels, increased the CaMKIIα and CREB phosphorylation, decrease the phosphorylation of Erk, and elongated the cognitive function-related neurite outgrowth after exposure to Pb. Moreover, treatment with a RyRs agonist showed the involvement of RyRs in Pb-induced depression in LTP in the rat brain slices. In summary, we determined that Pb-mediated upregulation of RyRs led to neurodegeneration via high levels of free calcium, depression of the calcium-dependent CaMKIIα/CREB mnemonic signaling pathway, and activation of the calcium-dependent Erk/Bcl2 apoptotic signaling pathway. These findings on the impact of Pb on the levels of RyRs could further improve our understanding of Pb-induced neurotoxicity and provide a promising molecular target to antagonize Pb-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guihua Du
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Junwang Gu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Qiyue Jia
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Ying Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Han Yu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Zhipeng Zha
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Kai Wang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lu Ouyang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
15
|
He Q, Sawada M, Yamasaki N, Akazawa S, Furuta H, Uenishi H, Meng X, Nakahashi T, Ishigaki Y, Moriya J. Neuroinflammation, Oxidative Stress, and Neurogenesis in a Mouse Model of Chronic Fatigue Syndrome, and the Treatment with Kampo Medicine. Biol Pharm Bull 2020; 43:110-115. [PMID: 31902915 DOI: 10.1248/bpb.b19-00616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The diagnosis of chronic fatigue syndrome (CFS) is mainly symptom-based, and the etiology is still unclear. Here, we evaluated the pathological changes in the brain of a mouse model of CFS and studied the effects of Kampo medicine. A mouse model of CFS was established through six repeated injections of Brucella abortus (BA) every two weeks for a period of 12 weeks. Neuroinflammation was measured by estimating interleukin (IL)-1β, IL-6, and interferon-gamma (IFN-γ), and oxidative stress by nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE) 6 weeks after the last injection. Hippocampal neurogenesis was evaluated through Ki-67, doublecortin (DCX), and 5-bromodeoxyuridine (BrdU) assays. The effects of Kampo medicines (Hochuekkito (TJ-41) and Hachimijiogan (TJ-7)) on neuroinflammation during CFS were studied. The wheel-running activity of mice was decreased by about 50% compared to baseline at 6 weeks after the last BA injection. The levels of IL-1β, IL-6, 3-NT, and 4-HNE were increased in both the cortex and the hippocampus of CFS mice at 6 weeks after the last BA injection. Hippocampal neurogenesis was unchanged in CFS mice. Treatment with TJ-41 and TJ-7 reduced the expressions of IL-1β, IL-6, and IFN-γ in the hippocampus but not in the cortex. The results of the present study indicate that neuroinflammation and oxidative stress play important roles in the pathogenesis of CFS. The data further suggest that treatment with TJ-41 and TJ-7 could help reduce the inflammation associated with CFS in the hippocampus, but failed to improve the symptoms in CFS mice.
Collapse
Affiliation(s)
- Qiang He
- Department of General Internal Medicine, Kanazawa Medical University
| | - Mio Sawada
- Department of General Internal Medicine, Kanazawa Medical University
| | - Naruhiro Yamasaki
- Department of General Internal Medicine, Kanazawa Medical University
| | - Sumiyo Akazawa
- Department of General Internal Medicine, Kanazawa Medical University
| | - Hisakazu Furuta
- Department of General Internal Medicine, Kanazawa Medical University
| | - Hiroaki Uenishi
- Department of General Internal Medicine, Kanazawa Medical University
| | - Xiangjin Meng
- Department of General Internal Medicine, Kanazawa Medical University
| | - Takeshi Nakahashi
- Department of General Internal Medicine, Kanazawa Medical University
| | | | - Junji Moriya
- Department of General Internal Medicine, Kanazawa Medical University
| |
Collapse
|
16
|
Sun J, Xu J, Wang S, Hou Z, Lu X, An L, Du P. A new cerebroside from cordyceps militaris with anti-PTP1B activity. Fitoterapia 2019; 138:104342. [DOI: 10.1016/j.fitote.2019.104342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 01/13/2023]
|
17
|
Effects of Carbazole Derivatives on Neurite Outgrowth and Hydrogen Peroxide-Induced Cytotoxicity in Neuro2a Cells. Molecules 2019; 24:molecules24071366. [PMID: 30959983 PMCID: PMC6479671 DOI: 10.3390/molecules24071366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
Many studies have demonstrated that oxidative stress plays an important role in several ailments including neurodegenerative diseases and cerebral ischemic injury. Previously we synthesized some carbazole compounds that have anti-oxidant ability in vitro. In this present study, we found that one of these 22 carbazole compounds, compound 13 (3-ethoxy-1-hydroxy-8- methoxy-2-methylcarbazole-5-carbaldehyde), had the ability to protect neuro2a cells from hydrogen peroxide-induced cell death. It is well known that neurite loss is one of the cardinal features of neuronal injury. Our present study revealed that compound 13 had the ability to induce neurite outgrowth through the PI3K/Akt signaling pathway in neuro2a cells. These findings suggest that compound 13 might exert a neurotrophic effect and thus be a useful therapy for the treatment of brain injury.
Collapse
|
18
|
Zhou F, Xie J, Zhang S, Yin G, Gao Y, Zhang Y, Bo D, Li Z, Liu S, Feng C, Fan G. Lead, cadmium, arsenic, and mercury combined exposure disrupted synaptic homeostasis through activating the Snk-SPAR pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:674-684. [PMID: 30099283 DOI: 10.1016/j.ecoenv.2018.07.116] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/19/2018] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
Lead (Pb), cadmium (Cd), arsenic (As), and mercury (Hg) are among the leading toxic agents detected in the environment, and they have also been detected simultaneously in blood, serum, and urine samples of the general population. Meanwhile early neurologic effects and multiple interactions of Pb, Cd, As, and Hg had been found in children from environmentally polluted area. However, the current studies of these four metals were mostly limited to the interactions between any two metals, whereas the interaction characteristics between any three and four metals were rarely studied. In our study, we firstly explored the characteristics of the neurotoxic interactions among these four elements in nerve cells with factorial designs. The results showed that Pb+Cd+As+Hg co-exposure had a synergistic neurotoxic effect that was more severe than that induced by any two or three metals, when their individual metals were at human environmental exposure (in the blood of U.S. population) relevant levels and below no observed adverse effect levels (NOAELs). Therefore, Pb+Cd+As+Hg co-exposure at human environmental exposure relevant levels were further selected to examine synaptic homeostasis as the cellular and molecular foundation of learning and memory. We reported for the first time that Pb+Cd+As+Hg co-exposure induced dose-dependent decreases of the dendritic lengths and branching, as well as spine density and mature phenotype in primary hippocampal neurons, and the stimulated neurite outgrowths in NGF-differentiated PC12 cells. And the above synaptic homeostasis disruption was associated with serum induced kinase (Snk)-spine associated Rap GTPase activating protein (SPAR) pathway. Our study suggests that human environmental Pb, Cd, As, and Hg co-exposure has the potential to evoke synergistic neurotoxicity even if their individual metals are below NOAELs, which reinforces the need to control and regulate potential sources of metal contamination.
Collapse
Affiliation(s)
- Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Shuyun Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guangming Yin
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Yanyan Gao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Yuanyuan Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Dandan Bo
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Zongguang Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Sisi Liu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|