1
|
Li R, Sun K. Regulation of chondrocyte apoptosis in osteoarthritis by endoplasmic reticulum stress. Cell Stress Chaperones 2024; 29:750-763. [PMID: 39515603 PMCID: PMC11626768 DOI: 10.1016/j.cstres.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA), a common degenerative joint disease, is characterized by the apoptosis of chondrocytes as a primary pathophysiological change, with endoplasmic reticulum stress (ERS) playing a crucial role. It has been demonstrated that an imbalance in endoplasmic reticulum (ER) homeostasis can lead to ERS, activating three cellular adaptive response pathways through the unfolded protein response to restore ER homeostasis. Mild ERS exerts a protective effect on cells, while prolonged ERS that disrupts the self-regulatory balance of the ER activates apoptotic signaling pathways, leading to chondrocyte apoptosis and hastening OA progression. Hence, controlling the ERS signaling pathway and its apoptotic factors has become a critical focus for preventing and treating OA. This review aims to elucidate the key mechanisms of ERS pathway-induced apoptosis, associated targets, and regulatory pathways, offering valuable insights to enhance the mechanistic understanding of OA. It also reviews the mechanisms studied for ERS-related drugs or compounds for the treatment of OA.
Collapse
Affiliation(s)
- Renzhong Li
- Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu Province, China; The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China
| | - Kui Sun
- The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China; Anhui Acupuncture Hospital, Hefei, Anhui Province, China.
| |
Collapse
|
2
|
Song J, Liu Y, Guo Y, Yuan M, Zhong W, Tang J, Guo Y, Guo L. Therapeutic effects of tetrandrine in inflammatory diseases: a comprehensive review. Inflammopharmacology 2024; 32:1743-1757. [PMID: 38568399 DOI: 10.1007/s10787-024-01452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/20/2024] [Indexed: 05/30/2024]
Abstract
Inflammation can be triggered by any factor. The primary pathological manifestations can be summarized as the deterioration, exudation, and proliferation of local tissues, which can cause systemic damage in severe cases. Inflammatory lesions are primarily localized but may interact with body systems to cause provocative storms, parenchymal organ lesions, vascular and central nervous system necrosis, and other pathologic responses. Tetrandrine (TET) is a bisbenzylquinoline alkaloid extracted from the traditional Chinese herbal medicine Stephania tetrandra, which has been shown to have significant efficacy in inflammatory conditions such as rheumatoid arthritis, hepatitis, nephritis, etc., through NF-κB, MAPK, ERK, and STAT3 signaling pathways. TET can regulate the body's imbalanced metabolic pathways, reverse the inflammatory process, reduce other pathological damage caused by inflammation, and prevent the vicious cycle. More importantly, TET does not disrupt body's normal immune function while clearing the body's inflammatory state. Therefore, it is necessary to pay attention to its dosage and duration during treatment to avoid unexpected side effects caused by a long half-life. In summary, TET has a promising future in treating inflammatory diseases. The author reviews current therapeutic studies of TET in inflammatory conditions to provide some ideas for subsequent anti-inflammatory studies of TET.
Collapse
Affiliation(s)
- Jiawen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yushi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yurou Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Minghao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenxiao Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiamei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Yang T, Zhao S, Sun N, Zhao Y, Wang H, Zhang Y, Hou X, Tang Y, Gao X, Fan H. Network pharmacology and in vivo studies reveal the pharmacological effects and molecular mechanisms of Celastrol against acute hepatic injury induced by LPS. Int Immunopharmacol 2023; 117:109898. [PMID: 36827925 DOI: 10.1016/j.intimp.2023.109898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/28/2023] [Accepted: 02/12/2023] [Indexed: 02/24/2023]
Abstract
Sepsis is currently the main factor of death in the ICU, and the liver, as an important organ of immunity and stable metabolism, can be acutely damaged during sepsis, and the mortality rate of patients with sepsis complicated by acute liver injury is greatly increased. Celastrol (CEL) is derived from the root bark of Tripterygium wilfordii Hook.f.. As a traditional Chinese medicine, CEL has anti-inflammatory, anti-cancer, anti-oxidant, and other biological activities. Obtain CEL and AHI intersection targets via database and construct protein-protein interaction (PPI) network by STRING. GO functional enrichment and KEGG pathway analyses were performed by R studio. Targets were finally selected to perform molecular docking simulations with CEL. In vivo experiments based on the model of AHI were established by intraperitoneal injection of Lipopolysaccharide (LPS) 4 h, and pre-treated with CEL (0.5 mg/kg, 1 mg/kg, 1.5 mg/kg). The results are as follows: 273 genes with the intersection of CEL and AHI were obtained, and GO and KEGG enrichment analysis were used to design the mechanism of inflammation, apoptosis, and oxidative stress-related injury. By constructing the PPI network selected top 10 targets are: STAT3, RELA, MAPK1, MAPK3, TP53, AKT1, HSP90AA1, JUN, TNF, MAPK14, predicted CEL protection AHI design related pathways of MAPK and PI3K/AKT-related signal pathways. In vivo experiments, CEL inhibited the activation of MAPK and PI3K/AKT related pathways, reduced inflammatory response, apoptosis, and oxidative stress, and significantly improved LPS-induced AHI. In summary, this study predicted the mechanisms involved in the protective effect of CEL on AHI through network pharmacology. In vivo, CEL inhibited MAPK and PI3K/AKT-related signaling pathways, and reduced inflammatory response, apoptosis, and oxidative stress to protect LPS-induced AHI.
Collapse
Affiliation(s)
- Tianyuan Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Shuping Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Ning Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Yuan Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Hui Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Yuntong Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Xiaoyu Hou
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Yulin Tang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Xiang Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China.
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
4
|
Yuan X, Tang B, Chen Y, Zhou L, Deng J, Han L, Zhai Y, Zhou Y, Gill DL, Lu C, Wang Y. Celastrol inhibits store operated calcium entry and suppresses psoriasis. Front Pharmacol 2023; 14:1111798. [PMID: 36817139 PMCID: PMC9928759 DOI: 10.3389/fphar.2023.1111798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Psoriasis is an inflammatory autoimmune skin disease that is hard to cure and prone to relapse. Currently available global immunosuppressive agents for psoriasis may cause severe side effects, thus it is crucial to identify new therapeutic reagents and druggable signaling pathways for psoriasis. Methods: To check the effects of SOCE inhibitors on psoriasis, we used animal models, biochemical approaches, together with various imaging techniques, including calcium, confocal and FRET imaging. Results and discussion: Store operated calcium (Ca2+) entry (SOCE), mediated by STIM1 and Orai1, is crucial for the function of keratinocytes and immune cells, the two major players in psoriasis. Here we showed that a natural compound celastrol is a novel SOCE inhibitor, and it ameliorated the skin lesion and reduced PASI scores in imiquimod-induced psoriasis-like mice. Celastrol dose- and time-dependently inhibited SOCE in HEK cells and HaCaT cells, a keratinocyte cell line. Mechanistically, celastrol inhibited SOCE via its actions both on STIM1 and Orai1. It inhibited Ca2+ entry through constitutively-active Orai1 mutants independent of STIM1. Rather than blocking the conformational switch and oligomerization of STIM1 during SOCE activation, celastrol diminished the transition from oligomerized STIM1 into aggregates, thus locking STIM1 in a partially active state. As a result, it abolished the functional coupling between STIM1 and Orai1, diminishing SOCE signals. Overall, our findings identified a new SOCE inhibitor celastrol that suppresses psoriasis, suggesting that SOCE pathway may serve as a new druggable target for treating psoriasis.
Collapse
Affiliation(s)
- Xiaoman Yuan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Bin Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yilan Chen
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lijuan Zhou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jingwen Deng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yandong Zhou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Donald L. Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Youjun Wang, ; Chuanjian Lu,
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China,*Correspondence: Youjun Wang, ; Chuanjian Lu,
| |
Collapse
|
5
|
Calcium complexes of oxicams: new dimensions in rheumatoid arthritis treatment. Future Med Chem 2022; 14:1771-1788. [PMID: 36519430 DOI: 10.4155/fmc-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Various metals have been complexed with drugs to improve their cellular impact. Inflammatory diseases like rheumatoid arthritis (RA) are characterized by unbalanced production of proinflammatory cytokines (PICs) and prostaglandins with decreased levels of vitamin D and calcium. The inflammation can be suppressed through targeting the formation of PICs or related enzymes by various treatment strategies that involve the use of corticosteroids, disease-modifying antirheumatic drugs and NSAIDs. We present a detailed review on the impact of calcium complexes of oxicams as an advanced treatment strategy for RA. The calcium complexes demonstrate promising capabilities to cure the disease, improve the strength of bones and suppress PICs in RA.
Collapse
|
6
|
de Seabra Rodrigues Dias IR, Lo HH, Zhang K, Law BYK, Nasim AA, Chung SK, Wong VKW, Liu L. Potential therapeutic compounds from traditional Chinese medicine targeting endoplasmic reticulum stress to alleviate rheumatoid arthritis. Pharmacol Res 2021; 170:105696. [PMID: 34052360 DOI: 10.1016/j.phrs.2021.105696] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease which affects about 0.5-1% of people with symptoms that significantly impact a sufferer's lifestyle. The cells involved in propagating RA tend to display pro-inflammatory and cancer-like characteristics. Medical drug treatment is currently the main avenue of RA therapy. However, drug options are limited due to severe side effects, high costs, insufficient disease retardation in a majority of patients, and therapeutic effects possibly subsiding over time. Thus there is a need for new drug therapies. Endoplasmic reticulum (ER) stress, a condition due to accumulation of misfolded proteins in the ER, and subsequent cellular responses have been found to be involved in cancer and inflammatory pathologies, including RA. ER stress protein markers and their modulation have therefore been suggested as therapeutic targets, such as GRP78 and CHOP, among others. Some current RA therapeutic drugs have been found to have ER stress-modulating properties. Traditional Chinese Medicines (TCMs) frequently use natural products that affect multiple body and cellular targets, and several medicines and/or their isolated compounds have been found to also have ER stress-modulating capabilities, including TCMs used in RA treatment by Chinese Medicine practitioners. This review encourages, in light of the available information, the study of these RA-treating, ER stress-modulating TCMs as potential new pharmaceutical drugs for use in clinical RA therapy, along with providing a list of other ER stress-modulating TCMs utilized in treatment of cancers, inflammatory diseases and other diseases, that have potential use in RA treatment given similar ER stress-modulating capacity.
Collapse
Affiliation(s)
- Ivo Ricardo de Seabra Rodrigues Dias
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hang Hong Lo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Kaixi Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Ali Adnan Nasim
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| |
Collapse
|
7
|
Possible effects of chemokine-like factor-like MARVEL transmembrane domain-containing family on antiphospholipid syndrome. Chin Med J (Engl) 2021; 134:1661-1668. [PMID: 33813507 PMCID: PMC8318642 DOI: 10.1097/cm9.0000000000001449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disease defined by thrombotic or obstetrical events and persistent antiphospholipid antibodies (aPLs). Chemokine-like factor-like MARVEL transmembrane domain-containing family (CMTM) is widely expressed in the immune system and may closely related to APS. This review aimed to systematically summarize the possible effects of CMTM on APS. Publications were collected from PubMed and Web of Science databases up to August 2020. CKLF, CKLFSF, CMTM, antiphospholipid syndrome, immune cells, and immune molecules were used as search criteria. Immune cells, including neutrophil, dendritic cells (DCs), T-cells, B-cells, and inflammatory cytokines, play an important role in the development of APS. Chemokine-like factor 1 (CKLF1) has a chemotactic effect on many cells and can affect the expression of inflammatory cytokines and adhesion molecules through the nuclear factor-kB (NF-kB) pathway or mitogen-activated protein kinase (MARK) pathway. CKLF1 can participate in the maturation of DCs, T lymphocyte activation, and the activation of neutrophils through the MAPK pathway. CMTM1 may act on Annexin A2 by regulating Ca2+ signaling. CMTM2 and CMTM6 are up-regulated in neutrophils of APS patients. Some CMTM family members influence the activation and accumulation of platelets. CMTM3 and CMTM7 are binding partners of B-cell linker protein (BLNK), thereby linking B cell receptor (BCR) and activating BLNK-mediated signal transduction in B cells. Moreover, CMTM3 and CMTM7 can act on DCs and B-1a cell development, respectively. CMTM may have potential effects on the development of APS by acting on immune cells and immune molecules. Thus, CMTM may act as a novel prognostic factor or immunomodulatory treatment option of APS.
Collapse
|
8
|
Lu H, Zhang J, Jiang Z, Zhang M, Wang T, Zhao H, Zeng P. Detection of Genetic Overlap Between Rheumatoid Arthritis and Systemic Lupus Erythematosus Using GWAS Summary Statistics. Front Genet 2021; 12:656545. [PMID: 33815486 PMCID: PMC8012913 DOI: 10.3389/fgene.2021.656545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/01/2021] [Indexed: 01/04/2023] Open
Abstract
Background Clinical and epidemiological studies have suggested systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are comorbidities and common genetic etiologies can partly explain such coexistence. However, shared genetic determinations underlying the two diseases remain largely unknown. Methods Our analysis relied on summary statistics available from genome-wide association studies of SLE (N = 23,210) and RA (N = 58,284). We first evaluated the genetic correlation between RA and SLE through the linkage disequilibrium score regression (LDSC). Then, we performed a multiple-tissue eQTL (expression quantitative trait loci) weighted integrative analysis for each of the two diseases and aggregated association evidence across these tissues via the recently proposed harmonic mean P-value (HMP) combination strategy, which can produce a single well-calibrated P-value for correlated test statistics. Afterwards, we conducted the pleiotropy-informed association using conjunction conditional FDR (ccFDR) to identify potential pleiotropic genes associated with both RA and SLE. Results We found there existed a significant positive genetic correlation (rg = 0.404, P = 6.01E-10) via LDSC between RA and SLE. Based on the multiple-tissue eQTL weighted integrative analysis and the HMP combination across various tissues, we discovered 14 potential pleiotropic genes by ccFDR, among which four were likely newly novel genes (i.e., INPP5B, OR5K2, RP11-2C24.5, and CTD-3105H18.4). The SNP effect sizes of these pleiotropic genes were typically positively dependent, with an average correlation of 0.579. Functionally, these genes were implicated in multiple auto-immune relevant pathways such as inositol phosphate metabolic process, membrane and glucagon signaling pathway. Conclusion This study reveals common genetic components between RA and SLE and provides candidate associated loci for understanding of molecular mechanism underlying the comorbidity of the two diseases.
Collapse
Affiliation(s)
- Haojie Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jinhui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Zhou Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Meng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ting Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Huashuo Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
9
|
Chemokine-like factor-like MARVEL transmembrane domain-containing family in autoimmune diseases. Chin Med J (Engl) 2021; 133:951-958. [PMID: 32195671 PMCID: PMC7176445 DOI: 10.1097/cm9.0000000000000747] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTM) is widely expressed in the immune system. Abnormal expression of CMTM is associated with the development of various diseases. This article summarizes the relevant research on the role of the CMTM family in immune disorders. This information will increase our understanding of pathogenesis and identify promising targets for the diagnosis and treatment of autoimmune diseases. The CMTM family is highly expressed in peripheral blood mononuclear cells. CKLF1 may be involved in the development of arthritis through its interaction with C-C chemokine receptor 4. CKLF1 is associated with the pathogenesis of lupus nephritis and psoriasis. Both CMTM4 and CMTM5 are associated with the pathogenesis of systemic lupus erythematosus. CMTM1, CMTM2, CMTM3, and CMTM6 play a role in rheumatoid arthritis, systemic sclerosis, Sjögren syndrome, and anti-phospholipid syndrome, respectively. The CMTM family has been implicated in various autoimmune diseases. Further research on the mechanism of the action of CMTM family members may lead to the development of new treatment strategies for autoimmune diseases.
Collapse
|
10
|
Lu Y, Liu Y, Zhou J, Li D, Gao W. Biosynthesis, total synthesis, structural modifications, bioactivity, and mechanism of action of the quinone-methide triterpenoid celastrol. Med Res Rev 2020; 41:1022-1060. [PMID: 33174200 DOI: 10.1002/med.21751] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Celastrol, a quinone-methide triterpenoid, was extracted from Tripterygium wilfordii Hook. F. in 1936 for the first time. Almost 70 years later, it is considered one of the molecules most likely to be developed into modern drugs, as it exhibits notable bioactivity, including anticancer and anti-inflammatory activity, and exerts antiobesity effects. In addition, the molecular mechanisms underlying its bioactivity are being widely studied, which offers new avenues for its development as a pharmaceutical reagent. Owing to its potential therapeutic effects and unique chemical structure, celastrol has attracted considerable interest in the fields of organic, biosynthesis, and medicinal chemistry. As several steps in the biosynthesis of celastrol have been revealed, the mechanisms of key enzymes catalyzing the formation and postmodifications of the celastrol scaffold have been gradually elucidated, which lays a good foundation for the future heterogeneous biosynthesis of celastrol. Chemical synthesis is also an effective approach to obtain celastrol. The total synthesis of celastrol was realized for the first time in 2015, which established a new strategy to obtain celastroid natural products. However, owing to the toxic effects and suboptimal pharmacological properties of celastrol, its clinical applications remain limited. To search for drug-like derivatives, several structurally modified compounds were synthesized and tested. This review focuses primarily on the latest research progress in the biosynthesis, total synthesis, structural modifications, bioactivity, and mechanism of action of celastrol. We anticipate that this paper will facilitate a more comprehensive understanding of this promising compound and provide constructive references for future research in this field.
Collapse
Affiliation(s)
- Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Yuan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Dan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Liu DD, Zhang BL, Yang JB, Zhou K. Celastrol ameliorates endoplasmic stress-mediated apoptosis of osteoarthritis via regulating ATF-6/CHOP signalling pathway. J Pharm Pharmacol 2020; 72:826-835. [PMID: 32201950 DOI: 10.1111/jphp.13250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/09/2020] [Indexed: 12/13/2022]
Abstract
Abstract
Objectives
Osteoarthritis (OA) is a common degenerative joint disease with the pathological features of the reduced cartilage cellularity. Celastrol, a compound from Tripterygium wilfordii, exerted therapeutic effects on arthritis, but the potential mechanism remains unclear.
Methods
Tunicamycin was used to establish a model of OA in vitro, and ACLT surgery model in rats was applied to verify the mechanism. Chondrocytes were isolated from the knee articular cartilage of rabbit. MTT and flow cytometry assay were used to detect cell viability and apoptosis rate. Haematoxylin–eosin staining was used to assess for the histopathological changes. The activity and expression of apoptosis-related factors and ERs (endoplasmic reticulum stress)-related factors were detected by ELISA, WB, PCR and IHC, respectively.
Key findings
Celastrol exhibited significant enhancement on cell viability and reduced the rate of apoptosis in Tm-exposed chondrocytes. Celastrol reduced enzyme activity and protein expression of caspase-3, caspase-6 and caspase-9, decreased Bip, Atf6, Chop and Xbp-1 expression both at protein and mRNA levels. Celastrol showed a more significant effect on cell apoptosis rate and mRNA expression in the combination with 4-PBA.
Conclusions
This study reveals that celastrol may prevent OA by inhibiting the ERs-mediated apoptosis. All these might supply beneficial hints for celastrol on OA treatment.
Collapse
Affiliation(s)
- Da Dong Liu
- Department of Orthopedic, The Central Hospital of Zhoukou City, Henan, China
| | - Ben Li Zhang
- Department of Orthopedic, The Central Hospital of Zhoukou City, Henan, China
| | - Ji Bin Yang
- Department of Orthopedic, The Central Hospital of Zhoukou City, Henan, China
| | - Kunpeng Zhou
- Department of Orthopedic, The Central Hospital of Zhoukou City, Henan, China
| |
Collapse
|
12
|
Zhu B, Wei Y. Antitumor activity of celastrol by inhibition of proliferation, invasion, and migration in cholangiocarcinoma via PTEN/PI3K/Akt pathway. Cancer Med 2020; 9:783-796. [PMID: 31957323 PMCID: PMC6970044 DOI: 10.1002/cam4.2719] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/02/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
AIM Cholangiocarcinoma is a malignant tumor originating from bile duct epithelium. Currently, the treatment strategy is very limited and the prognosis is poor. Recent studies reported celastrol exhibits antigrowth and antimetastasis properties in many tumors. Our study aimed to assess the anti-CCA effects of cholangiocarcinoma (CCA) and the mechanisms involved in it. METHODS In this study, the long-term and short-term antiproliferation effects was determined using colony formation and Cell Counting Kit-8 (CCK-8) assays, respectively. Flow cytometry was performed to quantify apoptosis. Furthermore, wound healing and transwell assays were performed to determine the cell migration and invasion capabilities, respectively. To further find the mechanism involved in the celastrol-induced biological functions, LY204002, a PI3K/Akt signaling inhibitor, and an Akt-1 overexpression plasmid were employed to find whether PI3K/Akt pathway was involved in the celastrol-induced CCA cell inhibition. Additionally, short interfering RNA (siRNA) was also used to investigate the mechanism involved in the celastrol-induced PI3K/Akt signaling inhibition. Western blotting and immunofluorescence assays were also performed to detect the degree of relative proteins. Moreover, we validated the antiproliferation and antimetastasis effects of celastrol in vivo by constructing subcutaneous and lung metastasis nude mice models. RESULTS We discovered that celastrol effectively induced apoptotic cell death and inhibited the capacity of migration and invasion in CCA cells. Further mechanistic study identified that celastrol regulated the PI3K/Akt signaling pathway, and the antitumor efficacy was likely due to the upregulation of PTEN, a negative regulator of PI3K/Akt. Blockage of PTEN abolished the celastrol-induced PI3K/Akt signaling inhibition. Additionally, in vivo experiments conformed celastrol inhibited the tumor growth and lung metastasis with no serious side effects. CONCLUSIONS Overall, our study elucidated a mechanistic framework for the anti-CCA effects of celastrol via PTEN/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Biqiang Zhu
- Department of Oncology and Laparoscopy SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
- Translational Medicine Research and Cooperation Center of Northern ChinaHarbinHeilongjiangChina
| | - Yunwei Wei
- Department of Oncology and Laparoscopy SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
- Translational Medicine Research and Cooperation Center of Northern ChinaHarbinHeilongjiangChina
| |
Collapse
|
13
|
Meta-Analysis of Polymyositis and Dermatomyositis Microarray Data Reveals Novel Genetic Biomarkers. Genes (Basel) 2019; 10:genes10110864. [PMID: 31671645 PMCID: PMC6895911 DOI: 10.3390/genes10110864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
Polymyositis (PM) and dermatomyositis (DM) are both classified as idiopathic inflammatory myopathies. They share a few common characteristics such as inflammation and muscle weakness. Previous studies have indicated that these diseases present aspects of an auto-immune disorder; however, their exact pathogenesis is still unclear. In this study, three gene expression datasets (PM: 7, DM: 50, Control: 13) available in public databases were used to conduct meta-analysis. We then conducted expression quantitative trait loci analysis to detect the variant sites that may contribute to the pathogenesis of PM and DM. Six-hundred differentially expressed genes were identified in the meta-analysis (false discovery rate (FDR) < 0.01), among which 317 genes were up-regulated and 283 were down-regulated in the disease group compared with those in the healthy control group. The up-regulated genes were significantly enriched in interferon-signaling pathways in protein secretion, and/or in unfolded-protein response. We detected 10 single nucleotide polymorphisms (SNPs) which could potentially play key roles in driving the PM and DM. Along with previously reported genes, we identified 4 novel genes and 10 SNP-variant regions which could be used as candidates for potential drug targets or biomarkers for PM and DM.
Collapse
|
14
|
Wong VKW, Qiu C, Xu S, Law BYK, Zeng W, Wang H, Michelangeli F, Dias IRDSR, Qu YQ, Chan TW, Han Y, Zhang N, Mok SWF, Chen X, Yu L, Pan H, Hamdoun S, Efferth T, Yu WJ, Zhang W, Li Z, Xie Y, Luo R, Jiang Q, Liu L. Ca 2+ signalling plays a role in celastrol-mediated suppression of synovial fibroblasts of rheumatoid arthritis patients and experimental arthritis in rats. Br J Pharmacol 2019; 176:2922-2944. [PMID: 31124139 PMCID: PMC6637043 DOI: 10.1111/bph.14718] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 05/04/2019] [Accepted: 05/12/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Celastrol exhibits anti-arthritic effects in rheumatoid arthritis (RA), but the role of celastrol-mediated Ca2+ mobilization in treatment of RA remains undefined. Here, we describe a regulatory role for celastrol-induced Ca2+ signalling in synovial fibroblasts of RA patients and adjuvant-induced arthritis (AIA) in rats. EXPERIMENTAL APPROACH We used computational docking, Ca2+ dynamics and functional assays to study the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump (SERCA). In rheumatoid arthritis synovial fibroblasts (RASFs)/rheumatoid arthritis fibroblast-like synoviocytes (RAFLS), mechanisms of Ca2+ -mediated autophagy were analysed by histological, immunohistochemical and flow cytometric techniques. Anti-arthritic effects of celastrol, autophagy induction, and growth rate of synovial fibroblasts in AIA rats were monitored by microCT and immunofluorescence staining. mRNA from joint tissues of AIA rats was isolated for transcriptional analysis of inflammatory genes, using siRNA methods to study calmodulin, calpains, and calcineurin. KEY RESULTS Celastrol inhibited SERCA to induce autophagy-dependent cytotoxicity in RASFs/RAFLS via Ca2+ /calmodulin-dependent kinase kinase-β-AMP-activated protein kinase-mTOR pathway and repressed arthritis symptoms in AIA rats. BAPTA/AM hampered the in vitro and in vivo effectiveness of celastrol. Inflammatory- and autoimmunity-associated genes down-regulated by celastrol in joint tissues of AIA rat were restored by BAPTA/AM. Knockdown of calmodulin, calpains, and calcineurin in RAFLS confirmed the role of Ca2+ in celastrol-regulated gene expression. CONCLUSION AND IMPLICATIONS Celastrol triggered Ca2+ signalling to induce autophagic cell death in RASFs/RAFLS and ameliorated arthritis in AIA rats mediated by calcium-dependent/-binding proteins facilitating the exploitation of anti-arthritic drugs based on manipulation of Ca2+ signalling.
Collapse
Affiliation(s)
- Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Congling Qiu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Su‐Wei Xu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
- Department of Basic MedicineZhuhai Health SchoolZhuhaiChina
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Wu Zeng
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Hui Wang
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | | | | | - Yuan Qing Qu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Tsz Wai Chan
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Yu Han
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Ni Zhang
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Xi Chen
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Lu Yu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Hudan Pan
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Sami Hamdoun
- Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryUniversity of MainzMainzGermany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryUniversity of MainzMainzGermany
| | - Wen Jing Yu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Zheng Li
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Yuesheng Xie
- Guangdong General HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Riqiang Luo
- Guangdong General HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Quan Jiang
- Department of Rheumatology, Guang‐An‐Men HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| |
Collapse
|
15
|
Wang QQ, Wang CM, Cheng BH, Yang CQ, Bai B, Chen J. Signaling transduction regulated by 5-hydroxytryptamine 1A receptor and orexin receptor 2 heterodimers. Cell Signal 2018; 54:46-58. [PMID: 30481562 DOI: 10.1016/j.cellsig.2018.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 12/09/2022]
Abstract
As G-protein-coupled receptors (GPCRs), 5-hydroxytryptamine 1A receptor (5-HT1AR) and orexin receptor 2 (OX2R) regulate the levels of the cellular downstream molecules. The heterodimers of different GPCRs play important roles in various of neurological diseases. Moreover, 5-HT1AR and OX2R are involved in the pathogenesis of neurological diseases such as depression with deficiency of hippocampus plasticity. However, the direct interaction of the two receptors remains elusive. In the present study, we firstly demonstrated the heterodimer formation of 5-HT1AR and OX2R. Exchange protein directly activated by cAMP (Epac) cAMP bioluminescence resonance energy transfer (BRET) biosensor analysis revealed that the expression levels of cellular cAMP significantly increased in HEK293T cells transfected with the two receptors compared with the 5-HT1AR group. Additionally, the cellular level of calcium was upregulated robustly in HEK293T cells co-transfected with 5-HT1AR and OX2R group after agonist treatment. Furthermore, western blotting data showed that 5-HT1AR and OX2R heterodimer decreased the levels of phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP-response element-binding protein (CREB). These results not only unraveled the formation of 5-HT1AR and OX2R heterodimer but also suggested that the heterodimer affected the downstream signaling pathway, which will provide new insights into the function of the two receptors in the brain.
Collapse
Affiliation(s)
- Qin-Qin Wang
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China
| | - Chun-Mei Wang
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China
| | - Bao-Hua Cheng
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China
| | - Chun-Qing Yang
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China
| | - Bo Bai
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China.
| | - Jing Chen
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
16
|
Shi K, Chen X, Xie B, Yang SS, Liu D, Dai G, Chen Q. Celastrol Alleviates Chronic Obstructive Pulmonary Disease by Inhibiting Cellular Inflammation Induced by Cigarette Smoke via the Ednrb/Kng1 Signaling Pathway. Front Pharmacol 2018; 9:1276. [PMID: 30498444 PMCID: PMC6249343 DOI: 10.3389/fphar.2018.01276] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating disease caused by chronic exposure to cigarette smoke (CS). Celastrol is a pentacyclic triterpenoid compound exhibits potent antioxidant and anti-inflammatory activities. Also it is presently known to protect against liver damage induced by type II diabetes. However, its role in COPD is unclear. In this study, we investigated the effects of Celastrol on cellular inflammation in mice exposed to CS and Beas-2B cells treated with CS extract (CSE). C57BL/6 mice and Beas-2B cells were randomly divided into three groups: control group, COPD or CSE group, and Celastrol treatment group. The COPD mice models were subjected to smoke exposure and cell models were treated with CSE. Bioinformatics analysis was performed to identify differentially expressed genes following treatment with Celastrol in COPD, the molecular networks was mapped by Cytoscape. The levels of inflammatory cytokinesinterleukin-8, tumor necrosis factor α, monocyte chemoattractant protein-1, and oxidative stress factors superoxide dismutase and catalase were measured by enzyme-linked immunosorbent assay. Hematoxylin and eosin staining to detect the injury of mouse lung tissue. mRNA and protein levels of Ednrb and Kng1 in the tissues and cells were measured by quantitative polymerase chain reaction (PCR) and western blotting, respectively. Apoptosis was measured by flow cytometry and TUNEL staining. Compared to mice in the COPD group, mice treated with Celastrol had significantly reduced levels of inflammatory cytokines interleukin-8, tumor necrosis factor α and monocyte chemoattractant protein-1 in the serum and bronchoalveolar lavage fluid, and significantly increased levels of oxidative stress factors superoxide dismutase and catalase. The same results were obtained at the cellular level using Beas-2B cells. Compared to the model groups, Celastrol reduced lung injury in mice and significantly reduced cellular apoptosis. Bioinformatics analysis showed that Ednrb is a target gene of Celastrol and differentially expressed in COPD. Quantitative PCR analysis showed that Ednrb expression in patients with COPD was significantly increased compared to that in healthy controls. Additionally, Celastrol effectively reduced Ednrb/Kng1 expression in both cell and animal models. Celastrol has a therapeutic effect on COPD and may alleviate COPD by inhibiting inflammation development by suppressing the Ednrb/Kng1 signaling pathway.
Collapse
Affiliation(s)
- Ke Shi
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Chen
- Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Bin Xie
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Sha Sha Yang
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Da Liu
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Gan Dai
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|