1
|
Nalla K, Chatterjee B, Poyya J, Swain A, Ghosh K, Pan A, Joshi CG, Manavathi B, Kanade SR. Epigallocatechin-3-gallate inhibit the protein arginine methyltransferase 5 and enhancer of Zeste homolog 2 in breast cancer both in vitro and in vivo. Arch Biochem Biophys 2025; 763:110223. [PMID: 39581340 DOI: 10.1016/j.abb.2024.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE Histone methyltransferases are enzymes that selectively methylate lysine or arginine residues on both histone and non-histone proteins, categorized into lysine methyltransferases and arginine methyltransferases. Notably, EZH2 and PRMT5 are known for catalyzing trimethylation of H3 at K27 and symmetric dimethylation of H4 at R3, respectively. These methylation events are recognized as characteristic histone-repressive marks in cancer. The over expression of PRMT5 and EZH2 were reported in various cancers and recognized as a drug target. The study aims to explore the inhibitory potential of phytocompound, Epigallocatechin-3-gallate (EGCG), against PRMT5 and EZH2 in the breast cancer model. METHODS Screening of an array of phytocompounds was conducted through a combination of in-silico and in-vitro assays. Interactions between EGCG and human PRMT5: MEP50 and EZH2 were evaluated using molecular docking. Binding efficiency was validated, by Surface Plasmon Resonance studies and inhibitory potential was accessed by in vitro methylation followed by western blots, ELISA, and cell-based assays. In-vivo efficacy of EGCG was carried on cell line derived mice xenograft model. RESULTS EGCG demonstrated robust interactions with PRMT5:MEP50 complex and EZH2, particularly within the SAM binding site. Surface Plasmon Resonance analysis revealed strong binding affinity in nanomolar concentrations, particularly with PRMT5-MEP50 compared to EZH2. In-vitro assays confirmed EGCG's ability to inhibit PRMT5 and EZH2, leading to a decrease in their catalytic products, namely H4R3me2s and H3K27me3, respectively. EGCG treatment induced both autophagy and apoptosis invitro. In-vivo studies demonstrated significant reductions in tumor size and the proliferation marker ki67, accompanied by a decrease in histone repressive marks. CONCLUSION The findings suggest that EGCG effectively inhibits PRMT5 and EZH2, underscoring its potential for combined therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Kirankumar Nalla
- Department of Plant Sciences, School of Life Sciences University of Hyderabad PO Central University Gachibowli, Hyderabad Telangana, 500046, India
| | - Biji Chatterjee
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Jagadeesha Poyya
- SDM Research Institute for Biomedical Sciences, A Constituent Unit of Shri Dharmasthala, Manjunatheshwara University, Dharwad, 580009, Karnataka, India
| | - Aishwarya Swain
- Department for Bioinformatics, Pondicherry University, Puducherry, 605014, India
| | - Krishna Ghosh
- Department of Anaesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Archana Pan
- Department for Bioinformatics, Pondicherry University, Puducherry, 605014, India
| | - Chandrashekhar G Joshi
- Department of Studies in Biochemistry, Mangalore University PG Centre, Jnana Kaveri, Chikka Aluvara, Thorenoor Post Kushalnagar, Somawarpet TQ, Kodagu, 571232, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad PO Central University Gachibowli, Hyderabad Telangana 500046, India
| | - Santosh R Kanade
- Department of Plant Sciences, School of Life Sciences University of Hyderabad PO Central University Gachibowli, Hyderabad Telangana, 500046, India.
| |
Collapse
|
2
|
Jiao Z, Huang Y, Gong K, Liu Y, Sun J, Yu S, Zhao G. Medicinal chemistry insights into PRMT5 inhibitors. Bioorg Chem 2024; 153:107859. [PMID: 39378783 DOI: 10.1016/j.bioorg.2024.107859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/08/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a type II PRMT enzyme that plays an important role in protein formation. PRMT5 is widely distributed in the nucleus and is involved in regulating a variety of biological processes, including gene transcription, signaling, and cell proliferation. PRMT5 regulates the function and stability of histones through methylation, affecting important cellular activities such as cell cycle regulation, DNA repair, and RNA processing. Studies have shown that PRMT5 is overexpressed in a variety of tumors and is closely related to the occurrence and development of tumors. In recent years, several PRMT5 inhibitors have entered clinical trials for the treatment of various cancers. In view of their importance, this paper reviews the first generation of PRMT5 inhibitors obtained by high-throughput screening, virtual screening, lead compound optimization and substitution modification, as well as novel PRMT5 inhibitors obtained by PROTAC technology and by synthetic lethal principle. Finally, by comparing the differences between the first generation and the second generation, the challenges and future development directions of PRMT5 inhibitors are discussed.
Collapse
Affiliation(s)
- Zhihao Jiao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Yongmi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Kexin Gong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Yiru Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Jinxiao Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Shangzhe Yu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Guisen Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China.
| |
Collapse
|
3
|
Zhang W, Bai H, Wang Y, Wang X, Jin R, Guo H, Lai H, Tang Y, Wang Y. Identification of mIDH1 R132C/S280F Inhibitors from Natural Products by Integrated Molecular Docking, Pharmacophore Modeling and Molecular Dynamics Simulations. Pharmaceuticals (Basel) 2024; 17:336. [PMID: 38543123 PMCID: PMC10976062 DOI: 10.3390/ph17030336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 11/19/2024] Open
Abstract
Mutant isocitrate dehydrogenase 1 (mIDH1) is a common driving factor in acute myeloid leukemia (AML), with the R132 mutation accounting for a high proportion. The U.S. Food and Drug Administration (FDA) approved Ivosidenib, a molecular entity that targets IDH1 with R132 mutations, as a promising therapeutic option for AML with mIDH1 in 2018. It was of concern that the occurrence of disease resistance or recurrence, attributed to the IDH1 R132C/S280F second site mutation, was observed in certain patients treated with Ivosidenib within the same year. Furthermore, it should be noted that most mIDH1 inhibitors demonstrated limited efficacy against mutations at this specific site. Therefore, there is an urgent need to investigate novel inhibitors targeting mIDH1 for combating resistance caused by IDH1 R132C/S280F mutations in AML. This study aimed to identify novel mIDH1 R132C/S280F inhibitors through an integrated strategy of combining virtual screening and dynamics simulations. First, 2000 hits were obtained through structure-based virtual screening of the COCONUT database, and hits with better scores than -10.67 kcal/mol were obtained through molecular docking. A total of 12 potential small molecule inhibitors were identified through pharmacophore modeling screening and Prime MM-GBSA. Dynamics simulations were used to study the binding modes between the positive drug and the first three hits and IDH1 carrying the R132C/S280F mutation. RMSD showed that the four dynamics simulation systems remained stable, and RMSF and Rg showed that the screened molecules have similar local flexibility and tightness to the positive drug. Finally, the lowest energy conformation, hydrogen bond analysis, and free energy decomposition results indicate that in the entire system the key residues LEU120, TRP124, TRP267, and VAL281 mainly contribute van der Waals forces to the interaction, while the key residues VAL276 and CYS379 mainly contribute electrostatic forces.
Collapse
Affiliation(s)
- Weitong Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Hailong Bai
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Yifan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Xiaorui Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China;
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | | | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| |
Collapse
|
4
|
Parvatikar PP, Patil S, Khaparkhuntikar K, Patil S, Singh PK, Sahana R, Kulkarni RV, Raghu AV. Artificial intelligence: Machine learning approach for screening large database and drug discovery. Antiviral Res 2023; 220:105740. [PMID: 37935248 DOI: 10.1016/j.antiviral.2023.105740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
Recent research in drug discovery dealing with many faces difficulties, including development of new drugs during disease outbreak and drug resistance due to rapidly accumulating mutations. Virtual screening is the most widely used method in computer aided drug discovery. It has a prominent ability in screening drug targets from large molecular databases. Recently, a number of web servers have developed for quickly screening publicly accessible chemical databases. In a nutshell, deep learning algorithms and artificial neural networks have modernised the field. Several drug discovery processes have used machine learning and deep learning algorithms, including peptide synthesis, structure-based virtual screening, ligand-based virtual screening, toxicity prediction, drug monitoring and release, pharmacophore modelling, quantitative structure-activity relationship, drug repositioning, polypharmacology, and physiochemical activity. Although there are presently a wide variety of data-driven AI/ML tools available, the majority of these tools have, up to this point, been developed in the context of non-communicable diseases like cancer, and a number of obstacles have prevented the translation of these tools to the discovery of treatments against infectious diseases. In this review various aspects of AI and ML in virtual screening of large databases were discussed. Here, with an emphasis on antivirals as well as other disease, offers a perspective on the advantages, drawbacks, and hazards of AI/ML techniques in the search for innovative treatments.
Collapse
Affiliation(s)
- Prachi P Parvatikar
- Department of Biotechnology, Allied Health Science, BLDE (Deemed-to-be University), Vijayapur 586103, Karnataka, India.
| | - Sudha Patil
- Department of Pharmaceutics, BLDEA's SSM College of Pharmacy and Research Centre, Vijayapur 586 103, Karnataka, India
| | - Kedar Khaparkhuntikar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Shruti Patil
- Department of Biotechnology, Allied Health Science, BLDE (Deemed-to-be University), Vijayapur 586103, Karnataka, India
| | - Pankaj K Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - R Sahana
- Department of Computer Science and Engineering, RV Institute of Technology and Management, 560076, Bengaluru, India
| | - Raghavendra V Kulkarni
- Department of Biotechnology, Allied Health Science, BLDE (Deemed-to-be University), Vijayapur 586103, Karnataka, India; Department of Pharmaceutics, BLDEA's SSM College of Pharmacy and Research Centre, Vijayapur 586 103, Karnataka, India
| | - Anjanapura V Raghu
- Department of Science and Technology, BLDE (Deemed-to-be University), Vijayapur 586103, Karnataka, India.
| |
Collapse
|
5
|
Fu S, Zheng Q, Zhang D, Lin C, Ouyang L, Zhang J, Chen L. Medicinal chemistry strategies targeting PRMT5 for cancer therapy. Eur J Med Chem 2022; 244:114842. [DOI: 10.1016/j.ejmech.2022.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022]
|
6
|
Abstract
Background: PRMT5 is an epigenetics-related enzyme, which plays a critical role in cancer development. Hence PRMT5 inhibition has been validated as a promising therapeutic strategy. Methods & Results: We synthesized a series of methylpiperazinyl derivatives as novel PRMT5 inhibitors that were achieved by scaffold-hopping from EPZ015666 by virtual screening followed by rational drug design. Among all compounds 43g, bearing a thiourea linker, showed antitumor activity across multiple cancer cell lines and reduced the level of symmetric arginine dimethylation of SmD3 dose-dependently. Moreover, 43g selectively inhibited PRMT5 among protein arginine methyltransferase isoforms. Further proteomics analysis revealed that 43g remarkably reduced the global arginine dimethylation level in a cellular context. Conclusion: This work provides new chemical templates for future structural optimization of PRMT5-related cancer treatments.
Collapse
|
7
|
Dai W, Zhang J, Li S, He F, Liu Q, Gong J, Yang Z, Gong Y, Tang F, Wang Z, Xie C. Protein Arginine Methylation: An Emerging Modification in Cancer Immunity and Immunotherapy. Front Immunol 2022; 13:865964. [PMID: 35493527 PMCID: PMC9046588 DOI: 10.3389/fimmu.2022.865964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
In recent years, protein arginine methyltransferases (PRMTs) have emerged as new members of a gene expression regulator family in eukaryotes, and are associated with cancer pathogenesis and progression. Cancer immunotherapy has significantly improved cancer treatment in terms of overall survival and quality of life. Protein arginine methylation is an epigenetic modification function not only in transcription, RNA processing, and signal transduction cascades, but also in many cancer-immunity cycle processes. Arginine methylation is involved in the activation of anti-cancer immunity and the regulation of immunotherapy efficacy. In this review, we summarize the most up-to-date information on regulatory molecular mechanisms and different underlying arginine methylation signaling pathways in innate and adaptive immune responses during cancer. We also outline the potential of PRMT-inhibitors as effective combinatorial treatments with immunotherapy.
Collapse
Affiliation(s)
- Weijing Dai
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianguo Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Siqi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fajian He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiao Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Gong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zetian Yang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fang Tang, ; Conghua Xie, ; Zhihao Wang, ;
| | - Zhihao Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fang Tang, ; Conghua Xie, ; Zhihao Wang, ;
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fang Tang, ; Conghua Xie, ; Zhihao Wang, ;
| |
Collapse
|
8
|
Ge H, Peng L, Sun Z, Liu H, Shen Y, Yao X. Discovery of Novel HPK1 Inhibitors Through Structure-Based Virtual Screening. Front Pharmacol 2022; 13:850855. [PMID: 35370676 PMCID: PMC8967249 DOI: 10.3389/fphar.2022.850855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/17/2022] [Indexed: 01/22/2023] Open
Abstract
Hematopoietic progenitor kinase (HPK1) is a negative regulator of T-cell receptor and B-cell signaling, which has been recognized as a novel antitumor target for immunotherapy. In this work, Glide docking-based virtual screening and kinase inhibition assay were performed to identify novel HPK1 inhibitors. The kinase inhibition assay results demonstrated five compounds with IC50 values below 20 μM, and the most potent one (compound M074-2865) had an IC50 value of 2.93 ± 0.09 μM. Molecular dynamics (MD) simulations were performed to delve into the interaction of sunitinib and the identified compound M074-2865 with the kinase domain of HPK1. The five compounds identified in this work could be considered promising hit compounds for further development of HPK1 inhibitors for immunotherapy.
Collapse
Affiliation(s)
- Huizhen Ge
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Lizeng Peng
- Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Jinan, China
| | - Zhou Sun
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Xiaojun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Günes Günsel G, Conlon TM, Jeridi A, Kim R, Ertüz Z, Lang NJ, Ansari M, Novikova M, Jiang D, Strunz M, Gaianova M, Hollauer C, Gabriel C, Angelidis I, Doll S, Pestoni JC, Edelmann SL, Kohlhepp MS, Guillot A, Bassler K, Van Eeckhoutte HP, Kayalar Ö, Konyalilar N, Kanashova T, Rodius S, Ballester-López C, Genes Robles CM, Smirnova N, Rehberg M, Agarwal C, Krikki I, Piavaux B, Verleden SE, Vanaudenaerde B, Königshoff M, Dittmar G, Bracke KR, Schultze JL, Watz H, Eickelberg O, Stoeger T, Burgstaller G, Tacke F, Heissmeyer V, Rinkevich Y, Bayram H, Schiller HB, Conrad M, Schneider R, Yildirim AÖ. The arginine methyltransferase PRMT7 promotes extravasation of monocytes resulting in tissue injury in COPD. Nat Commun 2022; 13:1303. [PMID: 35288557 PMCID: PMC8921220 DOI: 10.1038/s41467-022-28809-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
Extravasation of monocytes into tissue and to the site of injury is a fundamental immunological process, which requires rapid responses via post translational modifications (PTM) of proteins. Protein arginine methyltransferase 7 (PRMT7) is an epigenetic factor that has the capacity to mono-methylate histones on arginine residues. Here we show that in chronic obstructive pulmonary disease (COPD) patients, PRMT7 expression is elevated in the lung tissue and localized to the macrophages. In mouse models of COPD, lung fibrosis and skin injury, reduced expression of PRMT7 associates with decreased recruitment of monocytes to the site of injury and hence less severe symptoms. Mechanistically, activation of NF-κB/RelA in monocytes induces PRMT7 transcription and consequential mono-methylation of histones at the regulatory elements of RAP1A, which leads to increased transcription of this gene that is responsible for adhesion and migration of monocytes. Persistent monocyte-derived macrophage accumulation leads to ALOX5 over-expression and accumulation of its metabolite LTB4, which triggers expression of ACSL4 a ferroptosis promoting gene in lung epithelial cells. Conclusively, inhibition of arginine mono-methylation might offer targeted intervention in monocyte-driven inflammatory conditions that lead to extensive tissue damage if left untreated.
Collapse
Affiliation(s)
- Gizem Günes Günsel
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Thomas M Conlon
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Aicha Jeridi
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Rinho Kim
- Institute of Functional Epigenetics, Helmholtz Munich, 85764, Munich, Germany
| | - Zeynep Ertüz
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Niklas J Lang
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Meshal Ansari
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
- Institute of Computational Biology, Helmholtz Munich, 85764, Munich, Germany
| | - Mariia Novikova
- Institute of Metabolism and Cell Death, Helmholtz Munich, 85764, Munich, Germany
- Pirogov Russian National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, Moscow, 117997, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Ostrovityanova1 bldg 10, 117997, Moscow, Russia
| | - Dongsheng Jiang
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Maximilian Strunz
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Mariia Gaianova
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Christine Hollauer
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Christina Gabriel
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Ilias Angelidis
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Sebastian Doll
- Institute of Computational Biology, Helmholtz Munich, 85764, Munich, Germany
| | - Jeanine C Pestoni
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Stephanie L Edelmann
- Research Unit Molecular Immune Regulation, Helmholtz Munich, 81377, Munich, Germany
| | - Marlene Sophia Kohlhepp
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), 13353, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), 13353, Berlin, Germany
| | - Kevin Bassler
- Department for Genomics & Immunoregulation, LIMES-Institute, University of Bonn, 53115, Bonn, Germany
- aimed analytics, 53121, Bonn, Germany
| | - Hannelore P Van Eeckhoutte
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University, University Hospital Ghent, 9000, Ghent, Belgium
| | - Özgecan Kayalar
- Koç University Research Center for Translational Medicine (KUTTAM), 34010, Istanbul, Turkey
| | - Nur Konyalilar
- Koç University Research Center for Translational Medicine (KUTTAM), 34010, Istanbul, Turkey
| | - Tamara Kanashova
- Max-Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Sophie Rodius
- Proteomics of cellular signalling, Luxembourg Institute of Health, 1272, Strassen, Luxembourg
| | - Carolina Ballester-López
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | | | - Natalia Smirnova
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, 80045, USA
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Charu Agarwal
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Ioanna Krikki
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Benoit Piavaux
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242, Vestec, Czech Republic
| | - Stijn E Verleden
- Division of Pneumology, KU Leuven, 3000, Leuven, Belgium
- Antwerp Surgical Training, Anatomy and Research Centre, University of Antwerp, 2650, Edegem, Belgium
| | | | - Melanie Königshoff
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Gunnar Dittmar
- Proteomics of cellular signalling, Luxembourg Institute of Health, 1272, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365, Esch-sur-Alzette, Luxembourg
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University, University Hospital Ghent, 9000, Ghent, Belgium
| | - Joachim L Schultze
- Department for Genomics & Immunoregulation, LIMES-Institute, University of Bonn, 53115, Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., PRECISE Platform for Single Cell Genomics and Epigenomics at DZNE and the University of Bonn, 53115, Bonn, Germany
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Grosshansdorf, Germany
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Gerald Burgstaller
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), 13353, Berlin, Germany
| | - Vigo Heissmeyer
- Research Unit Molecular Immune Regulation, Helmholtz Munich, 81377, Munich, Germany
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, 82152, Planegg-Martinsried, Germany
| | - Yuval Rinkevich
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Hasan Bayram
- Koç University Research Center for Translational Medicine (KUTTAM), 34010, Istanbul, Turkey
| | - Herbert B Schiller
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Munich, 85764, Munich, Germany
- Pirogov Russian National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, Moscow, 117997, Russia
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Munich, 85764, Munich, Germany
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany.
- Koç University Research Center for Translational Medicine (KUTTAM), 34010, Istanbul, Turkey.
| |
Collapse
|
10
|
Chen Y, Shao X, Zhao X, Ji Y, Liu X, Li P, Zhang M, Wang Q. Targeting protein arginine methyltransferase 5 in cancers: Roles, inhibitors and mechanisms. Biomed Pharmacother 2021; 144:112252. [PMID: 34619493 DOI: 10.1016/j.biopha.2021.112252] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/31/2022] Open
Abstract
The protein arginine methyltransferase 5 (PRMT5) as the major type II arginine methyltransferase catalyzes the mono- and symmetric dimethylation of arginine residues in both histone and non-histone proteins. Recently, increasing evidence has demonstrated that PRMT5 plays an indispensable role in the occurrence and development of various human cancers by promoting the cell proliferation, invasion, and migration. It has become a promising and valuable target in the cancer epigenetic therapy. This review is to summarize the clinical significance of PRMT5 in the cancers such as lung cancer, breast cancer and colorectal cancer, and the drug discovery targeting PRMT5. Importantly, the existing PRMT5 inhibitors representing different molecular mechanisms, and their pharmacological effect, mechanism of action and biological affinity are analyzed. Clinical status, current problems and future perspective of PRMT5 inhibitors for the treatment of cancers are also discussed, all of which provides crucial help for the future discovery of PRMT5 targeted drugs for cancer treatment.
Collapse
Affiliation(s)
- Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Xiaomin Shao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Xiangge Zhao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Yuan Ji
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Xiaorong Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Peixuan Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Mingyu Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China.
| |
Collapse
|
11
|
Mueller HS, Fowler CE, Dalin S, Moiso E, Udomlumleart T, Garg S, Hemann MT, Lees JA. Acquired resistance to PRMT5 inhibition induces concomitant collateral sensitivity to paclitaxel. Proc Natl Acad Sci U S A 2021; 118:e2024055118. [PMID: 34408017 PMCID: PMC8403834 DOI: 10.1073/pnas.2024055118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epigenetic regulators play key roles in cancer and are increasingly being targeted for treatment. However, for many, little is known about mechanisms of resistance to the inhibition of these regulators. We have generated a model of resistance to inhibitors of protein arginine methyltransferase 5 (PRMT5). This study was conducted in KrasG12D;Tp53-null lung adenocarcinoma (LUAD) cell lines. Resistance to PRMT5 inhibitors (PRMT5i) arose rapidly, and barcoding experiments showed that this resulted from a drug-induced transcriptional state switch, not selection of a preexisting population. This resistant state is both stable and conserved across variants arising from distinct LUAD lines. Moreover, it brought with it vulnerabilities to other chemotherapeutics, especially the taxane paclitaxel. This paclitaxel sensitivity depended on the presence of stathmin 2 (STMN2), a microtubule regulator that is specifically expressed in the resistant state. Remarkably, STMN2 was also essential for resistance to PRMT5 inhibition. Thus, a single gene is required for both acquisition of resistance to PRMT5i and collateral sensitivity to paclitaxel in our LUAD cells. Accordingly, the combination of PRMT5i and paclitaxel yielded potent and synergistic killing of the murine LUAD cells. Importantly, the synergy between PRMT5i and paclitaxel also extended to human cancer cell lines. Finally, analysis of The Cancer Genome Atlas patient data showed that high STMN2 levels correlate with complete regression of tumors in response to taxane treatment. Collectively, this study reveals a recurring mechanism of PRMT5i resistance in LUAD and identifies collateral sensitivities that have potential clinical relevance.
Collapse
Affiliation(s)
- Helen S Mueller
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Colin E Fowler
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Simona Dalin
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Enrico Moiso
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tee Udomlumleart
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Salil Garg
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114
| | - Michael T Hemann
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jacqueline A Lees
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
12
|
Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers 2021; 25:1315-1360. [PMID: 33844136 PMCID: PMC8040371 DOI: 10.1007/s11030-021-10217-3] [Citation(s) in RCA: 385] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Drug designing and development is an important area of research for pharmaceutical companies and chemical scientists. However, low efficacy, off-target delivery, time consumption, and high cost impose a hurdle and challenges that impact drug design and discovery. Further, complex and big data from genomics, proteomics, microarray data, and clinical trials also impose an obstacle in the drug discovery pipeline. Artificial intelligence and machine learning technology play a crucial role in drug discovery and development. In other words, artificial neural networks and deep learning algorithms have modernized the area. Machine learning and deep learning algorithms have been implemented in several drug discovery processes such as peptide synthesis, structure-based virtual screening, ligand-based virtual screening, toxicity prediction, drug monitoring and release, pharmacophore modeling, quantitative structure-activity relationship, drug repositioning, polypharmacology, and physiochemical activity. Evidence from the past strengthens the implementation of artificial intelligence and deep learning in this field. Moreover, novel data mining, curation, and management techniques provided critical support to recently developed modeling algorithms. In summary, artificial intelligence and deep learning advancements provide an excellent opportunity for rational drug design and discovery process, which will eventually impact mankind. The primary concern associated with drug design and development is time consumption and production cost. Further, inefficiency, inaccurate target delivery, and inappropriate dosage are other hurdles that inhibit the process of drug delivery and development. With advancements in technology, computer-aided drug design integrating artificial intelligence algorithms can eliminate the challenges and hurdles of traditional drug design and development. Artificial intelligence is referred to as superset comprising machine learning, whereas machine learning comprises supervised learning, unsupervised learning, and reinforcement learning. Further, deep learning, a subset of machine learning, has been extensively implemented in drug design and development. The artificial neural network, deep neural network, support vector machines, classification and regression, generative adversarial networks, symbolic learning, and meta-learning are examples of the algorithms applied to the drug design and discovery process. Artificial intelligence has been applied to different areas of drug design and development process, such as from peptide synthesis to molecule design, virtual screening to molecular docking, quantitative structure-activity relationship to drug repositioning, protein misfolding to protein-protein interactions, and molecular pathway identification to polypharmacology. Artificial intelligence principles have been applied to the classification of active and inactive, monitoring drug release, pre-clinical and clinical development, primary and secondary drug screening, biomarker development, pharmaceutical manufacturing, bioactivity identification and physiochemical properties, prediction of toxicity, and identification of mode of action.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Swati Tiwari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
13
|
Ge S, Zhang Q, Chen Y, Tian Y, Yang R, Chen X, Li F, Zhang B. Ribavirin inhibits colorectal cancer growth by downregulating PRMT5 expression and H3R8me2s and H4R3me2s accumulation. Toxicol Appl Pharmacol 2021; 415:115450. [PMID: 33577917 DOI: 10.1016/j.taap.2021.115450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 12/25/2022]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) and protein arginine methyltransferase 5 (PRMT5) are frequently overexpressed in colorectal cancer (CRC) tissues and associated with poor prognosis. Ribavirin, the only clinically approved drug known to target eIF4E, is an anti-viral molecule currently used in hepatitis C therapy. The potential of ribavirin to treat CRC remains largely unknown. Ribavirin treatment in CRC cell lines drastically inhibited cell proliferation and colony formation, induced S phase arrest and reduced cyclin D1, cyclin A/E and proliferating cell nuclear antigen (PCNA) levels in vitro, and suppressed tumorigenesis in mouse model of colitis-associated CRC. Mechanistically, ribavirin treatment significantly reduced PRMT5 and eIF4E protein levels and the accumulation of symmetric dimethylation of histone 3 at arginine 8 (H3R8me2s) and that of histone 4 at arginine 3 (H4R3me2s). Importantly, inhibition of PRMT5 by ribavirin resulted in promoted H3R8 methylation in eIF4E promoter region. Our results demonstrate the anti-cancer efficacy of ribavirin in CRC and suggest that the anti-cancer efficacy of ribavirin may be mediated by downregulating PRMT5 levels but not its enzymatic activity.
Collapse
Affiliation(s)
- Suyin Ge
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Qingqing Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Yonglin Chen
- Department of Pathology, First Hospital, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yizhen Tian
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Ruiying Yang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Xu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Fang Li
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Baolai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
14
|
Sapir T, Shifteh D, Pahmer M, Goel S, Maitra R. Protein Arginine Methyltransferase 5 (PRMT5) and the ERK1/2 & PI3K Pathways: A Case for PRMT5 Inhibition and Combination Therapies in Cancer. Mol Cancer Res 2020; 19:388-394. [PMID: 33288733 DOI: 10.1158/1541-7786.mcr-20-0745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/29/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
The ERK1/2 (RAS, RAF, MEK, ERK) and PI3K (PI3K, AKT, mTOR, PTEN) pathways are the chief signaling pathways for cellular proliferation, survival, and differentiation. Overactivation and hyperphosphorylation of the ERK1/2 & PI3K pathways is frequently observed in cancer and is associated with poor patient prognosis. While it is well known that genetic alterations lead to the dysregulation of the ERK1/2 & PI3K pathways, increasing evidence showcase that epigenetic alterations also play a major role in the regulation of the ERK1/2 & PI3K pathways. Protein Arginine Methyltransferase 5 (PRMT5) is a posttranslational modifier for multiple cellular processes, which is currently being tested as a therapeutic target for cancer. PRMT5 has been shown to be overexpressed in many types of cancers, as well as negatively correlated with patient survival. Numerous studies are indicating that as a posttranslational modifier, PRMT5 is extensively involved in regulating the ERK1/2 & PI3K pathways. In addition, a large number of in vitro and in vivo studies are demonstrating that PRMT5 inhibition, as well as PRMT5 and ERK1/2 & PI3K combination therapies, show significant therapeutic effects in many cancer types. In this review, we explore the vast interactions that PRMT5 has with the ERK1/2 & PI3K pathways, and we make the case for further testing of PRMT5 inhibition, as well as PRMT5 and ERK1/2 & PI3K combination therapies, for the treatment of cancer.
Collapse
Affiliation(s)
- Tzuriel Sapir
- Department of Biology, Yeshiva College, Yeshiva University, New York, New York
| | - David Shifteh
- Department of Biology, Yeshiva College, Yeshiva University, New York, New York
| | - Moshe Pahmer
- Department of Biology, Yeshiva College, Yeshiva University, New York, New York
| | - Sanjay Goel
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Radhashree Maitra
- Department of Biology, Yeshiva College, Yeshiva University, New York, New York.
| |
Collapse
|
15
|
Barbarino M, Cesari D, Bottaro M, Luzzi L, Namagerdi A, Bertolino FM, Bellan C, Proietti F, Somma P, Micheli M, de Santi MM, Guazzo R, Mutti L, Pirtoli L, Paladini P, Indovina P, Giordano A. PRMT5 silencing selectively affects MTAP-deleted mesothelioma: In vitro evidence of a novel promising approach. J Cell Mol Med 2020; 24:5565-5577. [PMID: 32301278 PMCID: PMC7214180 DOI: 10.1111/jcmm.15213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Malignant mesothelioma (MM) is an aggressive asbestos‐related cancer of the serous membranes. Despite intensive treatment regimens, MM is still a fatal disease, mainly due to the intrinsic resistance to current therapies and the lack of predictive markers and new valuable molecular targets. Protein arginine methyltransferase 5 (PRMT5) inhibition has recently emerged as a potential therapy against methylthioadenosine phosphorylase (MTAP)‐deficient cancers, in which the accumulation of the substrate 5'‐methylthioadenosine (MTA) inhibits PRMT5 activity, thus sensitizing the cells to further PRMT5 inhibition. Considering that the MTAP gene is frequently codeleted with the adjacent cyclin‐dependent kinase inhibitor 2A (CDKN2A) locus in MM, we assessed whether PRMT5 could represent a therapeutic target also for this cancer type. We evaluated PRMT5 expression, the MTAP status and MTA content in normal mesothelial and MM cell lines. We found that both administration of exogenous MTA and stable PRMT5 knock‐down, by short hairpin RNAs (shRNAs), selectively reduced the growth of MTAP‐deleted MM cells. We also observed that PRMT5 knock‐down in MTAP‐deficient MM cells reduced the expression of E2F1 target genes involved in cell cycle progression and of factors implicated in epithelial‐to‐mesenchymal transition. Therefore, PRMT5 targeting could represent a promising new therapeutic strategy against MTAP‐deleted MMs.
Collapse
Affiliation(s)
- Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Daniele Cesari
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maria Bottaro
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Luca Luzzi
- Department of Medicine, Surgery and Neurosciences, Siena University Hospital, Siena, Italy
| | - Asadoor Namagerdi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Cristiana Bellan
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Pasquale Somma
- Anatomy and Pathology Unit, Ospedale dei Colli, AORN, "Monaldi", Naples, Italy
| | | | | | - Raffaella Guazzo
- Department of Medicine, Surgery and Neurosciences, Siena University Hospital, Siena, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Piero Paladini
- Department of Medicine, Surgery and Neurosciences, Siena University Hospital, Siena, Italy
| | - Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Protein Arginine Methyltransferases in Cardiovascular and Neuronal Function. Mol Neurobiol 2019; 57:1716-1732. [PMID: 31823198 DOI: 10.1007/s12035-019-01850-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022]
Abstract
The methylation of arginine residues by protein arginine methyltransferases (PRMTs) is a type of post-translational modification which is important for numerous cellular processes, including mRNA splicing, DNA repair, signal transduction, protein interaction, and transport. PRMTs have been extensively associated with various pathologies, including cancer, inflammation, and immunity response. However, the role of PRMTs has not been well described in vascular and neurological function. Aberrant expression of PRMTs can alter its metabolic products, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA). Increased ADMA levels are recognized as an independent risk factor for cardiovascular disease and mortality. Recent studies have provided considerable advances in the development of small-molecule inhibitors of PRMTs to study their function under normal and pathological states. In this review, we aim to elucidate the particular roles of PRMTs in vascular and neuronal function as a potential target for cardiovascular and neurological diseases.
Collapse
|
17
|
Strobl CD, Schaffer S, Haug T, Völkl S, Peter K, Singer K, Böttcher M, Mougiakakos D, Mackensen A, Aigner M. Selective PRMT5 Inhibitors Suppress Human CD8+ T Cells by Upregulation of p53 and Impairment of the AKT Pathway Similar to the Tumor Metabolite MTA. Mol Cancer Ther 2019; 19:409-419. [DOI: 10.1158/1535-7163.mct-19-0189] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/04/2019] [Accepted: 10/29/2019] [Indexed: 11/16/2022]
|
18
|
Xu J, Wang Q, Leung ELH, Li Y, Fan X, Wu Q, Yao X, Liu L. Compound C620-0696, a new potent inhibitor targeting BPTF, the chromatin-remodeling factor in non-small-cell lung cancer. Front Med 2019; 14:60-67. [PMID: 31104301 DOI: 10.1007/s11684-019-0694-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/13/2019] [Indexed: 12/12/2022]
Abstract
Bromodomain PHD-finger transcription factor (BPTF) is the largest subunit of the nucleosome remodeling factor and plays an important role in chromatin remodeling for gene activation through its association with histone acetylation or methylation. BPTF is also involved in oncogene transcription in diverse progressions of cancers. Despite clinical trials for inhibitors of bromodomain and extra-terminal family proteins in human cancers, no potent and selective inhibitor targeting the BPTF bromodomain has been discovered. In this study, we identified a potential inhibitor, namely, C620-0696, by computational docking modeling to target bromodomain. Results of biolayer interferometry revealed that compound C620-0696 exhibited high binding affinity to the BPTF bromodomain. Moreover, C620-0696 was cytotoxic in BPTF with a high expression of non-small-cell lung cancer (NSCLC) cells. It suppressed the expression of the BPTF target gene c-MYC, which is known as an oncogenic transcriptional regulator in various cancers. C620-0696 also partially inhibited the migration and colony formation of NSCLC cells owing to apoptosis induction and cell cycle blockage. Thus, our study presents an effective strategy to target a bromodomain factor-mediated tumorigenesis in cancers with small molecules, supporting further exploration of the use of these inhibitors in oncology.
Collapse
Affiliation(s)
- Jiahui Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), 519020, China
| | - Qianqian Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), 519020, China
| | - Elaine Lai Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), 519020, China
- Respiratory Medicine Department, Taihe Hospital, Hubei University of Medicine, Shiyan, 236600, China
- Department of Thoracic Surgery, Guangzhou Institute of Respiratory Health and State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), 519020, China
| | - Xingxing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), 519020, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), 519020, China.
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), 519020, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), 519020, China.
| |
Collapse
|
19
|
Zhang Y, Ying JB, Hong JJ, Li FC, Fu TT, Yang FY, Zheng GX, Yao XJ, Lou Y, Qiu Y, Xue WW, Zhu F. How Does Chirality Determine the Selective Inhibition of Histone Deacetylase 6? A Lesson from Trichostatin A Enantiomers Based on Molecular Dynamics. ACS Chem Neurosci 2019; 10:2467-2480. [PMID: 30784262 DOI: 10.1021/acschemneuro.8b00729] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) plays a key role in a variety of neurological disorders, which makes it attractive drug target for the treatment of Alzheimer's disease, Parkinson's disease, and memory/learning impairment. The selectivity of HDAC6 inhibitors (sHDAC6Is) are widely considered to be susceptible to the sizes of their Cap group and the physicochemical properties of their linker or zinc-binding group, which makes the discovery of new sHDAC6Is extremely difficult. With the discovery of the distinct selectivity between Trichostatin A (TSA) enantiomers, the chirality residing in the connective units between TSA's Cap and linker shows a great impact on its selectivity. However, the mechanism underlining ( S)-TSA's selectivity is still elusive, and the way chirality switches the selective ( S)-TSA to nonselective ( R)-TSA is unknown. In this study, multiple computational approaches were collectively applied to explore, validate, and differentiate the binding modes of two TSA enantiomers in HDACs (especially the HDAC6) at atomic level. First, two nonconservative residues (G200/M205 and Y197/F202 in HDAC1/6) in loop3 and four conservative residues deep inside the hydrophobic binding pocket were discovered as the decisive residues of ( S)-TSA's selectivity toward HDAC6. Then, a novel mechanism underlying the selectivity of ( S)-TSA toward HDAC6 was proposed, which was composed of the trigger by two nonconservative residues F202 and M205 in HDAC6 and a subsequently improved fit of ( S)-TSA deep inside HDAC6's hydrophobic binding pocket. TSA enantiomers were used as a molecular probe to explore the mechanism underlying sHDAC6Is' selectivity in this study. Because of their decisive roles in ( S)-TSA's selectivity to HDAC6, both F202 and M205 in HDAC6 should be especially considered in the discovery of novel sHDAC6Is.
Collapse
Affiliation(s)
- Yang Zhang
- Lab of Innovative Drug Research and Bioinformatics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Jun Biao Ying
- Lab of Innovative Drug Research and Bioinformatics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia Jun Hong
- Lab of Innovative Drug Research and Bioinformatics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Cheng Li
- Lab of Innovative Drug Research and Bioinformatics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ting Ting Fu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Feng Yuan Yang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Guo Xun Zheng
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Xiao Jun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Yunqing Qiu
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Wei Wei Xue
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- Lab of Innovative Drug Research and Bioinformatics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| |
Collapse
|
20
|
Slater O, Kontoyianni M. The compromise of virtual screening and its impact on drug discovery. Expert Opin Drug Discov 2019; 14:619-637. [PMID: 31025886 DOI: 10.1080/17460441.2019.1604677] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Docking and structure-based virtual screening (VS) have been standard approaches in structure-based design for over two decades. However, our understanding of the limitations, potential, and strength of these techniques has enhanced, raising expectations. Areas covered: Based on a survey of reports in the past five years, we assess whether VS: (1) predicts binding poses in agreement with crystallographic data (when available); (2) is a superior screening tool, as often claimed; (3) is successful in identifying chemical scaffolds that can be starting points for subsequent lead optimization cycles. Data shows that knowledge of the target and its chemotypes in postprocessing lead to viable hits in early drug discovery endeavors. Expert opinion: VS is capable of accurate placements in the pocket for the most part, but does not consistently score screening collections accurately. What matters is capitalization on available resources to get closer to a viable lead or optimizable series. Integration of approaches, subjective hit selection guided by knowledge of the receptor or endogenous ligand, libraries driven by experimental guides, validation studies to identify the best docking/scoring that reproduces experimental findings, constraints regarding receptor-ligand interactions, thoroughly designed methodologies, and predefined cutoff scoring criteria strengthen VS's position in pharmaceutical research.
Collapse
Affiliation(s)
- Olivia Slater
- a Department of Pharmaceutical Sciences , Southern Illinois University Edwardsville , Edwardsville , IL , USA
| | - Maria Kontoyianni
- a Department of Pharmaceutical Sciences , Southern Illinois University Edwardsville , Edwardsville , IL , USA
| |
Collapse
|
21
|
Shao J, Zhu K, Du D, Zhang Y, Tao H, Chen Z, Jiang H, Chen K, Luo C, Duan W. Discovery of 2-substituted-N-(3-(3,4-dihydroisoquinolin-2(1H)-yl)-2-hydroxypropyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxamide as potent and selective protein arginine methyltransferases 5 inhibitors: Design, synthesis and biological evaluation. Eur J Med Chem 2018; 164:317-333. [PMID: 30605830 DOI: 10.1016/j.ejmech.2018.12.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 01/04/2023]
Abstract
Protein arginine methyltransferases 5 (PRMT5) represents an attractive drug target in epigenetic field for the treatment of leukemia and lymphoma. Here, a series of N-(3-(3,4-dihydroisoquinolin-2(1H)-yl)-2-hydroxypropyl)amide derivatives targeting PRMT5 were designed with structure-based approach and synthesized. Among them, compound 46 showed potent and selective PRMT5 inhibition activity with an IC50 of 8.5 nM, which was approximately equivalent with the phase I clinical trial PRMT5 inhibitor GSK-3326595 (IC50 = 5.5 nM). Compound 46 also displayed pronounced anti-proliferative activity in MV4-11 cells (GI50 = 18 nM) and antitumor activity in MV4-11 mouse xenografts model. This molecule can serve as an excellent tool compound for probing the biological function of PRMT5.
Collapse
Affiliation(s)
- Jingwei Shao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Kongkai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Daohai Du
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yuanyuan Zhang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hongrui Tao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China; Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Zhifeng Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Kaixian Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Open Studio for Drugability Research of Marine Natural Products, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Jimo, Qingdao, Shangdong, 266237, China
| | - Cheng Luo
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Open Studio for Drugability Research of Marine Natural Products, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Jimo, Qingdao, Shangdong, 266237, China.
| | - Wenhu Duan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China.
| |
Collapse
|
22
|
Wang Q, Li Y, Xu J, Wang Y, Shi D, Liu L, Leung ELH, Yao X. Computational study on the selective inhibition mechanism of MS402 to the first and second bromodomains of BRD4. Proteins 2018; 87:3-11. [PMID: 30260047 DOI: 10.1002/prot.25611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022]
Abstract
As a member of the bromodomain and extraterminal domain (BET) family, BRD4 is considered as a potential target for cancer treatment. However, because of the highly conservation of its two homologous bromodomains (BD1/BD2), selective inhibition of each bromodomain remains a challenge. MS402 is a domain-selective inhibitor of BRD4-BD1 over BRD4-BD2 reported recently. Understanding the selectivity mechanism would be very useful for the further design of more potent BD1-selectivity inhibitors. Molecular dynamics simulation, adaptive biasing force and multiple-walker adaptive biasing force were performed to study the inhibition and domain-selective mechanism of MS402 toward BRD4-BD1 over BRD4-BD2 here. Results demonstrate BRD4-BD1 binds to MS402 with lower binding free energy than BRD4-BD2. Residues Gln85, Pro86, Asn140, and Ile146 are crucial for MS402's selectively binding to BRD4-BD1. MS402 needs to overcome more energy barrier to dissociate from BD1 than from BD2 pocket. These findings will be helpful for rational structural modification of existing inhibitors to increase their BD1-selectivity.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Jiahui Xu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Yuwei Wang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| |
Collapse
|