1
|
Oudejans E, Witkamp D, Hu-A-Ng GV, Hoogterp L, van Rooijen-van Leeuwen G, Kruijff I, Schonewille P, Lalaoui El Mouttalibi Z, Bartelink I, van der Knaap MS, Abbink TE. Pridopidine subtly ameliorates motor skills in a mouse model for vanishing white matter. Life Sci Alliance 2024; 7:e202302199. [PMID: 38171595 PMCID: PMC10765115 DOI: 10.26508/lsa.202302199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
The leukodystrophy vanishing white matter (VWM) is characterized by chronic and episodic acute neurological deterioration. Curative treatment is presently unavailable. Pathogenic variants in the genes encoding eukaryotic initiation factor 2B (eIF2B) cause VWM and deregulate the integrated stress response (ISR). Previous studies in VWM mouse models showed that several ISR-targeting compounds ameliorate clinical and neuropathological disease hallmarks. It is unclear which ISR components are suitable therapeutic targets. In this study, effects of 4-phenylbutyric acid, tauroursodeoxycholic acid, or pridopidine (PDPD), with ISR targets upstream or downstream of eIF2B, were assessed in VWM mice. In addition, it was found that the composite ataxia score represented motor decline of VWM mice more accurately than the previously used neuroscore. 4-phenylbutyric acid and tauroursodeoxycholic acid did not improve VWM disease hallmarks, whereas PDPD had subtle beneficial effects on motor skills. PDPD alone does not suffice as treatment in VWM mice but may be considered for combination therapy. Also, treatments aimed at ISR components upstream of eIF2B do not improve chronic neurological deterioration; effects on acute episodic decline remain to be investigated.
Collapse
Affiliation(s)
- Ellen Oudejans
- https://ror.org/05grdyy37 Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Diede Witkamp
- https://ror.org/05grdyy37 Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Gino V Hu-A-Ng
- https://ror.org/05grdyy37 Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Leoni Hoogterp
- https://ror.org/05grdyy37 Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Gemma van Rooijen-van Leeuwen
- https://ror.org/05grdyy37 Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Iris Kruijff
- https://ror.org/05grdyy37 Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Pleun Schonewille
- https://ror.org/05grdyy37 Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Zeinab Lalaoui El Mouttalibi
- https://ror.org/05grdyy37 Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Imke Bartelink
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, Location VUmc, Amsterdam, Netherlands
| | - Marjo S van der Knaap
- https://ror.org/05grdyy37 Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Truus Em Abbink
- https://ror.org/05grdyy37 Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| |
Collapse
|
2
|
Chen J, Li G, Qin P, Chen J, Ye N, Waddington JL, Zhen X. Allosteric Modulation of the Sigma-1 Receptor Elicits Antipsychotic-like Effects. Schizophr Bull 2022; 48:474-484. [PMID: 34865170 PMCID: PMC8886599 DOI: 10.1093/schbul/sbab137] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Allosteric modulation represents an important approach in drug discovery because of its advantages in safety and selectivity. SOMCL-668 is the first selective and potent sigma-1 receptor allosteric modulator, discovered in our laboratory. The present work investigates the potential therapeutic effects of SOMCL-668 on phencyclidine (PCP)-induced schizophrenia-related behavior in mice and further elucidates underlying mechanisms for its antipsychotic-like effects. SOMCL-668 not only attenuated acute PCP-induced hyperactivity and PPI disruption, but also ameliorated social deficits and cognitive impairment induced by chronic PCP treatment. Pretreatment with the selective sigma-1 receptor antagonist BD1047 blocked the effects of SOMCL-668, indicating sigma-1 receptor-mediated responses. This was confirmed using sigma-1 receptor knockout mice, in which SOMCL-668 failed to ameliorate PPI disruption and hyperactivity induced by acute PCP and social deficits and cognitive impairment induced by chronic PCP treatment. Additionally, in vitro SOMCL-668 exerted positive modulation of sigma-1 receptor agonist-induced intrinsic plasticity in brain slices recorded by patch-clamp. Furthermore, in vivo lower dose of SOMCL-668 exerted positive modulation of improvement in social deficits and cognitive impairment induced by the selective sigma-1 agonist PRE084. Also, SOMCL-668 reversed chronic PCP-induced down-regulation in expression of frontal cortical p-AKT/AKT, p-CREB/CREB and BDNF in wide-type but not sigma-1 knockout mice. Moreover, administration of the PI3K/AKT inhibitor LY294002 abolished amelioration by SOMCL-668 of chronic PCP-induced schizophrenia-related behaviors by inhibition of BDNF expression. The present data provide initial, proof-of-concept evidence that allosteric modulation of the sigma-1 receptor may be a novel approach for the treatment of psychotic illness.
Collapse
Affiliation(s)
- Jiali Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Guangying Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Pingping Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jiaojiao Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - John L Waddington
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Shi W, Zhang W, Wang J. Catalpol Alleviates Isoflurane-Induced Hippocampal Learning and Memory Dysfunction and Neuropathological Changes in Aged Mice. Neuroimmunomodulation 2022; 29:414-424. [PMID: 35545014 DOI: 10.1159/000524236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/10/2022] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Isoflurane-associated perioperative neurocognitive disorders (PNDs) is a common complication that occurs commonly in elderly patients characterized by deterioration of hippocampus-dependent cognitive function. Mounting evidence has shown that hippocampal impairment and inflammatory processes are implicated in the pathogenesis of PNDs. Catalpol has been suggested to play a role in the modulation of neuroprotection and neurotransmission. Therefore, we surmised that catalpol may play a similar role during isoflurane-induced PNDs. METHODS In our current study, aged mice were exposed to isoflurane to develop a mouse model of PNDs and preconditioned with catalpol for 2 weeks before modeling. Three weeks after isoflurane exposure, behavioral, histological, biochemical, electrophysiological, and immunofluorescent assays were performed. RESULTS Our results showed that catalpol preadministration significantly alleviated cognitive impairment in the Morris water maze, novel object recognition, and Y-maze behavioral tests. Neuropathological analyses showed that catalpol preadministration reduced the loss of neurons and synapses; in line with this, it is revealed that hippocampal synaptic plasticity was restored. Mechanistically, catalpol preadministration suppressed the activation of microglia and decreased the expression of NLRP3 inflammasome. CONCLUSION Our results indicate that catalpol preadministration could effectively alleviate cognitive impairment and neuropathological damage in isoflurane-exposed aged mice with its neuroprotective effects via modulation of the NLRP3 inflammatory pathway. Furthermore, the NLRP3 inflammatory pathway was revealed to be involved in these effects.
Collapse
Affiliation(s)
- Weiqing Shi
- Department of Anesthesiology, Jincheng People's Hospital, Jincheng, China
| | - Wenbing Zhang
- Department of Anesthesiology, Changzhi People's Hospital, Changzhi, China
| | - Jinping Wang
- Department of Anesthesiology, Jincheng People's Hospital, Jincheng, China
| |
Collapse
|
4
|
Asla MM, Nawar AA, Abdelsalam A, Elsayed E, Rizk MA, Hussein MA, Kamel WA. The Efficacy and Safety of Pridopidine on Treatment of Patients with Huntington's Disease: A Systematic Review and Meta-Analysis. Mov Disord Clin Pract 2022; 9:20-30. [PMID: 35005061 PMCID: PMC8721839 DOI: 10.1002/mdc3.13357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/02/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pridopidine is a novel drug that helps stabilize psychomotor function in patients with Huntington's disease (HD) by activating the cortical glutamate pathway. It promises to achieve the unmet needs of current therapies of HD without worsening other symptoms. OBJECTIVE To review the literature discussing the efficacy of pridopidine in alleviating motor symptoms and its safety in patients with HD. METHODS We searched Scopus, Web of Science, the Cochrane Library, Wiley, and PubMed for randomized controlled trials (RCTs) of pridopidine on HD. Data from eligible studies were extracted and pooled as mean differences for efficacy and risk ratios (RRs) for safety using RevMan software version 5.3. RESULTS A total of 4 relevant RCTs with 1130 patients were selected (816 in the pridopidine group and 314 in the placebo group). The pooled effect size favored pridopidine over placebo insignificantly in the Unified Huntington's Disease Rating Scale Total Motor Score (mean difference [MD], -0.93; 95% confidence interval [CI], -2.01 to 0.14; P = 0.09), whereas the effect size of 3 studies significantly favored pridopidine over placebo in the Unified Huntington's Disease Rating Scale Modified Motor Score (MD, -0.81; 95% CI, -1.48 to -0.13; P = 0.02). Pridopidine generally was well tolerated. None of the adverse effects were considerably higher in the case of pridopidine compared with placebo in overall adverse events (RR, 1.03; 95% CI, 0.94-1.13; P = 0.49) and serious adverse events (RR, 1.62; 95% CI, 0.88-2.99; P = 0.12). CONCLUSION The effects of pridopidine on motor functions (especially voluntary movements) in patients with HD are encouraging and provide a good safety profile that motivates further clinical trials on patients to confirm its effectiveness and safety.
Collapse
Affiliation(s)
| | | | - Alaa Abdelsalam
- Faculty of Human MedicineZagazig UniversityZagazig CityEgypt
| | - Esraa Elsayed
- Faculty of Human MedicineZagazig UniversityZagazig CityEgypt
| | | | | | - Walaa A. Kamel
- Neurology Department, Faculty of MedicineBeni‐Suef UniversityBeni SuefEgypt
- Neurology DepartmentIbn Sina HospitalKuwait cityKuwait
| |
Collapse
|
5
|
Jabłońska M, Grzelakowska K, Wiśniewski B, Mazur E, Leis K, Gałązka P. Pridopidine in the treatment of Huntington's disease. Rev Neurosci 2021; 31:441-451. [PMID: 32083454 DOI: 10.1515/revneuro-2019-0085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
Abstract
Huntington's disease (HD) is a highly common inherited monogenic neurodegenerative disease, and the gene responsible for its development is located in the 4p16.3 chromosome. The product of that gene mutation is an abnormal huntingtin (Htt) protein that disrupts the neural conduction, thus leading to motor and cognitive disorders. The disease progresses to irreversible changes in the central nervous system (CNS). Although only a few drugs are available to symptomatic treatment, 'dopamine stabilizers' (as represented by the pridopidine) may be the new treatment options. The underlying causes of HD are dopaminergic conduction disorders. Initially, the disease is hyperkinetic (chorea) until it eventually reaches the hypokinetic phase. Studies confirmed a correlation between the amount of dopamine in the CNS and the stage of the disease. Pridopidine has the capacity to be a dopamine buffer, which could increase or decrease the dopamine content depending on the disease phase. A research carried out on animal models demonstrated the protective effect of pridopidine on nerve cells thanks to its ability to alter the cortical glutamatergic signaling through the N-methyl-D-aspartate (NMDA) receptors. Studies on dopamine stabilizers also reported that pridopidine has a 100-fold greater affinity for the sigma-1 receptor than for the D2 receptor. Disturbances in the activity of sigma-1 receptors occur in neurodegenerative diseases, including HD. Their interaction with pridopidine results in the neuroprotective effect, which is manifested as an increase in the plasticity of synaptic neurons and prevention of their atrophy within the striatum. To determine the effectiveness of pridopidine in the treatment of HD, large multicenter randomized studies such as HART, MermaiHD, and PRIDE-HD were carried out.
Collapse
Affiliation(s)
- Magdalena Jabłońska
- Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Klaudyna Grzelakowska
- Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Bartłomiej Wiśniewski
- Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Ewelina Mazur
- Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Kamil Leis
- Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Przemysław Gałązka
- Department of General and Oncological Pediatric Surgery, Antoni Jurasz University Hospital No. 1 in Bydgoszcz, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| |
Collapse
|
6
|
Chen S, Liang T, Xue T, Xue S, Xue Q. Pridopidine for the Improvement of Motor Function in Patients With Huntington's Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Neurol 2021; 12:658123. [PMID: 34054700 PMCID: PMC8159155 DOI: 10.3389/fneur.2021.658123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Huntington's disease (HD) is a progressive neurodegenerative disorder. Generally, it is characterized by deficits in cognition, behavior, and movement. Recent studies have shown that pridopidine is a potential and effective drug candidate for the treatment of HD. In the present study, we performed a meta-analysis to evaluate the efficacy and safety of pridopidine in HD. Methods: The MEDLINE, EMBASE, CENTRAL, and Clinicaltrials.gov databases were searched for randomized controlled trials (RCTs) which had that evaluated pridopidine therapy in HD patients. Results: We pooled data from 1,119 patients across four RCTs. Patients in the pridopidine group had a significantly lower Unified Huntington's Disease Rating Scale (UHDRS)-modified Motor Score (mMS) (MD −0.79, 95% CI = −1.46 to −0.11, p = 0.02) than those in the placebo group. Additionally, no differences were observed in the UHDRS-Total Motor Score (TMS) (MD −0.91. 95% CI = −2.03 to 0.21, p = 0.11) or adverse events (RR 1.06, 95% CI = 0.96 to 1.16, p = 0.24) in the pridopidine and placebo groups. In the subgroup analysis, the short-term (≤12 weeks) and long-term (>12 weeks) subgroups exhibited similar efficacy and safety with no statistical significance in TMS, mMS, or adverse events. However, TMS (MD −1.50, 95% CI = −2.87 to −0.12, p = 0.03) and mMS (MD −1.03, 95% CI = −1.87 to −0.19, p = 0.02) were observed to be improved significantly when the dosage of pridopidine ≥90 mg/day. Additionally, pridopidine (≥90 mg/day) increased total adverse events (RR 1.11, 95% CI = 1.00 to 1.22, p = 0.04) compared with placebo. On this basis, we analyzed the incidence of various adverse events when the dosage was ≥90 mg/day. Nonetheless, these results were within the acceptable threshold, although patients developed symptoms, such as nasopharyngitis and insomnia. Conclusion: Pridopidine improved mMS and had no statistical significance in association with TMS or adverse events. Pridopidine (≥90 mg/day) improved TMS and mMS but increased adverse events, such as nasopharyngitis and insomnia. More RCTs were expected to assess pridopidine in HD.
Collapse
Affiliation(s)
- Shujun Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianyu Liang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Xue
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shouru Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Delprat B, Crouzier L, Su TP, Maurice T. At the Crossing of ER Stress and MAMs: A Key Role of Sigma-1 Receptor? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:699-718. [PMID: 31646531 DOI: 10.1007/978-3-030-12457-1_28] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calcium exchanges and homeostasis are finely regulated between cellular organelles and in response to physiological signals. Besides ionophores, including voltage-gated Ca2+ channels, ionotropic neurotransmitter receptors, or Store-operated Ca2+ entry, activity of regulatory intracellular proteins finely tune Calcium homeostasis. One of the most intriguing, by its unique nature but also most promising by the therapeutic opportunities it bears, is the sigma-1 receptor (Sig-1R). The Sig-1R is a chaperone protein residing at mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), where it interacts with several partners involved in ER stress response, or in Ca2+ exchange between the ER and mitochondria. Small molecules have been identified that specifically and selectively activate Sig-1R (Sig-1R agonists or positive modulators) at the cellular level and that also allow effective pharmacological actions in several pre-clinical models of pathologies. The present review will summarize the recent data on the mechanism of action of Sig-1R in regulating Ca2+ exchanges and protein interactions at MAMs and the ER. As MAMs alterations and ER stress now appear as a common track in most neurodegenerative diseases, the intracellular action of Sig-1R will be discussed in the context of the recently reported efficacy of Sig-1R drugs in pathologies like Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, U1198, Montpellier, France.
| | - Lucie Crouzier
- MMDN, University of Montpellier, EPHE, INSERM, U1198, Montpellier, France
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, IRP, NIDA/NIH, Baltimore, MD, USA
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, U1198, Montpellier, France
| |
Collapse
|
8
|
Eddings CR, Arbez N, Akimov S, Geva M, Hayden MR, Ross CA. Pridopidine protects neurons from mutant-huntingtin toxicity via the sigma-1 receptor. Neurobiol Dis 2019; 129:118-129. [PMID: 31108174 PMCID: PMC6996243 DOI: 10.1016/j.nbd.2019.05.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by a CAG repeat expansion in the Huntingtin gene (HTT), translated into a Huntingtin protein with a polyglutamine expansion. There is preferential loss of medium spiny neurons within the striatum and cortical pyramidal neurons. Pridopidine is a small molecule showing therapeutic potential in HD preclinical and clinical studies. Pridopidine has nanomolar affinity to the sigma-1 receptor (sigma-1R), which is located predominantly at the endoplasmic reticulum (ER) and mitochondrial associated ER membrane, and activates neuroprotective pathways. Here we evaluate the neuroprotective effects of pridopidine against mutant Huntingtin toxicity in mouse and human derived in vitro cell models. We also investigate the involvement of the sigma-1 receptor in the mechanism of pridopidine. Pridopidine protects mutant Huntingtin transfected mouse primary striatal and cortical neurons, with an EC50 in the mid nanomolar range, as well as HD patient-derived induced pluripotent stem cells (iPSCs). This protection by pridopidine is blocked by NE-100, a purported sigma-1 receptor antagonist, and not blocked by ANA-12, a reported TrkB receptor antagonist. 3PPP, a documented sigma-1 receptor agonist, shows similar neuroprotective effects. Genetic knock out of the sigma-1 receptor dramatically decreases protection from pridopidine and 3PPP, but not protection via brain derived neurotrophic factor (BDNF). The neuroprotection afforded by pridopidine in our HD cell models is robust and sigma-1 receptor dependent. These studies support the further development of pridopidine, and other sigma-1 receptor agonists as neuroprotective agents for HD and perhaps for other disorders.
Collapse
Affiliation(s)
- Chelsy R Eddings
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
| | - Sergey Akimov
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
| | - Michal Geva
- Prilenia Therapeutics Development LTD, Herzliya, Israel
| | - Michael R Hayden
- Prilenia Therapeutics Development LTD, Herzliya, Israel; Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America; Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America.
| |
Collapse
|
9
|
Yang K, Wang C, Sun T. The Roles of Intracellular Chaperone Proteins, Sigma Receptors, in Parkinson's Disease (PD) and Major Depressive Disorder (MDD). Front Pharmacol 2019; 10:528. [PMID: 31178723 PMCID: PMC6537631 DOI: 10.3389/fphar.2019.00528] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Sigma receptors, including Sigma-1 receptors and Sigma-2 receptors, are highly expressed in the CNS. They are intracellular chaperone proteins. Sigma-1 receptors localize mainly at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM). Upon stimulation, they translocate from MAM to plasma membrane (PM) and nucleus, where they interact with many proteins and ion channels. Sigma-1 receptor could interact with itself to form oligomers, its oligomerization states affect its ability to interact with client proteins including ion channels and BiP. Sigma-1 receptor shows high affinity for many unrelated and structurally diverse ligands, but the mechanism for this diverse drug receptor interaction remains unknown. Sigma-1 receptors also directly bind many proteins including G protein-coupled receptors (GPCRs) and ion channels. In recent years, significant progress has been made in our understanding of roles of the Sigma-1 receptors in normal and pathological conditions, but more studies are still required for the Sigma-2 receptors. The physiological roles of Sigma-1 receptors in the CNS are discussed. They can modulate the activity of many ion channels including voltage-dependent ion channels including Ca2+, Na+, K+ channels and NMDAR, thus affecting neuronal excitability and synaptic activity. They are also involved in synaptic plasticity and learning and memory. Moreover, the activation of Sigma receptors protects neurons from death via the modulation of ER stress, neuroinflammation, and Ca2+ homeostasis. Evidences about the involvement of Sigma-1 receptors in Parkinson’s disease (PD) and Major Depressive Disorder (MDD) are also presented, indicating Sigma-1 receptors might be promising targets for pharmacologically treating PD and MDD.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Changcai Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|