1
|
Rodríguez-Meana B, del Valle J, Navarro X. A Combinatory Therapy of Metformin and Dexamethasone Reduces the Foreign Body Reaction to Intraneural Electrodes. Cells 2024; 13:2112. [PMID: 39768202 PMCID: PMC11726768 DOI: 10.3390/cells13242112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Neural electrodes used for bidirectional communication between the nervous system and external devices like prosthetic limbs have advanced in neuroprosthetic applications. However, their effectiveness is hindered by the foreign body reaction, a natural immune response causing inflammation and fibrosis around the implanted device. This process involves protein adsorption, immune cell recruitment, cytokine release, and fibroblast activation, leading to a fibrous capsule formation and a decrease in electrode functionality. Anti-inflammatory and antifibrotic strategies have the potential to diminish the impact of the foreign body response. In this work, we have evaluated long-term metformin administration and short-term dexamethasone administration as a combined therapy to modulate the foreign body reaction induced by a polyimide intraneural implant in the sciatic nerve of rats. After a 12-week implant, the foreign body reaction was significantly reduced only in the group administered both drugs.
Collapse
Affiliation(s)
- Bruno Rodríguez-Meana
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jaume del Valle
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - Xavier Navarro
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|
2
|
Chen H, Moriceau S, Joseph A, Mailliet F, Li S, Tolle V, Duriez P, Dardennes R, Durand S, Carbonnier V, Stoll G, Sauvat A, Lachkar S, Aprahamian F, Alves Costa Silva C, Pan H, Montégut L, Anagnostopoulos G, Lambertucci F, Motiño O, Nogueira-Recalde U, Bourgin M, Mao M, Pan Y, Cerone A, Boedec E, Gouveia ZL, Marmorino F, Cremolini C, Derosa L, Zitvogel L, Kepp O, López-Otín C, Maiuri MC, Perez F, Gorwood P, Ramoz N, Oury F, Martins I, Kroemer G. Acyl-CoA binding protein for the experimental treatment of anorexia. Sci Transl Med 2024; 16:eadl0715. [PMID: 39141698 DOI: 10.1126/scitranslmed.adl0715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/25/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Extracellular acyl-coenzyme A binding protein [ACBP encoded by diazepam binding inhibitor (DBI)] is a phylogenetically ancient appetite stimulator that is secreted in a nonconventional, autophagy-dependent fashion. Here, we show that low ACBP/DBI plasma concentrations are associated with poor prognosis in patients with anorexia nervosa, a frequent and often intractable eating disorder. In mice, anorexia induced by chronic restraint stress (CRS) is accompanied by a reduction in circulating ACBP/DBI concentrations. We engineered a chemical-genetic system for the secretion of ACBP/DBI through a biotin-activatable, autophagy-independent pathway. In transgenic mice expressing this system in hepatocytes, biotin-induced elevations in plasma ACBP/DBI concentrations prevented anorexia induced by CRS or chemotherapeutic agents including cisplatin, doxorubicin, and paclitaxel. ACBP/DBI reversed the CRS or cisplatin-induced increase in plasma lipocalin-2 concentrations and the hypothalamic activation of anorexigenic melanocortin 4 receptors, for which lipocalin-2 is an agonist. Daily intravenous injections of recombinant ACBP/DBI protein or subcutaneous implantation of osmotic pumps releasing recombinant ACBP/DBI mimicked the orexigenic effects of the chemical-genetic system. In conclusion, the supplementation of extracellular and peripheral ACBP/DBI might constitute a viable strategy for treating anorexia.
Collapse
Affiliation(s)
- Hui Chen
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Stéphanie Moriceau
- Institut Imagine, Platform for Neurobehavioral and Metabolism, Structure Fédérative de Recherche Necker, 26 INSERM US24/CNRS UAR, 3633, 75015 Paris, France
| | - Adrien Joseph
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Service de Réanimation Médicale, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, 75010 Paris, France
| | - Francois Mailliet
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015 Paris, France
| | - Sijing Li
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Virginie Tolle
- Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic Vulnerability to Addictive and Psychiatric Disorders Team, 75015 Paris, France
| | - Philibert Duriez
- Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic Vulnerability to Addictive and Psychiatric Disorders Team, 75015 Paris, France
- Université Paris Cité and GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, 75014 Paris, France
| | - Roland Dardennes
- Université Paris Cité and GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, 75014 Paris, France
| | - Sylvère Durand
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Vincent Carbonnier
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Gautier Stoll
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Allan Sauvat
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Sylvie Lachkar
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Fanny Aprahamian
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, 94800 Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Hui Pan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Uxía Nogueira-Recalde
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Rheumatology Research Group (GIR), Biomedical Research Institute of A Coruña (INIBIC), Professor Novoa Santos Foundation, 15006 A Coruña, Spain
| | - Mélanie Bourgin
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Misha Mao
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, 310016 Hangzhou, Zhejiang, China
| | - Yuhong Pan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Alexandra Cerone
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Erwan Boedec
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Biochemistry and Biophysics (B&B) Core Facility, 75014 Paris, France
| | - Zelia L Gouveia
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, 75005 Paris, France
| | - Federica Marmorino
- Unit of Medical Oncology 2, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Lisa Derosa
- Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, 94800 Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, 94800 Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Carlos López-Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, 28248 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Franck Perez
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, 75005 Paris, France
| | - Philip Gorwood
- Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic Vulnerability to Addictive and Psychiatric Disorders Team, 75015 Paris, France
- Université Paris Cité and GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, 75014 Paris, France
| | - Nicolas Ramoz
- Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic Vulnerability to Addictive and Psychiatric Disorders Team, 75015 Paris, France
- Université Paris Cité and GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, 75014 Paris, France
| | - Franck Oury
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015 Paris, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| |
Collapse
|
3
|
Barbosa S, Pedrosa MB, Ferreira R, Moreira-Gonçalves D, Santos LL. The impact of chemotherapy on adipose tissue remodeling: The molecular players involved in this tissue wasting. Biochimie 2024; 223:1-12. [PMID: 38537739 DOI: 10.1016/j.biochi.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
The depletion of visceral and subcutaneous adipose tissue (AT) during chemotherapy significantly correlates with diminished overall survival and progression-free survival. Despite its clinical significance, the intricate molecular mechanisms governing this AT loss and its chemotherapy-triggered initiation remain poorly understood. Notably, the evaluation of AT remodeling in most clinical trials has predominantly relied on computerized tomography scans or bioimpedance, with molecular studies often conducted using animal or in vitro models. To address this knowledge gap, a comprehensive narrative review was conducted. The findings underscore that chemotherapy serves as a key factor in inducing AT loss, exacerbating cachexia, a paraneoplastic syndrome that significantly compromises patient quality of life and survival. The mechanism driving AT loss appears intricately linked to alterations in AT metabolic remodeling, marked by heightened lipolysis and fatty acid oxidation, coupled with diminished lipogenesis. However, adipocyte stem cells' lost ability to divide due to chemotherapy also appears to be at the root of the loss of AT. Notably, chemotherapy seems to deactivate the mitochondrial antioxidant system by reducing key regulatory enzymes responsible for neutralizing reactive oxygen species (ROS), thereby impeding lipogenesis. Despite FDG-PET evidence of AT browning, no molecular evidence of thermogenesis was reported. Prospective investigations unraveling the molecular mechanisms modulated in AT by chemotherapy, along with therapeutic strategies aimed at preventing AT loss, promise to refine treatment paradigms and enhance patient outcomes.
Collapse
Affiliation(s)
- Samuel Barbosa
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal; Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal.
| | - Mafalda Barbosa Pedrosa
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal; Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal
| |
Collapse
|
4
|
Wang L, Wang Y, Ye Z, Yu Y, Wang C, Qiu L, Du X, Zhou S, Wang J, Jiang P. Preparation of Liposome Gel by Calcium Cross-Linking Induces the Long-Term Release of DOX to Improve the Antitumor Effect. Mol Pharm 2024; 21:2394-2405. [PMID: 38647653 DOI: 10.1021/acs.molpharmaceut.3c01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Doxorubicin (DOX) is one of the most commonly used anticancer drugs; however, its clinical application is greatly limited due to its toxicity and chemotherapy resistance. The delivery of DOX by liposomes (Lipos) can improve the blood circulation time in vivo and reduce toxic side effects, but the drug's accumulation in the tumor is often insufficient for effective treatment. In this study, we present a calcium cross-linked liposome gel for the encapsulation of DOX, demonstrating its superior long-term release capabilities compared to conventional Lipos. By leveraging this enhanced long-term release, we can enhance drug accumulation within tumors, ultimately leading to improved antitumor efficacy. Lipos were prepared using the thin-film dispersion method in this study. We utilized the ion-responsiveness of glutathione-gelatin (GSH-GG) to form the gel outside the Lipos and named the nanoparticles coated with GSH-GG on the outside of Lipos as Lipos@GSH-GG. The average size of Lipos@GSH-GG was around 342.9 nm, with a negative charge of -25.6 mV. The in vitro experiments revealed that Lipos@GSH-GG exhibited excellent biocompatibility and slower drug release compared to conventional Lipos. Further analysis of cellular uptake and cytotoxicity demonstrated that Lipos@GSH-GG loading DOX (DOX&Lipos@GSH-GG) exhibited superior long-term release effects and lower toxic side effects compared to Lipos loading DOX (DOX&Lipos). Additionally, the findings regarding the long-term release effect in vivo and the tumor accumulation within tumor-bearing mice of Lipos@GSH-GG suggested that, compared to Lipos, it demonstrated superior long-term release capabilities and achieved greater drug accumulation within tumors. In vivo antitumor efficacy experiments showed that DOX&Lipos@GSH-GG demonstrated superior antitumor efficacy to DOX&Lipos. Our study highlights Lipos@GSH-GG as a promising nanocarrier with the potential to enhance efficacy and safety by means of long-term release effects and may offer an alternative approach for effective antitumor therapy in the future.
Collapse
Affiliation(s)
- Long Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yi Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Zixuan Ye
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yitong Yu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xuancheng Du
- School of Physics, Shandong University, Jinan 250100, China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
5
|
Zhang Q, Lu C, Lu F, Liao Y, Cai J, Gao J. Challenges and opportunities in obesity: the role of adipocytes during tissue fibrosis. Front Endocrinol (Lausanne) 2024; 15:1365156. [PMID: 38686209 PMCID: PMC11056552 DOI: 10.3389/fendo.2024.1365156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Obesity is a chronic disease that affects the energy balance of the whole body. In addition to increasing fat mass, tissue fibrosis occurred in white adipose tissue in obese condition. Fibrosis is the over-activation of fibroblasts leading to excessive accumulation of extracellular matrix, which could be caused by various factors, including the status of adipocytes. The morphology of adipocytes responds rapidly and dynamically to nutrient fluctuations. Adaptive hypertrophy of normal adipocytes protects peripheral organs from damage from lipotoxicity. However, the biological behavior of hypertrophic adipocytes in chronic obesity is abnormally altered. Adipocytes lead to fibrotic remodeling of the extracellular matrix by inducing unresolved chronic inflammation, persistent hypoxia, and increasing myofibroblast numbers. Moreover, adipocyte-induced fibrosis not only restricts the flexible expansion and contraction of adipose tissue but also initiates the development of various diseases through cellular autonomic and paracrine effects. Regarding anti-fibrotic therapy, dysregulated intracellular signaling and epigenetic changes represent potential candidate targets. Thus, modulation of adipocytes may provide potential therapeutic avenues for reversing pathological fibrosis in adipose tissue and achieving the anti-obesity purpose.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chongxuan Lu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Díaz-Guerra A, Villena-Gutiérrez R, Clemente-Moragón A, Gómez M, Oliver E, Fernández-Tocino M, Galán-Arriola C, Cádiz L, Ibáñez B. Anthracycline Cardiotoxicity Induces Progressive Changes in Myocardial Metabolism and Mitochondrial Quality Control: Novel Therapeutic Target. JACC CardioOncol 2024; 6:217-232. [PMID: 38774018 PMCID: PMC11103041 DOI: 10.1016/j.jaccao.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 05/24/2024] Open
Abstract
Background Anthracycline-induced cardiotoxicity (AIC) debilitates quality of life in cancer survivors. Serial characterizations are lacking of the molecular processes occurring with AIC. Objectives The aim of this study was to characterize AIC progression in a mouse model from early (subclinical) to advanced heart failure stages, with an emphasis on cardiac metabolism and mitochondrial structure and function. Methods CD1 mice received 5 weekly intraperitoneal doxorubicin injections (5 mg/kg) and were followed by serial echocardiography for 15 weeks. At 1, 9, and 15 weeks after the doxorubicin injections, mice underwent fluorodeoxyglucose positron emission tomography, and hearts were extracted for microscopy and molecular analysis. Results Cardiac atrophy was evident at 1 week post-doxorubicin (left ventricular [LV] mass 117 ± 26 mg vs 97 ± 25 mg at baseline and 1 week, respectively; P < 0.001). Cardiac mass nadir was observed at week 3 post-doxorubicin (79 ± 16 mg; P = 0.002 vs baseline), remaining unchanged thereafter. Histology confirmed significantly reduced cardiomyocyte area (167 ± 19 μm2 in doxorubicin-treated mice vs 211 ± 26 μm2 in controls; P = 0.004). LV ejection fraction declined from week 6 post-doxorubicin (49% ± 9% vs 61% ± 9% at baseline; P < 0.001) until the end of follow-up at 15 weeks (43% ± 8%; P < 0.001 vs baseline). At 1 week post-doxorubicin, when LV ejection fraction remained normal, reduced cardiac metabolism was evident from down-regulated markers of fatty acid oxidation and glycolysis. Metabolic impairment continued to the end of follow-up in parallel with reduced mitochondrial adenosine triphosphate production. A transient early up-regulation of nutrient-sensing and mitophagy markers were observed, which was associated with mitochondrial enlargement. Later stages, when mitophagy was exhausted, were characterized by overt mitochondrial fragmentation. Conclusions Cardiac atrophy, global hypometabolism, early transient-enhanced mitophagy, biogenesis, and nutrient sensing constitute candidate targets for AIC prevention.
Collapse
Affiliation(s)
- Anabel Díaz-Guerra
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | | | - Agustín Clemente-Moragón
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Mónica Gómez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - Miguel Fernández-Tocino
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Laura Cádiz
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| |
Collapse
|
7
|
Gliniak CM, Pedersen L, Scherer PE. Adipose tissue fibrosis: the unwanted houseguest invited by obesity. J Endocrinol 2023; 259:e230180. [PMID: 37855264 PMCID: PMC11648981 DOI: 10.1530/joe-23-0180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
The prevalence of obesity is increasing exponentially across the globe. The lack of effective treatment options for long-term weight loss has magnified the enormity of this problem. Studies continue to demonstrate that adipose tissue holds a biological memory, one of the most important determinant of long-term weight maintenance. This phenomenon is consistent with the metabolically dynamic role of adipose tissue: it adapts and expands to store for excess energy and serves as an endocrine organ capable of synthesizing a number of biologically active molecules that regulate metabolic homeostasis. An important component of the plasticity of adipose tissue is the extracellular matrix, essential for structural support, mechanical stability, cell signaling and function. Chronic obesity upends a delicate balance of extracellular matrix synthesis and degradation, and the ECM accumulates in such a way that prevents the plasticity and function of the diverse cell types in adipose tissue. A series of maladaptive responses among the cells in adipose tissue leads to inflammation and fibrosis, major mechanisms that explain the link between obesity and insulin resistance, risk of type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease. Adipose tissue fibrosis persists after weight loss and further enhances adipose tissue dysfunction if weight is regained. Here, we highlight the current knowledge of the cellular events governing adipose tissue ECM remodeling during the development of obesity. Our goal is to delineate the relationship more clearly between adipose tissue ECM and metabolic disease, an important step toward better defining the pathophysiology of dysfunctional adipose tissue.
Collapse
Affiliation(s)
- Christy M Gliniak
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Line Pedersen
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
8
|
Kang DW, Wilson RL, Gonzalo-Encabo P, Norris MK, Hans M, Tahbaz M, Dawson J, Nguyen D, Normann AJ, Yunker AG, Sami N, Uno H, Ligibel JA, Mittelman SD, Dieli-Conwright CM. Targeting Adiposity and Inflammation With Movement to Improve Prognosis in Breast Cancer Survivors (The AIM Trial): Rationale, Design, and Methods. Front Oncol 2022; 12:896995. [PMID: 35795051 PMCID: PMC9251632 DOI: 10.3389/fonc.2022.896995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Background Obesity is a significant contributor to breast cancer recurrence and mortality. A central mechanism by which obesity stimulates cancer progression is through chronic, low-grade inflammation in adipose tissue. Exercise interventions to target chronic inflammation has a potential to improve obesity- and breast cancer-related outcomes; however, no studies have investigated the roles of exercise in modulating adipose tissue inflammation in breast cancer survivors. Also, it is unclear which exercise prescription would be optimal to maximize the outcomes. Therefore, we designed a randomized controlled trial (Taking AIM at Breast Cancer: Targeting Adiposity and Inflammation with Movement to Improve Prognosis in Breast Cancer Survivors [AIM] Trial) to examine the mechanisms by which different modalities of exercise impact chronic inflammation as a biomarker of breast cancer prognosis. Methods The AIM trial is a prospective, three-armed, phase II randomized controlled trial investigating the effects of a 16-week supervised circuit aerobic and resistance exercise (CARE) program versus a traditional aerobic and resistance exercise (TARE) program and attention control (AC) on adipose tissue inflammation in breast cancer survivors. 276 patients who are diagnosed with stage 0-III breast cancer, post-treatment, sedentary, and centrally obese are randomized to one of the three groups. The CARE and TARE groups participate in thrice-weekly supervised exercise sessions for 16 weeks. The AC group are offered the CARE program after the intervention period. The primary endpoint is adipose tissue inflammation assessed by core biopsy and blood draw. The secondary and tertiary endpoints are sarcopenic obesity, physical fitness and function, and patient reported outcomes. The exploratory outcomes are long-term breast cancer outcomes. Discussion This is the first randomized controlled trial examining the effects of exercise on adipose tissue inflammation in obese, breast cancer survivors. Our findings are anticipated to contribute to a better understanding of exercise modalities and mechanisms on adipose tissue inflammation that can potentially improve breast cancer prognosis. Clinical Trial Registration https://clinicaltrials.gov/ct2/show/NCT03091842 identifier [NCT#03091842].
Collapse
Affiliation(s)
- Dong-Woo Kang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Rebekah L. Wilson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Paola Gonzalo-Encabo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Mary K. Norris
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Marybeth Hans
- Division of Breast Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Meghan Tahbaz
- Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jackie Dawson
- Department of Physical Therapy, California State University, Long Beach, Long Beach, CA, United States
| | - Danny Nguyen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Amber J. Normann
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Health Sciences, Boston University, Boston, MA, United States
| | - Alexandra G. Yunker
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Nathalie Sami
- Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Hajime Uno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Jennifer A. Ligibel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Steven D. Mittelman
- Children’s Discovery and Innovations Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christina M. Dieli-Conwright
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Wiernsperger N, Al-Salameh A, Cariou B, Lalau JD. Protection by metformin against severe Covid-19: an in-depth mechanistic analysis. DIABETES & METABOLISM 2022; 48:101359. [PMID: 35662580 PMCID: PMC9154087 DOI: 10.1016/j.diabet.2022.101359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 12/05/2022]
Abstract
Since the outbreak of Covid-19, several observational studies on diabetes and Covid-19 have reported a favourable association between metformin and Covid-19-related outcomes in patients with type 2 diabetes mellitus (T2DM). This is not surprising since metformin affects many of the pathophysiological mechanisms implicated in SARS-CoV-2 immune response, systemic spread and sequelae. A comparison of the multifactorial pathophysiological mechanisms of Covid-19 progression with metformin's well-known pleiotropic properties suggests that the treatment of patients with this drug might be particularly beneficial. Indeed, metformin could alleviate the cytokine storm, diminish virus entry into cells, protect against microvascular damage as well as prevent secondary fibrosis. Although our in-depth analysis covers many potential metformin mechanisms of action, we want to highlight more particularly its unique microcirculatory protective effects since worsening of Covid-19 disease clearly appears as largely due to severe defects in the structure and functioning of microvessels. Overall, these observations confirm that metformin is a unique, pleiotropic drug that targets many of Covid-19′s pathophysiology processes in a diabetes-independent manner.
Collapse
Affiliation(s)
| | - Abdallah Al-Salameh
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, Amiens, France; PériTox/UMR-I 01, University of Picardie Jules Verne, Amiens, France
| | - Bertrand Cariou
- Département d'Endocrinologie, Diabétologie et Nutrition, l'institut du thorax, Inserm, CNRS, UNIV Nantes, CHU Nantes, Hôpital Guillaume et René Laennec, 44093 Nantes Cedex 01, France
| | - Jean-Daniel Lalau
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, Amiens, France; PériTox/UMR-I 01, University of Picardie Jules Verne, Amiens, France.
| |
Collapse
|
10
|
The burning furnace: Alteration in lipid metabolism in cancer-associated cachexia. Mol Cell Biochem 2022; 477:1709-1723. [DOI: 10.1007/s11010-022-04398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
|
11
|
Metformin: Expanding the Scope of Application-Starting Earlier than Yesterday, Canceling Later. Int J Mol Sci 2022; 23:ijms23042363. [PMID: 35216477 PMCID: PMC8875586 DOI: 10.3390/ijms23042363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Today the area of application of metformin is expanding, and a wealth of data point to its benefits in people without carbohydrate metabolism disorders. Already in the population of people leading an unhealthy lifestyle, before the formation of obesity and prediabetes metformin smooths out the adverse effects of a high-fat diet. Being prescribed at this stage, metformin will probably be able to, if not prevent, then significantly reduce the progression of all subsequent metabolic changes. To a large extent, this review will discuss the proofs of the evidence for this. Another recent important change is a removal of a number of restrictions on its use in patients with heart failure, acute coronary syndrome and chronic kidney disease. We will discuss the reasons for these changes and present a new perspective on the role of increasing lactate in metformin therapy.
Collapse
|
12
|
Renu K, Pureti LP, Vellingiri B, Valsala Gopalakrishnan A. Toxic effects and molecular mechanism of doxorubicin on different organs – an update. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1912099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Kaviyarasi Renu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Lakshmi Prasanna Pureti
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
13
|
Wu M, Xu H, Liu J, Tan X, Wan S, Guo M, Long Y, Xu Y. Metformin and Fibrosis: A Review of Existing Evidence and Mechanisms. J Diabetes Res 2021; 2021:6673525. [PMID: 34007848 PMCID: PMC8102119 DOI: 10.1155/2021/6673525] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022] Open
Abstract
Fibrosis is a physiological response to organ injury and is characterized by the excessive deposition of connective tissue components in an organ, which results in the disruption of physiological architecture and organ remodeling, ultimately leading to organ failure and death. Fibrosis in the lung, kidney, and liver accounts for a substantial proportion of the global burden of disability and mortality. To date, there are no effective therapeutic strategies for controlling fibrosis. A class of metabolically targeted chemicals, such as adenosine monophosphate-activated protein kinase (AMPK) activators and peroxisome proliferator-activated receptor (PPAR) agonists, shows strong potential in fighting fibrosis. Metformin, which is a potent AMPK activator and is the only recommended first-line drug for the treatment of type 2 diabetes, has emerged as a promising method of fibrosis reduction or reversion. In this review, we first summarize the key experimental and clinical studies that have specifically investigated the effects of metformin on organ fibrosis. Then, we discuss the mechanisms involved in mediating the antifibrotic effects of metformin in depth.
Collapse
Affiliation(s)
- Maoyan Wu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China 646000
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China 646000
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China 646000
| | - Huiwen Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China 646000
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China 646000
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China 646000
| | - Jingyu Liu
- Southwest Medical University, Luzhou, Sichuan, China 646000
| | - Xiaozhen Tan
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China 646000
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China 646000
| | - Shengrong Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China 646000
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China 646000
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China 646000
| | - Man Guo
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China 646000
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China 646000
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China 646000
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China 646000
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China 646000
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China 646000
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China 646000
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China 646000
| |
Collapse
|
14
|
Di Gregorio J, Robuffo I, Spalletta S, Giambuzzi G, De Iuliis V, Toniato E, Martinotti S, Conti P, Flati V. The Epithelial-to-Mesenchymal Transition as a Possible Therapeutic Target in Fibrotic Disorders. Front Cell Dev Biol 2020; 8:607483. [PMID: 33409282 PMCID: PMC7779530 DOI: 10.3389/fcell.2020.607483] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a chronic and progressive disorder characterized by excessive deposition of extracellular matrix, which leads to scarring and loss of function of the affected organ or tissue. Indeed, the fibrotic process affects a variety of organs and tissues, with specific molecular background. However, two common hallmarks are shared: the crucial role of the transforming growth factor-beta (TGF-β) and the involvement of the inflammation process, that is essential for initiating the fibrotic degeneration. TGF-β in particular but also other cytokines regulate the most common molecular mechanism at the basis of fibrosis, the Epithelial-to-Mesenchymal Transition (EMT). EMT has been extensively studied, but not yet fully explored as a possible therapeutic target for fibrosis. A deeper understanding of the crosstalk between fibrosis and EMT may represent an opportunity for the development of a broadly effective anti-fibrotic therapy. Here we report the evidences of the relationship between EMT and multi-organ fibrosis, and the possible therapeutic approaches that may be developed by exploiting this relationship.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Iole Robuffo
- Institute of Molecular Genetics, National Research Council, Section of Chieti, Chieti, Italy
| | - Sonia Spalletta
- Department of Clinical Pathology, E. Profili Hospital, Fabriano, Ancona, Italy
| | - Giulia Giambuzzi
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Vincenzo De Iuliis
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Elena Toniato
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Stefano Martinotti
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Pio Conti
- Postgraduate Medical School, University of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
15
|
Li X, Leng Y, Jiang Q, Wang Z, Luo P, Zhang C, Chen L, Wang Y, Wang H, Yue X, Shen C, Zhou Y, Shi C, Xie L. Eye Drops of Metformin Prevents Fibrosis After Glaucoma Filtration Surgery in Rats via Activating AMPK/Nrf2 Signaling Pathway. Front Pharmacol 2020; 11:1038. [PMID: 32903813 PMCID: PMC7438907 DOI: 10.3389/fphar.2020.01038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Metformin has effective therapeutic effects in anti-tumor and anti-fibrotic diseases. However, how the antifibrotic effect of metformin in the eye and how it is transferred are still unclear. Here, the eye drop of metformin treatment was studied in Sprague–Dawley (SD) rats of glaucoma filtrating surgery (GFS). Rats were administered randomly bilateral drops: control group (without surgery), GFS group, metformin group or mitomycin C (MMC) group (sponge application intraoperatively, 0.02%). Bleb features and intraocular pressure (IOP) were assessed for postoperative week 4. Metformin effectively inhibited fibrosis and improved the surgical outcomes of GFS. In vitro, we found that the degree of oxidative stress and fibrosis in metformin pretreated-Human Conjunctival Fibroblasts (HConFs) were reduced; the pro-fibrotic response of HConFs were decreased by inducing macrophagic polarity changes. Besides, the inhibition of nuclear factor erythroid 2-related factor 2 (Nrf2)/AMP-activated protein kinase (AMPK) and the competition of organic cation transporters (OCTs) effectively reduced the anti-fibrotic capability of metformin. Together, this experiment indicates that metformin enters into HConFs cell with OCTs, which can protect against filtrating blebs scar formation in SD rats of GFS via activating AMPK/Nrf2 axis and the downregulation of profibrogenic and inflammatory biomarkers.
Collapse
Affiliation(s)
- Xueru Li
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Yu Leng
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Qingzhi Jiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ziwen Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Chi Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Long Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Yawei Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Huilan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaofeng Yue
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Chongxing Shen
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | | | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Lin Xie
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| |
Collapse
|
16
|
Biondo LA, Teixeira AAS, de O. S. Ferreira KC, Neto JCR. Pharmacological Strategies for Insulin Sensitivity in Obesity and Cancer: Thiazolidinediones and Metformin. Curr Pharm Des 2020; 26:932-945. [PMID: 31969093 DOI: 10.2174/1381612826666200122124116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/21/2019] [Indexed: 12/19/2022]
Abstract
Background:
Chronic diseases, such as obesity and cancer, have high prevalence rates. Both diseases
have hyperinsulinemia, hyperglycemia, high levels of IGF-1 and inflammatory cytokines in common. Therefore,
these can be considered triggers for cancer development and growth. In addition, low-grade inflammation that
modulates the activation of immune cells, cellular metabolism, and production of cytokines and chemokines are
common in obesity, cancer, and insulin resistance. Pharmacological strategies are necessary when a change in
lifestyle does not improve glycemic homeostasis. In this regard, thiazolidinediones (TZD) possess multiple molecular
targets and regulate PPARγ in obesity and cancer related to insulin resistance, while metformin acts
through the AMPK pathway.
Objective:
The aim of this study was to review TZD and metformin as pharmacological treatments for insulin
resistance associated with obesity and cancer.
Conclusions:
Thiazolidinediones restored adiponectin secretion and leptin sensitivity, reduced lipid droplets in
hepatocytes and orexigen peptides in the hypothalamus. In cancer cells, TZD reduced proliferation, production of
reactive oxygen species, and inflammation by acting through the mTOR and NFκB pathways. Metformin has
similar effects, though these are AMPK-dependent. In addition, both drugs can be efficient against certain side
effects caused by chemotherapy.
Collapse
Affiliation(s)
- Luana A. Biondo
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Alexandre A. S. Teixeira
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Karen C. de O. S. Ferreira
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose C. R. Neto
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
17
|
Dolly A, Lecomte T, Bouché O, Borg C, Terrebonne E, Douillard JY, Chautard R, Raoul W, Ternant D, Leger J, Bleuzen A, Dumas JF, Servais S, Baracos VE. Concurrent losses of skeletal muscle mass, adipose tissue and bone mineral density during bevacizumab / cytotoxic chemotherapy treatment for metastatic colorectal cancer. Clin Nutr 2020; 39:3319-3330. [PMID: 32164981 DOI: 10.1016/j.clnu.2020.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/12/2020] [Accepted: 02/13/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Changes in skeletal muscle mass (SMM), total adipose tissue mass (TAT) or bone mineral density (BMD) have been described in patients with cancer undergoing various treatments; simultaneous variations of all 3 tissues has not been reported. METHODS Data were prospectively collected in a clinical study (NCT00489697) including patients with liver metastases of colorectal cancer who received 4 cycles of bevacizumab in combination with cytotoxic chemotherapy. Computerized tomography (CT) at baseline and after chemotherapy was used to quantify skeletal muscle and adipose tissue cross-sectional areas, and mean lumbar spine BMD using validated approaches. RESULTS After exclusion of patients lacking adequate CT images or missing data, 72 subjects were included. Patients were 63% male, aged 63.2 ± 10.3 years, 100% had liver metastases and 54%, 24% and 22% respectively has 0, 1 and ≥2 extrahepatic metastases. 100% tolerated 4 cycles of treatment and none showed progressive disease at the end of treatment. The scan interval was 70 days (95% CI, 62.3 to 80.5). Thresholds for loss of tissue were defined as loss ≥ measurement error. 10% of patients showed no loss of any tissue and a further 43% lost one tissue (SMM, TAT or BMD); 47% of patients lost 2 tissues (16.5% lost SMM + TAT, 8% lost SMM + BMD, 10% lost TAT + BMD) or all 3 tissues (12.5%). Catabolic behavior (2 or 3 tissue loss vs 0 or 1 tissue loss) associated with disease burden, including unresectable primary tumor (p = 0.010), presence of extrahepatic (EH) metastases (p = 0.039) and number of EH metastases (p = 0.004). No association was found between the number of tissues lost and treatment response, which was uniformly high, or treatment toxicity, which was uniformly low. CONCLUSION Multiple tissues can be measured in routine CT images and these show considerable inter-individual variation. Substantial losses in some individuals appear to associate with disease burden.
Collapse
Affiliation(s)
- Adeline Dolly
- INSERM UMR1069, "Nutrition, Croissance et Cancer", University of Tours, France
| | - Thierry Lecomte
- Department of Hepatogastroenterology and Digestive Oncology, Hôpital Trousseau, CHRU de Tours, 37044, Tours, Cedex 09, France; EA GICC 7501, University of Tours, 10 Boulevard Tonnellé, 37000, Tours, France
| | - Olivier Bouché
- Department of Hepatogastroenterology, Hôpital Robert Debré, CHU de Reims, Avenue Général Koenig, 51092, Reims, Cedex, France
| | - Christophe Borg
- Department of Medical Oncology, Hôpital Jean Minjoz, CHRU de Besançon, 3 Boulevard Alexandre Fleming, 25000, Besançon, France
| | - Eric Terrebonne
- Department of Hepatogastroenterology and Digestive Oncology, Hôpital du Haut Lêvèque, CHU de Bordeaux, Avenue Magellan, 33604, Pessac Cedex, France
| | - Jean-Yves Douillard
- Department of Medical Oncology, ICO René Gauducheau, 44805, Saint-Herblain, France
| | - Romain Chautard
- Department of Hepatogastroenterology and Digestive Oncology, Hôpital Trousseau, CHRU de Tours, 37044, Tours, Cedex 09, France; EA GICC 7501, University of Tours, 10 Boulevard Tonnellé, 37000, Tours, France
| | - William Raoul
- EA GICC 7501, University of Tours, 10 Boulevard Tonnellé, 37000, Tours, France
| | - David Ternant
- EA GICC 7501, University of Tours, 10 Boulevard Tonnellé, 37000, Tours, France; Department of Pharmacology & Toxicology, Hôpital Bretonneau, CHRU de Tours, 37044, Tours, Cedex 09, France
| | - Julie Leger
- INSERM CIC 1415, CHRU de Tours, CHRU de Tours, 37044, Tours, Cedex 09, France
| | - Aurore Bleuzen
- Department of Radiology, Hôpital Bretonneau, CHRU de Tours, CHRU de Tours, 37044, Tours, Cedex 09, France
| | - Jean-François Dumas
- INSERM UMR1069, "Nutrition, Croissance et Cancer", University of Tours, France
| | - Stéphane Servais
- INSERM UMR1069, "Nutrition, Croissance et Cancer", University of Tours, France.
| | - Vickie E Baracos
- Department of Oncology, Division of Palliative Care Medicine, University of Alberta, Edmonton, Canada.
| |
Collapse
|
18
|
Harguindey S, Alfarouk K, Polo Orozco J, Hardonnière K, Stanciu D, Fais S, Devesa J. A New and Integral Approach to the Etiopathogenesis and Treatment of Breast Cancer Based upon Its Hydrogen Ion Dynamics. Int J Mol Sci 2020; 21:E1110. [PMID: 32046158 PMCID: PMC7036897 DOI: 10.3390/ijms21031110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Despite all efforts, the treatment of breast cancer (BC) cannot be considered to be a success story. The advances in surgery, chemotherapy and radiotherapy have not been sufficient at all. Indeed, the accumulated experience clearly indicates that new perspectives and non-main stream approaches are needed to better characterize the etiopathogenesis and treatment of this disease. This contribution deals with how the new pH-centric anticancer paradigm plays a fundamental role in reaching a more integral understanding of the etiology, pathogenesis, and treatment of this multifactorial disease. For the first time, the armamentarium available for the treatment of the different types and phases of BC is approached here from a Unitarian perspective-based upon the hydrogen ion dynamics of cancer. The wide-ranged pH-related molecular, biochemical and metabolic model is able to embrace most of the fields and subfields of breast cancer etiopathogenesis and treatment. This single and integrated approach allows advancing towards a unidirectional, concerted and synergistic program of treatment. Further efforts in this line are likely to first improve the therapeutics of each subtype of this tumor and every individual patient in every phase of the disease.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Kévin Hardonnière
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France;
| | - Daniel Stanciu
- Scientific Direction, MCS Foundation For Life, 5623KR Eindhoven, The Netherlands;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena, 299, 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, Travesía de Montouto 24, 15886 Teo, Spain;
| |
Collapse
|
19
|
Effects of metformin on congenital muscular dystrophy type 1A disease progression in mice: a gender impact study. Sci Rep 2018; 8:16302. [PMID: 30389963 PMCID: PMC6214987 DOI: 10.1038/s41598-018-34362-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/06/2018] [Indexed: 02/08/2023] Open
Abstract
Congenital muscular dystrophy with laminin α2 chain-deficiency (LAMA2-CMD) is a severe muscle disorder with complex underlying pathogenesis. We have previously employed profiling techniques to elucidate molecular patterns and demonstrated significant metabolic impairment in skeletal muscle from LAMA2-CMD patients and mouse models. Thus, we hypothesize that skeletal muscle metabolism may be a promising pharmacological target to improve muscle function in LAMA2-CMD. Here, we have investigated whether the multifunctional medication metformin could be used to reduce disease in the dy2J/dy2J mouse model of LAMA2-CMD. First, we show gender disparity for several pathological hallmarks of LAMA2-CMD. Second, we demonstrate that metformin treatment significantly increases weight gain and energy efficiency, enhances muscle function and improves skeletal muscle histology in female dy2J/dy2J mice (and to a lesser extent in dy2J/dy2J males). Thus, our current data suggest that metformin may be a potential future supportive treatment that improves many of the pathological characteristics of LAMA2-CMD.
Collapse
|