1
|
Zhao Z, Wang Y, Wang Z, Zhang F, Ding Z, Fan T. Senescence in Intervertebral Disc Degeneration: A Comprehensive Analysis Based on Bioinformatic Strategies. Immun Inflamm Dis 2024; 12:e70072. [PMID: 39555740 PMCID: PMC11571097 DOI: 10.1002/iid3.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a major cause for low back pain. Studies showed the association between senescence and degenerative diseases. Cell senescence can promote the occurrence and development of degenerative diseases through multiple mechanisms including inflammatory stress, oxidative stress and nutritional deprivation. The roles of senescence and senescence-associated genes (SAGs) remains unknown in IDD. METHODS Four differently expressed SAGs were identified as hub SAGs using "limma" package in R. We then calculated the immune infiltration of IDD patients, and investigated the relation between hub SAGs and immune infiltration. Enrichment analysis was performed to explore the functions of hub SAGs in IDD. Nomogram and LASSO model based on hub SAGs was constructed to predict the risk of severe degeneration (SD) for IDD patients. Subsequently, single cell analysis was conducted to describe the expression pattern of hub SAGs in intervertebral disc tissue. RESULTS We identified ASPH, CCND1, IGFBP3 and SGK1 as hub SAGs. Further analysis demonstrated that the hub SAGs might mediate the development of IDD by regulating immune infiltration and multiple pathways. The LASSO model based on the four hub SAGs showed good performance in predicting the risk of SD. Single cell analysis revealed that ASPH, CCND1 and SGK1 mainly expressed in nucleus pulposus cells, while IGFBP3 mainly expressed in epithelial cells. Eleven candidate drugs targeting hub SAGS were predicted for IDD patients through Comparative Toxicogenomics Database (CDT). PCR and immunohistochemical analysis showed that the levels of four hub SAGs were higher in SD than MD (mild degeneration) patients. CONCLUSIONS We performed a comprehensive analysis of SAGs in IDD, which revealed their functions and expression pattern in intervertebral disc tissue. Based on hub SAGs, we established a predictive model and explored the potential drugs. These findings provide new understandings of SAG mechanism and promising therapeutic strategies for IDD.
Collapse
Affiliation(s)
- Zijun Zhao
- Spine CenterSanbo Brain Hospital, Capital Medical UniversityBeijingChina
| | - Yining Wang
- Graduate DepartmentJinzhou Medical UniversityJinzhouChina
| | - Zairan Wang
- Department of NeurosurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Fan Zhang
- Spine CenterSanbo Brain Hospital, Capital Medical UniversityBeijingChina
| | - Ze Ding
- Spine CenterSanbo Brain Hospital, Capital Medical UniversityBeijingChina
| | - Tao Fan
- Spine CenterSanbo Brain Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Olivares-González L, Velasco S, Campillo I, Millán JM, Rodrigo R. Redox Status in Retinitis Pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:443-448. [PMID: 37440070 DOI: 10.1007/978-3-031-27681-1_65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy characterized by the progressive loss of vision. It is a rare disease. Despite being a genetic disease, its progression is influenced by oxidative damage and chemokines and cytokines released by the activated immune cells (e.g., macrophages or microglia). The role of oxidative stress is very important in the retina. Rods are the main consumers of oxygen (O2), so they are constantly exposed to oxidative stress and lipid peroxidation. According to the oxidative hypothesis, after rod death in the early stages of the disease, O2 would accumulate in large quantities in the retina, producing hyperoxia and favoring the accumulation of reactive oxygen species and reactive nitrogen species that would cause oxidative damage to lipids, proteins, and DNA, exacerbating the process of retinal degeneration. Evidence shows alterations in the antioxidant-oxidant state in patients and in animal models of RP. In recent years, therapeutic approaches aimed at reducing oxidative stress have emerged as useful therapies to slow down the progression of RP. We focus this review on oxidative stress and its relationship with the progression of RP.
Collapse
Affiliation(s)
- L Olivares-González
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center (CIPF), Valencia, Spain
- Joint Unit on Rare Diseases CIPF-La Fe, Valencia, Spain
| | - S Velasco
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center (CIPF), Valencia, Spain
- Joint Unit on Rare Diseases CIPF-La Fe, Valencia, Spain
| | - I Campillo
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center (CIPF), Valencia, Spain
- Joint Unit on Rare Diseases CIPF-La Fe, Valencia, Spain
| | - J M Millán
- Joint Unit on Rare Diseases CIPF-La Fe, Valencia, Spain
- Rare Diseases Networking Biomedical Research Centre (CIBERER), Madrid, Spain
- Molecular, Cellular and Genomic Biomedicine, Health Research Institute La Fe, Valencia, Spain
| | - R Rodrigo
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center (CIPF), Valencia, Spain.
- Joint Unit on Rare Diseases CIPF-La Fe, Valencia, Spain.
- Rare Diseases Networking Biomedical Research Centre (CIBERER), Madrid, Spain.
| |
Collapse
|
3
|
Alambiaga-Caravaca AM, González Iglesias LG, Rodilla V, Kalia YN, López-Castellano A. Biodistribution of progesterone in the eye after topical ocular administration via drops or inserts. Int J Pharm 2022; 630:122453. [PMID: 36455753 DOI: 10.1016/j.ijpharm.2022.122453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Progesterone (PG) has been shown to have a slowing effect on photoreceptor cell death in mouse models of retinitis pigmentosa when administered orally. The aim of this study was to investigate whether ophthalmically administered progesterone was able to reach neuroretina and thus, the distribution through ocular tissues of different PG formulations was studied. The effect of different initial PG concentration was also investigated. Different formulations with PG in their composition (drops, a corneal/scleral-insert and scleral-inserts) were prepared and assayed. Using whole porcine eyes, the different formulations were topically administered to the ocular surface. Frozen eyes were dissected, the PG in each tissue was extracted in acetonitrile and the amount of PG quantified by UHPLC-MS/MS. Our results show that after topical administration, PG diffuses from the ocular surface and distributes throughout all tissues of the eye. Lower levels of PG were found in sclera, choroid and neuroretina when PG was applied as drops compared to inserts. Our results also show that an increase in the initial PG concentrations applied, resulted in a statistically significant increase in the amounts of PG in aqueous humour, sclera, choroid and neuroretina.
Collapse
Affiliation(s)
- Adrián M Alambiaga-Caravaca
- Department of Pharmacy, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Laura G González Iglesias
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, CMU-1, rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Vicent Rodilla
- Department of Pharmacy, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, CMU-1, rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Alicia López-Castellano
- Department of Pharmacy, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain.
| |
Collapse
|
4
|
Pinilla I, Maneu V, Campello L, Fernández-Sánchez L, Martínez-Gil N, Kutsyr O, Sánchez-Sáez X, Sánchez-Castillo C, Lax P, Cuenca N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants (Basel) 2022; 11:antiox11061086. [PMID: 35739983 PMCID: PMC9219848 DOI: 10.3390/antiox11061086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species’ accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.
Collapse
Affiliation(s)
- Isabel Pinilla
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa, University Hospital, 50009 Zaragoza, Spain
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (I.P.); (V.M.)
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Correspondence: (I.P.); (V.M.)
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Laura Fernández-Sánchez
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
| | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Pedro Lax
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Nicolás Cuenca
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| |
Collapse
|
5
|
Alambiaga-Caravaca AM, Cantó A, Rodilla V, Miranda M, López-Castellano A. Topical Ocular Administration of Progesterone Decreases Photoreceptor Cell Death in Retinal Degeneration Slow (rds) Mice. Pharmaceuticals (Basel) 2022; 15:ph15030328. [PMID: 35337126 PMCID: PMC8953546 DOI: 10.3390/ph15030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited eye disorder which triggers a cascade of retinal disorders leading to photoreceptor cell death and for which there is currently no effective treatment. The purpose of this research was to study whether ocular administration of a solution of progesterone (PG) in β-cyclodextrins (CD) could delay photoreceptor cell death and counteract the gliosis process in an animal model of RP (rds mice). The possible effect of PG reaching the contralateral eye through the circulatory system was also evaluated. Finally, this research discusses and evaluates the diffusion of the drug from possible topical formulations for ocular administration of PG. A group of rds mice received one drop of a solution of PG in CD every 12 h for 10 days to the left eye, while the right eye was left untreated. Another group of rds mice (control) received the drug vehicle (PBS) on the left eye and, again, the right eye was left untreated. Once the treatment was finished on postnatal day 21, the animals were euthanized and histological immunofluorescence studies (TUNEL, GFAP, and DAPI staining) were carried out. Our results showed that the administration of a solution of PG in CD (CD-PG) as drops significantly decreased cell death and inflammation in the retina of the PG-treated eyes of rds mice. No effect was seen in the contralateral eye from PG that may have entered systemic circulation. In conclusion, CD-PG applied topically as drops to the eye decreases photoreceptor cell death in the early stages of RP, delaying vision loss and decreasing gliosis.
Collapse
Affiliation(s)
- Adrián M Alambiaga-Caravaca
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Antolín Cantó
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Vicent Rodilla
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - María Miranda
- Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Alicia López-Castellano
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| |
Collapse
|
6
|
Maneu V, Lax P, Cuenca N. Current and future therapeutic strategies for the treatment of retinal neurodegenerative diseases. Neural Regen Res 2022; 17:103-104. [PMID: 34100441 PMCID: PMC8451557 DOI: 10.4103/1673-5374.314305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| |
Collapse
|
7
|
Pagano G, Pallardó FV, Lyakhovich A, Tiano L, Trifuoggi M. Mitigating the pro-oxidant state and melanogenesis of Retinitis pigmentosa: by counteracting mitochondrial dysfunction. Cell Mol Life Sci 2021; 78:7491-7503. [PMID: 34718826 PMCID: PMC11072988 DOI: 10.1007/s00018-021-04007-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
Retinitis pigmentosa (RP) is a group of mitochondrial diseases characterized by progressive degeneration of rods and cones leading to retinal loss of light sensitivity and, consequently, to blindness. To date, no cure is available according to the clinical literature. As a disease associated with pigmentation-related, pro-oxidant state, and mitochondrial dysfunction, RP may be viewed at the crossroads of different pathogenetic pathways involved in adverse health outcomes, where mitochondria play a preeminent role. RP has been investigated in a number of experimental and clinical studies aimed at delaying retinal hyperpigmentation by means of a number of natural and synthetic antioxidants, as well as mitochondrial cofactors, also termed mitochondrial nutrients (MNs), such as alpha-lipoic acid, coenzyme Q10 and carnitine. One should consider that each MN plays distinct-and indispensable-roles in mitochondrial function. Thus, a logical choice would imply the administration of MN combinations, instead of individual MNs, as performed in previous studies, and with limited, if any, positive outcomes. A rational study design aimed at comparing the protective effects of MNs, separately or in combinations, and in association with other antioxidants, might foresee the utilization of animal RP models. The results should verify a comparative optimization in preventing or effectively contrasting retinal oxidative stress in mouse RP models and, in prospect, in human RP cases.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, via Cintia, 80126, Naples, Italy.
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, 46010, Valencia, Spain
| | - Alex Lyakhovich
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956, Istanbul, Turkey
- Institute of Molecular Biology and Biophysics of the "Federal Research Center of Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, 60121, Ancona, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, via Cintia, 80126, Naples, Italy
| |
Collapse
|
8
|
Nutraceutical Supplementation Ameliorates Visual Function, Retinal Degeneration, and Redox Status in rd10 Mice. Antioxidants (Basel) 2021; 10:antiox10071033. [PMID: 34206804 PMCID: PMC8300708 DOI: 10.3390/antiox10071033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal dystrophies characterized by progressive degeneration of photoreceptor cells. Ocular redox status is altered in RP suggesting oxidative stress could contribute to their progression. In this study, we investigated the effect of a mixture of nutraceuticals with antioxidant properties (NUT) on retinal degeneration in rd10 mice, a model of RP. NUT was orally administered to rd10 mice from postnatal day (PD) 9 to PD18. At PD18 retinal function and morphology were examined by electroretinography (ERG) and histology including TUNEL assay, immunolabeling of microglia, Müller cells, and poly ADP ribose polymers. Retinal redox status was determined by measuring the activity of antioxidant enzymes and some oxidative stress markers. Gene expression of the cytokines IL-6, TNFα, and IL-1β was assessed by real-time PCR. NUT treatment delayed the loss of photoreceptors in rd10 mice partially preserving their electrical responses to light stimuli. Moreover, it ameliorated redox status and reduced inflammation including microglia activation, upregulation of cytokines, reactive gliosis, and PARP overactivation. NUT ameliorated retinal functionality and morphology at early stages of RP in rd10 mice. This formulation could be useful as a neuroprotective approach for patients with RP in the future.
Collapse
|
9
|
Retinal Inflammation, Cell Death and Inherited Retinal Dystrophies. Int J Mol Sci 2021; 22:ijms22042096. [PMID: 33672611 PMCID: PMC7924201 DOI: 10.3390/ijms22042096] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a group of retinal disorders that cause progressive and severe loss of vision because of retinal cell death, mainly photoreceptor cells. IRDs include retinitis pigmentosa (RP), the most common IRD. IRDs present a genetic and clinical heterogeneity that makes it difficult to achieve proper treatment. The progression of IRDs is influenced, among other factors, by the activation of the immune cells (microglia, macrophages, etc.) and the release of inflammatory molecules such as chemokines and cytokines. Upregulation of tumor necrosis factor alpha (TNFα), a pro-inflammatory cytokine, is found in IRDs. This cytokine may influence photoreceptor cell death. Different cell death mechanisms are proposed, including apoptosis, necroptosis, pyroptosis, autophagy, excessive activation of calpains, or parthanatos for photoreceptor cell death. Some of these cell death mechanisms are linked to TNFα upregulation and inflammation. Therapeutic approaches that reduce retinal inflammation have emerged as useful therapies for slowing down the progression of IRDs. We focused this review on the relationship between retinal inflammation and the different cell death mechanisms involved in RP. We also reviewed the main anti-inflammatory therapies for the treatment of IRDs.
Collapse
|
10
|
Cantó A, Olivar T, Romero FJ, Miranda M. Nitrosative Stress in Retinal Pathologies: Review. Antioxidants (Basel) 2019; 8:antiox8110543. [PMID: 31717957 PMCID: PMC6912788 DOI: 10.3390/antiox8110543] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
Nitric oxide (NO) is a gas molecule with diverse physiological and cellular functions. In the eye, NO is used to maintain normal visual function as it is involved in photoreceptor light transduction. In addition, NO acts as a rapid vascular endothelial relaxant, is involved in the control of retinal blood flow under basal conditions and mediates the vasodilator responses of different substances such as acetylcholine, bradykinin, histamine, substance P or insulin. However, the retina is rich in polyunsaturated lipid membranes and is sensitive to the action of reactive oxygen and nitrogen species. Products generated from NO (i.e., dinitrogen trioxide (N2O3) and peroxynitrite) have great oxidative damaging effects. Oxygen and nitrogen species can react with biomolecules (lipids, proteins and DNA), potentially leading to cell death, and this is particularly important in the retina. This review focuses on the role of NO in several ocular diseases, including diabetic retinopathy, retinitis pigmentosa, glaucoma or age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Antolin Cantó
- Departamento Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 64315 Valencia, Spain; (A.C.); (T.O.)
| | - Teresa Olivar
- Departamento Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 64315 Valencia, Spain; (A.C.); (T.O.)
| | - Francisco Javier Romero
- Departamento de Ciencias Biomédicas, Universidad Europea de Valencia, 46010 Valencia, Spain;
| | - María Miranda
- Departamento Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 64315 Valencia, Spain; (A.C.); (T.O.)
- Correspondence: ; Tel.: +34-961369000
| |
Collapse
|
11
|
Tao Y, Zhu Q, Wang L, Zha X, Teng D, Xu L. Adeno-associated virus (AAV)-mediated neuroprotective effects on the degenerative retina: the therapeutic potential of erythropoietin. Fundam Clin Pharmacol 2019; 34:131-147. [PMID: 31243792 DOI: 10.1111/fcp.12494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/01/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022]
Abstract
Retinal degeneration (RD) results in photoreceptor loss and irreversible visual impairments. This study sought to alleviate the photoreceptor degeneration via the adeno-associated virus (AAV)-mediated erythropoietin (EPO) therapy. AAV-2/2-mCMV-EPO vectors were constructed and delivered into the subretinal space of a RD model. The retinal morphology, optokinetic behaviour and electrophysiological function of the treated animals were analysed. The subretinal delivery of AAV-2/2 vectors induced robust EPO gene expressions in the retinas. AAV2/2-mediated EPO therapy ameliorated the photoreceptor degeneration and visual impairments of the RD animal model. Furthermore, the multi-electrodes array (MEA) was used to detect the firing activities of retinal ganglion cells. MEA recording showed that the EPO therapy could restrain the spontaneous firing response, enhance the light-induced firing response and preserve the basic configurations of visual signal pathway in RD model. Our MEA assay provided an example to evaluate the potency of pharmacological compounds on retinal plasticity. In conclusion, AAV2/2-mediated EPO therapy can ameliorate the photoreceptor degeneration and rectify the abnormities in visual signal transmission. These beneficial results suggest the AAV vector is a viable therapeutic option for retinopathies with rapidly degenerating kinetics and lay the groundwork for future development of EPO gene therapy.
Collapse
Affiliation(s)
- Ye Tao
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, 130031, China.,Department of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qi Zhu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Liqiang Wang
- Department of Ophthalmology, Key Lab of Ophthalmology and Visual Science, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaobing Zha
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dengke Teng
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, 130031, China
| | - Lei Xu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| |
Collapse
|
12
|
Benlloch-Navarro S, Trachsel-Moncho L, Fernández-Carbonell Á, Olivar T, Soria JM, Almansa I, Miranda M. Progesterone anti-inflammatory properties in hereditary retinal degeneration. J Steroid Biochem Mol Biol 2019; 189:291-301. [PMID: 30654106 DOI: 10.1016/j.jsbmb.2019.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 01/20/2023]
Abstract
The interactions between steroid gonadal hormones and the retina (a part of the visual system and the central nervous system (CNS)) have received limited attention and beneficial effects of these hormones in retinal diseases is controversial. Retinitis pigmentosa (RP) is the most common cause of retinal hereditary blindness and to date no treatment is available. However, results regarding the effects of progesterone on the progression of RP are promising. With the idea of demonstrating if the progesterone retinal protection in RP is related to its possible anti-inflammatory properties, we have administered orally progesterone to rd10 mice, an animal model of RP. We observed that progesterone decreased photoreceptors cell death, reactive gliosis and the increase in microglial cells caused by RP. We also examined the expression of neuronal and inducible nitric oxide synthase (nNOS and iNOS), the enzyme responsible for NO production. The results demonstrated a decrease in nNOS expression only in control mice treated with progesterone. Inflammation has been related with an increase in lipid peroxidation. Noticeably progesterone administration was able to diminish retinal malondialdehyde (MDA, a lipid peroxidation product) concentrations in rd10 mice. Altogether, we can conclude that progesterone could be a good therapeutic option not only in RP but also for other retinal diseases that have been associated with inflammation and lipid peroxidation.
Collapse
Affiliation(s)
- Soledad Benlloch-Navarro
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - Laura Trachsel-Moncho
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | | | - Teresa Olivar
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - José Miguel Soria
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain; Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - Inmaculada Almansa
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain; Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.
| | - María Miranda
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain; Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.
| |
Collapse
|
13
|
Progesterone, Lipoic Acid, and Sulforaphane as Promising Antioxidants for Retinal Diseases: A Review. Antioxidants (Basel) 2019; 8:antiox8030053. [PMID: 30832304 PMCID: PMC6466531 DOI: 10.3390/antiox8030053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress has been documented to be a key factor in the cause and progression of different retinal diseases. Oxidative cellular unbalance triggers a sequence of reactions which prompt cell degeneration and retinal dysfunction, both hallmarks of several retinal pathologies. There is no effective treatment, yet, for many retinal diseases. Antioxidant treatment have been pointed out to be an encouraging palliative treatment; the beneficial effects documented involve slowing the progression of the disease, a reduction of cell degeneration, and improvement of retinal functions. There is a vast information corpus on antioxidant candidates. In this review, we expose three of the main antioxidant treatments, selected for their promising results that has been reported to date. Recently, the sulforaphane, an isothiocyanate molecule, has been unveiled as a neuroprotective candidate, by its antioxidant properties. Progesterone, a neurosteroid has been proposed to be a solid and effective neuroprotective agent. Finally, the lipoic acid, an organosulfur compound, is a well-recognized antioxidant. All of them, have been tested and studied on different retinal disease models. In this review, we summarized the published results of these works, to offer a general view of the current antioxidant treatment advances, including the main effects and mechanisms described.
Collapse
|