1
|
Uchikawa H, Rahmani R. Animal Models of Intracranial Aneurysms: History, Advances, and Future Perspectives. Transl Stroke Res 2024:10.1007/s12975-024-01276-3. [PMID: 39060663 DOI: 10.1007/s12975-024-01276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Intracranial aneurysms (IA) are a disease process with potentially devastating outcomes, particularly when rupture occurs leading to subarachnoid hemorrhage. While some candidates exist, there is currently no established pharmacological prevention of growth and rupture. The development of prophylactic treatments is a critical area of research, and preclinical models using animals play a pivotal role. These models, which utilize various species and induction methods, each possess unique characteristics that can be leveraged depending on the specific aim of the study. A comprehensive understanding of these models, including their historical development, is crucial for appreciating the advantages and limitations of aneurysm research in animal models.We summarize the significant roles of animal models in IA research, with a particular focus on rats, mice, and large animals. We discuss the pros and cons of each model, providing insights into their unique characteristics and contributions to our understanding of IA. These models have been instrumental in elucidating the pathophysiology of IA and in the development of potential therapeutic strategies.A deep understanding of these models is essential for advancing research on preventive treatments for IA. By leveraging the unique strengths of each model and acknowledging their limitations, researchers can conduct more effective and targeted studies. This, in turn, can accelerate the development of novel therapeutic strategies, bringing us closer to the goal of establishing an effective prophylactic treatment for IA. This review aims to provide a comprehensive view of the current state of animal models in IA research.
Collapse
Affiliation(s)
- Hiroki Uchikawa
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Redi Rahmani
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ, USA.
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA.
| |
Collapse
|
2
|
Chen C, Tang F, Zhu M, Wang C, Zhou H, Zhang C, Feng Y. Role of inflammatory mediators in intracranial aneurysms: A review. Clin Neurol Neurosurg 2024; 242:108329. [PMID: 38781806 DOI: 10.1016/j.clineuro.2024.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
The formation, growth, and rupture of intracranial aneurysms (IAs) involve hemodynamics, blood pressure, external stimuli, and a series of hormonal changes. In addition, inflammatory response causes the release of a series of inflammatory mediators, such as IL, TNF-α, MCP-1, and MMPs, which directly or indirectly promote the development process of IA. However, the specific role of these inflammatory mediators in the pathophysiological process of IA remains unclear. Recently, several anti-inflammatory, lipid-lowering, hormone-regulating drugs have been found to have a potentially protective effect on reducing IA formation and rupture in the population. These therapeutic mechanisms have not been fully elucidated, but we can look for potential therapeutic targets that may interfere with the formation and breakdown of IA by studying the relevant inflammatory response and the mechanism of IA formation and rupture involved in inflammatory mediators.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Fengjiao Tang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Meng Zhu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Han Zhou
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Chonghui Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China.
| |
Collapse
|
3
|
Ishiguro T, Furukawa H, Polen K, Take Y, Sato H, Kudo D, Morgan J, Uchikawa H, Maeda T, Cisneros O, Rahmani R, Ai J, Eguchi S, Lawton M, Hashimoto T. Pharmacological Inhibition of Epidermal Growth Factor Receptor Prevents Intracranial Aneurysm Rupture by Reducing Endoplasmic Reticulum Stress. Hypertension 2024; 81:572-581. [PMID: 38164754 PMCID: PMC10922815 DOI: 10.1161/hypertensionaha.123.21235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Multiple pathways and factors are involved in the rupture of intracranial aneurysms. The EGFR (epidermal growth factor receptor) has been shown to mediate inflammatory vascular diseases, including atherosclerosis and aortic aneurysm. However, the role of EGFR in mediating intracranial aneurysm rupture and its underlying mechanisms have yet to be determined. Emerging evidence indicates that endoplasmic reticulum (ER) stress might be the link between EGFR activation and the resultant inflammation. ER stress is strongly implicated in inflammation and apoptosis of vascular smooth muscle cells, both of which are key components of the pathophysiology of aneurysm rupture. Therefore, we hypothesized that EGFR activation promotes aneurysmal rupture by inducing ER stress. METHODS Using a preclinical mouse model of intracranial aneurysm, we examined the potential roles of EGFR and ER stress in developing aneurysmal rupture. RESULTS Pharmacological inhibition of EGFR markedly decreased the rupture rate of intracranial aneurysms without altering the formation rate. EGFR inhibition also significantly reduced the mRNA (messenger RNA) expression levels of ER-stress markers and inflammatory cytokines in cerebral arteries. Similarly, ER-stress inhibition also significantly decreased the rupture rate. In contrast, ER-stress induction nullified the protective effect of EGFR inhibition on aneurysm rupture. CONCLUSIONS Our data suggest that EGFR activation is an upstream event that contributes to aneurysm rupture via the induction of ER stress. Pharmacological inhibition of EGFR or downstream ER stress may be a promising therapeutic strategy for preventing aneurysm rupture and subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Taichi Ishiguro
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Hajime Furukawa
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Kyle Polen
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Yushiro Take
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Hiroki Sato
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Daisuke Kudo
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Jordan Morgan
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Hiroki Uchikawa
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Takuma Maeda
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Oscar Cisneros
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Redi Rahmani
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Jinglu Ai
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, U.S.A
| | - Michael Lawton
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Tomoki Hashimoto
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| |
Collapse
|
4
|
Khan D, Li X, Hashimoto T, Tanikawa R, Niemela M, Lawton M, Muhammad S. Current Mouse Models of Intracranial Aneurysms: Analysis of Pharmacological Agents Used to Induce Aneurysms and Their Impact on Translational Research. J Am Heart Assoc 2024; 13:e031811. [PMID: 38258667 PMCID: PMC11056163 DOI: 10.1161/jaha.123.031811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Intracranial aneurysms (IAs) are rare vascular lesions that are more frequently found in women. The pathophysiology behind the formation and growth of IAs is complex. Hence, to date, no single pharmacological option exists to treat them. Animal models, especially mouse models, represent a valuable tool to explore such complex scientific questions. Genetic modification in a mouse model of IAs, including deletion or overexpression of a particular gene, provides an excellent means for examining basic mechanisms behind disease pathophysiology and developing novel pharmacological approaches. All existing animal models need some pharmacological treatments, surgical interventions, or both to develop IAs, which is different from the spontaneous and natural development of aneurysms under the influence of the classical risk factors. The benefit of such animal models is the development of IAs in a limited time. However, clinical translation of the results is often challenging because of the artificial course of IA development and growth. Here, we summarize the continuous improvement in mouse models of IAs. Moreover, we discuss the pros and cons of existing mouse models of IAs and highlight the main translational roadblocks and how to improve them to increase the success of translational IA research.
Collapse
Affiliation(s)
- Dilaware Khan
- Department of NeurosurgeryMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐Universität DüsseldorfDüsseldorfGermany
| | - Xuanchen Li
- Department of NeurosurgeryMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐Universität DüsseldorfDüsseldorfGermany
| | - Tomoki Hashimoto
- Department of Neurosurgery and NeurobiologyBarrow Neurological InstitutePhoenixAZUSA
| | - Rokuya Tanikawa
- Department of Neurosurgery, Stroke CenterSapporo Teishinkai HospitalSapporoHokkaidoJapan
| | - Mika Niemela
- Department of NeurosurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Michael Lawton
- Department of Neurological SurgeryBarrow Neurological Institute, St. Joseph’s Hospital and Medical CenterPhoenixAZUSA
| | - Sajjad Muhammad
- Department of NeurosurgeryMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐Universität DüsseldorfDüsseldorfGermany
- Department of NeurosurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
5
|
The Ameliorative Effect of Berberine on Vascular Calcification by Inhibiting Endoplasmic Reticulum Stress. J Cardiovasc Pharmacol 2022; 80:294-304. [PMID: 35580317 DOI: 10.1097/fjc.0000000000001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/24/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Vascular calcification (VC), which currently cannot be prevented or treated, is an independent risk factor for cardiovascular events. We aimed to investigate the ameliorative effect of berberine on VC via the activation of Akt signaling and inhibition of endoplasmic reticulum stress (ERS). The VC model was induced by high-dose Vitamin D 3 in rats and beta-glycerophosphate in primary vascular smooth muscle cells of rat aortas, which were evaluated by Alizarin red staining to determine the calcium content and alkaline phosphatase activity. ERS was determined by the levels of GRP78 and CHOP, whereas that of the Akt signaling pathway was determined by the levels of phosphorylated Akt and GSK3β. VC was significantly ameliorated by berberine treatment in vivo and in vitro, and the inhibition of ERS and the activation of the Akt/GSK3 signaling pathway. In the vascular smooth muscle cells of primary rats, tunicamycin, an ERS activator, blocked the ameliorative effect of berberine on VC and ERS, but not the activation of Akt/GSK3. The ameliorative effects of berberine on VC, ERS, and the Akt signaling pathway were all prevented by inhibitor IV. Four-phenylbutyric acid, an ERS inhibitor, can restore the ameliorative effect of berberine on VC and ERS that was blocked by inhibitor IV. Our results are the first to demonstrate the ameliorative effect of VC that was mediated by the activation of the Akt signaling pathway and inhibition of ERS. These results may provide a new pharmaceutical candidate for the prevention and treatment of VC.
Collapse
|
6
|
Sunderland K, Jiang J, Zhao F. Disturbed flow's impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: A pathological and methodological review. J Cell Physiol 2022; 237:278-300. [PMID: 34486114 PMCID: PMC8810685 DOI: 10.1002/jcp.30569] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Aneurysms are malformations within the arterial vasculature brought on by the structural breakdown of the microarchitecture of the vessel wall, with aneurysms posing serious health risks in the event of their rupture. Blood flow within vessels is generally laminar with high, unidirectional wall shear stressors that modulate vascular endothelial cell functionality and regulate vascular smooth muscle cells. However, altered vascular geometry induced by bifurcations, significant curvature, stenosis, or clinical interventions can alter the flow, generating low stressor disturbed flow patterns. Disturbed flow is associated with altered cellular morphology, upregulated expression of proteins modulating inflammation, decreased regulation of vascular permeability, degraded extracellular matrix, and heightened cellular apoptosis. The understanding of the effects disturbed flow has on the cellular cascades which initiate aneurysms and promote their subsequent growth can further elucidate the nature of this complex pathology. This review summarizes the current knowledge about the disturbed flow and its relation to aneurysm pathology, the methods used to investigate these relations, as well as how such knowledge has impacted clinical treatment methodologies. This information can contribute to the understanding of the development, growth, and rupture of aneurysms and help develop novel research and aneurysmal treatment techniques.
Collapse
Affiliation(s)
- Kevin Sunderland
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Jingfeng Jiang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| |
Collapse
|
7
|
de Seabra Rodrigues Dias IR, Lo HH, Zhang K, Law BYK, Nasim AA, Chung SK, Wong VKW, Liu L. Potential therapeutic compounds from traditional Chinese medicine targeting endoplasmic reticulum stress to alleviate rheumatoid arthritis. Pharmacol Res 2021; 170:105696. [PMID: 34052360 DOI: 10.1016/j.phrs.2021.105696] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease which affects about 0.5-1% of people with symptoms that significantly impact a sufferer's lifestyle. The cells involved in propagating RA tend to display pro-inflammatory and cancer-like characteristics. Medical drug treatment is currently the main avenue of RA therapy. However, drug options are limited due to severe side effects, high costs, insufficient disease retardation in a majority of patients, and therapeutic effects possibly subsiding over time. Thus there is a need for new drug therapies. Endoplasmic reticulum (ER) stress, a condition due to accumulation of misfolded proteins in the ER, and subsequent cellular responses have been found to be involved in cancer and inflammatory pathologies, including RA. ER stress protein markers and their modulation have therefore been suggested as therapeutic targets, such as GRP78 and CHOP, among others. Some current RA therapeutic drugs have been found to have ER stress-modulating properties. Traditional Chinese Medicines (TCMs) frequently use natural products that affect multiple body and cellular targets, and several medicines and/or their isolated compounds have been found to also have ER stress-modulating capabilities, including TCMs used in RA treatment by Chinese Medicine practitioners. This review encourages, in light of the available information, the study of these RA-treating, ER stress-modulating TCMs as potential new pharmaceutical drugs for use in clinical RA therapy, along with providing a list of other ER stress-modulating TCMs utilized in treatment of cancers, inflammatory diseases and other diseases, that have potential use in RA treatment given similar ER stress-modulating capacity.
Collapse
Affiliation(s)
- Ivo Ricardo de Seabra Rodrigues Dias
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hang Hong Lo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Kaixi Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Ali Adnan Nasim
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| |
Collapse
|
8
|
Muhammad S, Chaudhry SR, Dobreva G, Lawton MT, Niemelä M, Hänggi D. Vascular Macrophages as Therapeutic Targets to Treat Intracranial Aneurysms. Front Immunol 2021; 12:630381. [PMID: 33763073 PMCID: PMC7982735 DOI: 10.3389/fimmu.2021.630381] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/11/2021] [Indexed: 01/08/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a highly fatal and morbid type of hemorrhagic strokes. Intracranial aneurysms (ICAs) rupture cause subarachnoid hemorrhage. ICAs formation, growth and rupture involves cellular and molecular inflammation. Macrophages orchestrate inflammation in the wall of ICAs. Macrophages generally polarize either into classical inflammatory (M1) or alternatively-activated anti-inflammatory (M2)-phenotype. Macrophage infiltration and polarization toward M1-phenotype increases the risk of aneurysm rupture. Strategies that deplete, inhibit infiltration, ameliorate macrophage inflammation or polarize to M2-type protect against ICAs rupture. However, clinical translational data is still lacking. This review summarizes the contribution of macrophage led inflammation in the aneurysm wall and discuss pharmacological strategies to modulate the macrophageal response during ICAs formation and rupture.
Collapse
Affiliation(s)
- Sajjad Muhammad
- Department of Neurosurgery, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Department of Anatomy and Developmental Biology, Medical Faculty Mannheim and European Center for Angioscience (ECAS), University of Heidelberg, Mannheim, Germany
| | - Shafqat Rasul Chaudhry
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Gergana Dobreva
- Department of Anatomy and Developmental Biology, Medical Faculty Mannheim and European Center for Angioscience (ECAS), University of Heidelberg, Mannheim, Germany
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Brain and Spine, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Daniel Hänggi
- Department of Neurosurgery, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
9
|
Endogenous animal models of intracranial aneurysm development: a review. Neurosurg Rev 2021; 44:2545-2570. [PMID: 33501561 DOI: 10.1007/s10143-021-01481-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
The pathogenesis and natural history of intracranial aneurysm (IA) remains poorly understood. To this end, animal models with induced cerebral vessel lesions mimicking human aneurysms have provided the ability to greatly expand our understanding. In this review, we comprehensively searched the published literature to identify studies that endogenously induced IA formation in animals. Studies that constructed aneurysms (i.e., by surgically creating a sac) were excluded. From the eligible studies, we reported information including the animal species, method for aneurysm induction, aneurysm definitions, evaluation methods, aneurysm characteristics, formation rate, rupture rate, and time course. Between 1960 and 2019, 174 articles reported endogenous animal models of IA. The majority used flow modification, hypertension, and vessel wall weakening (i.e., elastase treatment) to induce IAs, primarily in rats and mice. Most studies utilized subjective or qualitative descriptions to define experimental aneurysms and histology to study them. In general, experimental IAs resembled the pathobiology of the human disease in terms of internal elastic lamina loss, medial layer degradation, and inflammatory cell infiltration. After the early 2000s, many endogenous animal models of IA began to incorporate state-of-the-art technology, such as gene expression profiling and 9.4-T magnetic resonance imaging (MRI) in vivo imaging, to quantitatively analyze the biological mechanisms of IA. Future studies aimed at longitudinally assessing IA pathobiology in models that incorporate aneurysm growth will likely have the largest impact on our understanding of the disease. We believe this will be aided by high-resolution, small animal, survival imaging, in situ live-cell imaging, and next-generation omics technology.
Collapse
|
10
|
Trueperella pyogenes pyolysin inhibits lipopolysaccharide-induced inflammatory response in endometrium stromal cells via autophagy- and ATF6-dependent mechanism. Braz J Microbiol 2021; 52:939-952. [PMID: 33454924 DOI: 10.1007/s42770-021-00422-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022] Open
Abstract
Trueperella pyogenes (T. pyogenes) is a common opportunistic pathogen of many livestock and play an important regulation role during multibacterial infection and interaction with the host by its primary virulence factor pyolysin (PLO). The purpose of this study was to investigate the regulation role of PLO which serve as a combinational pathogen with lipopolysaccharide (LPS) during endometritis. In this study, the expression of bioactive recombinant PLO (rPLO) in a prokaryotic expression system and its purification are described. Moreover, we observed that rPLO inhibited the innate immune response triggered by LPS and that methyl-β-cyclodextrin (MBCD) abrogated this inhibitory effect in goat endometrium stromal cells (gESCs). Additionally, we show from pharmacological and genetic studies that rPLO-induced autophagy represses gene expression by inhibiting NLRP3 inflammasome activation. Importantly, this study reported that ATF6 serves as a primary regulator of the cellular inflammatory reaction to rPLO. Overall, these observations suggest that T. pyogenes PLO could create an immunosuppressive environment for other pathogens invasion by regulating cellular signaling pathways.
Collapse
|
11
|
Liu Y, Song Y, Liu P, Li S, Shi Y, Yu G, Quan K, Fan Z, Li P, An Q, Zhu W. Comparative bioinformatics analysis between proteomes of rabbit aneurysm model and human intracranial aneurysm with label-free quantitative proteomics. CNS Neurosci Ther 2021; 27:101-112. [PMID: 33389819 PMCID: PMC7804895 DOI: 10.1111/cns.13570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Aims This study aimed to find critical proteins involved in the development of intracranial aneurysm by comparing proteomes of rabbit aneurysm model and human aneurysms. Methods Five human intracranial aneurysm samples and 5 superficial temporal artery samples, and 4 rabbit aneurysm samples and 4 control samples were collected for protein mass spectrometry. Four human intracranial aneurysm samples and 4 superficial temporal artery samples, and 6 rabbit aneurysm samples and 6 control samples were used for immunochemistry. Results Proteomic analysis revealed 180 significantly differentially expressed proteins in human intracranial aneurysms and 716 significantly differentially expressed proteins in rabbit aneurysms. Among them, 57 proteins were differentially expressed in both species, in which 24 were increased and 33 were decreased in aneurysms compared to the control groups. Proteins were involved in focal adhesion and extracellular matrix‐receptor interaction pathways. We found that COL4A2, MYLK, VCL, and TAGLN may be related to aneurysm development. Conclusion Proteomics analysis provided fundamental insights into the pathogenesis of aneurysm. Proteins related to focal adhesion and extracellular matrix‐receptor interaction pathways play an important role in the occurrence and development of intracranial aneurysm.
Collapse
Affiliation(s)
- Yingjun Liu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Yaying Song
- Department of Neurology, Renji Hospital of Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Peixi Liu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Sichen Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Yuan Shi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Guo Yu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Kai Quan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Zhiyuan Fan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Peiliang Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Qingzhu An
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery. Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| |
Collapse
|
12
|
Liu WL, Chiang FT, Kao JTW, Chiou SH, Lin HL. GSK3 modulation in acute lung injury, myocarditis and polycystic kidney disease-related aneurysm. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118798. [PMID: 32693109 PMCID: PMC7368652 DOI: 10.1016/j.bbamcr.2020.118798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
Abstract
GSK3 are involved in different physical and pathological conditions and inflammatory regulated by macrophages contribute to significant mechanism. Infection stimuli may modulate GSK3 activity and influence host cell adaption, immune cells infiltration or cytokine expressions. To further address the role of GSK3 modulation in macrophages, the signal transduction of three major organs challenged by endotoxin, virus and genetic inherited factors are briefly introduced (lung injury, myocarditis and autosomal dominant polycystic kidney disease). As a result of pro-inflammatory and anti-inflammatory functions of GSK3 in different microenvironments and stages of macrophages (M1/M2), the rational resolution should be considered by adequately GSK3.
Collapse
Affiliation(s)
- Wei-Lun Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan,Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan,Center For Innovation, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Fu-Tien Chiang
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan,Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Juliana Tze-Wah Kao
- Division of Nephrology, Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei, Taiwan,Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan,Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Heng-Liang Lin
- Center For Innovation, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan; Division of Fund Managing, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
13
|
Yu Y, Cai W, Zhou J, Lu H, Wang Y, Song Y, He R, Pei F, Wang X, Zhang R, Liu H, Wei F. Anti-arthritis effect of berberine associated with regulating energy metabolism of macrophages through AMPK/ HIF-1α pathway. Int Immunopharmacol 2020; 87:106830. [PMID: 32738596 DOI: 10.1016/j.intimp.2020.106830] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Berberine (BBR) is the effective constituent of Cortex phellodendri and was characterized as an excellent anti-microbial agent with significant anti-inflammatory effects. Previously, we had demonstrated that BBR alleviated the inflammatory response in adjuvant-induced arthritis (AA) rats by regulating polarization of macrophages. However, the exact mechanics by which BBR regulates macrophage polarization remained unclear. Here, we showed that BBR treatment had little influence on total number of macrophages in joints of AA rats, but increased the proportion of M2 macrophages and decreased the proportion of M1 macrophages. Meanwhile, we found BBR up-regulated the expression of AMP-activated protein kinase phosphorylation (p-AMPK) and down-regulated the expression of Hypoxia inducible factor 1α (HIF-1α) in synovial macrophages of AA rats. In vitro, using LPS-stimulated peritoneal macrophages from normal rats, we also verified that pretreatment with BBR promoted transition from M1 to M2 by up-regulating the expression of p-AMPK and suppressing the expression of HIF-1α. Compound C (an AMPK inhibitor) could abrogate the inhibition of BBR on migration of macrophages. Glycolysis of M1 suppressed by BBR through decreasing lactate export, glucose consumption, and increasing intracellular ATP content, which was remarkably reversed by Compound C. These findings indicated that anti-arthritis effect of BBR is associated with regulating energy metabolism of macrophages through AMPK/HIF-1α pathway.
Collapse
Affiliation(s)
- Yun Yu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Weiwei Cai
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Jing Zhou
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Huaqiu Lu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Ying Wang
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Yining Song
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Rui He
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Feilong Pei
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Xiaodie Wang
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Renhao Zhang
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China; Anhui BBCA Pharmaceuticals Co., Ltd, No.6288, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China; Anhui BBCA Pharmaceuticals Co., Ltd, No.6288, Donghai Avenue, Bengbu 233000, Anhui, China; School of Chemistry and Chemical Engineering, Anhui University, No.3, Feixi Rode, Hefei 230039, Anhui, China.
| |
Collapse
|
14
|
The role of IL-1β in aortic aneurysm. Clin Chim Acta 2020; 504:7-14. [PMID: 31945339 DOI: 10.1016/j.cca.2020.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
Interleukin-1β (IL-1β) is a vital cytokine that plays an important role in regulating immune responses to infectious challenges and sterile insults. In addition, two endogenous inhibitors of functional receptor binding, IL-1 receptor antagonist (IL-1Ra), complete the family. To gain biological activity, IL-1β requires processing by the protease caspase-1 and activation of inflammasomes. Numerous clinical association studies and experimental approaches have implicated members of the IL-1 family, their receptors, or components of the processing machinery in the underlying processes of cardiovascular diseases. Here, we summarize the current state of knowledge regarding the pro-inflammatory and disease-modulating role of the IL-1 family in aneurysm. We discuss clinical evidence, signalling pathway, and mechanism of action and last, lend a perspective on currently developing therapeutic strategies involving IL-1β in aneurysm.
Collapse
|
15
|
Che Y, Shen DF, Wang ZP, Jin YG, Wu QQ, Wang SS, Yuan Y. Protective role of berberine in isoprenaline-induced cardiac fibrosis in rats. BMC Cardiovasc Disord 2019; 19:219. [PMID: 31615408 PMCID: PMC6792193 DOI: 10.1186/s12872-019-1198-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cardiac fibrosis is a crucial aspect of cardiac remodeling that can severely affect cardiac function. Cardiac fibroblasts surely influence this process. Besides, macrophage plays an essential role in cardiac remodeling after heart injury. However, whether macrophage influence fibroblasts remain a question worth exploring. This study aimed to define the role of berberine (BBR) on isoprenaline (ISO)-induced cardiac fibrosis in an in vivo rat model and try to figure out the mechanism in vitro study. METHODS The Sprague-Dawley rats were divided into five groups: control group, ISO-treated group, and ISO + BBR (10 mg/kg/d, 30 mg/kg/d, and 60 mg/kg/d orally)-pretreatment groups. Fibrosis was induced by ISO administration (5 mg/kg/d subcutaneously) for 10 days. One day after the last injection, all of the rats were sacrificed. Using picrosirius red (PSR) straining, immunohistochemistry, immunofluorescence, flow cytometry, western blot, RT-qPCR and cell co-culture, we explored the influence of pretreatment by BBR on ISO-induced cardiac fibrosis. RESULTS Our results showed that BBR pretreatment greatly limited ISO-induced cardiac fibrosis and dysfunction. Moreover, BBR administration reduced macrophage infiltration into the myocardium of ISO-treated rats and inhibited transforming growth factor (TGF)-β1/smads signaling pathways in comparison to that seen in the ISO group. Besides, in vitro study showed that BBR-pretreatment reduced ISO-induced TGF-β1 mRNA expression in macrophages and ISO stimulation of macrophages significantly increased the expression of fibrotic markers in fibroblasts, but BBR-pretreatment blocked this increase. CONCLUSION Our results showed that BBR may have a protective role to cardiac injury via reducing of macrophage infiltration and forbidding fibroblasts transdifferent into an 'activated' secretory phenotype, myofibroblasts.
Collapse
Affiliation(s)
- Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Di-Fei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zhao-Peng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Ya-Ge Jin
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Sha-Sha Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China.
| |
Collapse
|
16
|
Berberine attenuates arthritis in adjuvant-induced arthritic rats associated with regulating polarization of macrophages through AMPK/NF-кB pathway. Eur J Pharmacol 2019; 852:179-188. [DOI: 10.1016/j.ejphar.2019.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 01/22/2023]
|
17
|
Qian C, Yun Z, Yao Y, Cao M, Liu Q, Hu S, Zhang S, Luo D. Heterogeneous macrophages: Supersensors of exogenous inducing factors. Scand J Immunol 2019; 90:e12768. [PMID: 31002413 PMCID: PMC6852148 DOI: 10.1111/sji.12768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
As heterogeneous immune cells, macrophages mount effective responses to various internal and external changes during disease progression. Macrophage polarization, rather than macrophage heterogenization, is often used to describe the functional differences between macrophages. While macrophage polarization partially contributes to heterogeneity, it does not completely explain the concept of macrophage heterogeneity. At the same time, there are abundant and sophisticated endogenous and exogenous substances that can affect macrophage heterogeneity. While the research on endogenous factors has been systematically reviewed, the findings on exogenous factors have not been well summarized. Hence, we reviewed the characteristics and inducing factors of heterogeneous macrophages to reveal their functional plasticity as well as their targeting manoeuvreability. In the process of constructing and analysing a network organized by disease-related cells and molecules, paying more attention to heterogeneous macrophages as mediators of this network may help to explore a novel entry point for early prevention of and intervention in disease.
Collapse
Affiliation(s)
- Caiyun Qian
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Zehui Yun
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Yudi Yao
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Minghua Cao
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Liu
- School of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Song Hu
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Shuhua Zhang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Daya Luo
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China.,Affiliated Infectious Disease Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|