1
|
Wang P, Wei J, Hua X, Dong G, Dziedzic K, Wahab AT, Efferth T, Sun W, Ma P. Plant anthraquinones: Classification, distribution, biosynthesis, and regulation. J Cell Physiol 2024; 239:e31063. [PMID: 37393608 DOI: 10.1002/jcp.31063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Anthraquinones are polycyclic compounds with an unsaturated diketone structure (quinoid moiety). As important secondary metabolites of plants, anthraquinones play an important role in the response of many biological processes and environmental factors. Anthraquinones are common in the human diet and have a variety of biological activities including anticancer, antibacterial, and antioxidant activities that reduce disease risk. The biological activity of anthraquinones depends on the substitution pattern of their hydroxyl groups on the anthraquinone ring structure. However, there is still a lack of systematic summary on the distribution, classification, and biosynthesis of plant anthraquinones. Therefore, this paper systematically reviews the research progress of the distribution, classification, biosynthesis, and regulation of plant anthraquinones. Additionally, we discuss future opportunities in anthraquinone research, including biotechnology, therapeutic products, and dietary anthraquinones.
Collapse
Affiliation(s)
- Peng Wang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xin Hua
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | | | - Krzysztof Dziedzic
- Department of Food Technology of Plant Origin, Poznan' University of Life Sciences, Poznań, Poland
| | - Atia-Tul Wahab
- Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Gorman M, Baxter L, Frampton K, Dabas T, Moss R, McSweeney MB. An investigation into the sensory properties of luffa [Luffa cylindrica (L.)] sap. J Food Sci 2024; 89:5082-5090. [PMID: 38924528 DOI: 10.1111/1750-3841.17158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
The seeds and sap of luffa [Luffa cylindrica (L.)] are usually discarded as waste. As such, this study aimed to identify the sensory properties of luffa sap (aqueous solution) and if it can be incorporated into a food item (orange juice) for added nutritional benefits and as an alternative sweetener. A sensory trial (n = 94) asked participants to evaluate a luffa sap sample and five different orange juice samples with increasing amounts of luffa sap (control [0%], 5%, 7.5%, 10%, 12.5%). The participants evaluated the samples using 9-point hedonic scales, check-all-that-apply, and an open-ended comment question. The luffa sap was described as having a mild flavor as well as woody, earthy, and floral attributes and an aftertaste. The liking scores for the orange juice with the 5% luffa sap did not significantly differ from the control. However, as the amount of luffa sap increased above 5%, the liking scores decreased and were significantly different from the control. The orange juice with luffa sap samples (7.5% and above) was associated with off-flavors, while the orange juice with 5% luffa sap and the control were associated with the attributes (sweet, fruity, orange, tropical, citrus) that increased the participants liking. Future studies should continue to investigate the sensory properties of luffa sap and its incorporation into different food products. PRACTICAL APPLICATION: This is one of the first studies to investigate the sensory properties of luffa sap with participants residing in the Western world. The luffa sap was found to be woody, earthy, bitter, and floral. It was acceptable to add luffa sap to orange juice up to 5% by volume. However, it did not increase the sweetness perception of the orange juice. At a 7.5% luffa sap addition and higher levels, off-flavors were observed in the orange juice.
Collapse
Affiliation(s)
- Mackenzie Gorman
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Laura Baxter
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Kaitlyn Frampton
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Tanvi Dabas
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Rachael Moss
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Matthew B McSweeney
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
3
|
Gundu S, Sahi AK, Kumari P, Tekam CS, Allu I, Singh R, Mahto SK. In vivo characterization of a luffa-based composite scaffold for subcutaneous implantation in rats. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1922-1946. [PMID: 38970296 DOI: 10.1080/09205063.2024.2363080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/28/2024] [Indexed: 07/08/2024]
Abstract
Recent advancements in tissue engineering have witnessed luffa-derived scaffolds, exhibiting their exceptional potential in cellular proliferation, biocompatibility, appropriate interconnectivity, and biomechanical strength. In vivo studies involved implanting fabricated scaffolds subcutaneously in Wistar rats to evaluate their impact on the heart, liver, and kidneys. This approach provided a safe and minimally invasive means to evaluate scaffold compatibility with surrounding tissues. Male Wistar rats were categorized into four distinct groups, Group A, B, C, and D are referred to as 3% LC implanted scaffolds, 5% LC implanted scaffolds, control (without luffa scaffolds), and Sham (without any scaffold implantation), respectively. Histological analysis in all the groups indicated that the animal models did not exhibit any signs of inflammation or toxicity, suggesting favorable tissue response to the implanted scaffolds. Initial observations revealed elevated levels of enzymes and biomarkers in the experimental groups after a 24 h interval, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), bilirubin, creatine kinase-MB (CK-MB), and serum creatinine. However, these parameters normalized 3 weeks post-implantation, with no significant increase compared to the control groups, suggesting that the implanted luffa-based scaffolds did not induce adverse effects on the heart, liver, and kidneys. Furthermore, the scaffold's significant pore size and porosity enable it to release drugs, including antibacterial medications. This study demonstrates promising results, indicating excellent scaffold porosity, sustained drug release, affirming the in vivo biocompatibility, absence of inflammatory responses, and overall tissue compatibility highlighting the immense potential of these luffa-based scaffolds in various tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Shravanya Gundu
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ajay Kumar Sahi
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pooja Kumari
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Chandrakant Singh Tekam
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ishita Allu
- Department of Biomedical Engineering, University of Engineering (UCE), Osmania University, Hyderabad, India
| | - Richa Singh
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
- Centre for Advanced Biomaterials and Tissue Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
4
|
Huang A, Feng S, Ye Z, Zhang T, Chen S, Chen C, Chen S. Genome Assembly and Structural Variation Analysis of Luffa acutangula Provide Insights on Flowering Time and Ridge Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1828. [PMID: 38999668 PMCID: PMC11243878 DOI: 10.3390/plants13131828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Luffa spp. is an important worldwide cultivated vegetable and medicinal plant from the Cucurbitaceae family. In this study, we report a high-quality chromosome-level genome of the high-generation inbred line SG261 of Luffa acutangula. The genomic sequence was determined by PacBio long reads, Hi-C sequencing reads, and 10× Genomics sequencing, with an assembly size of 739.82 Mb, contig N50 of 18.38 Mb, and scaffold N50 of 56.08 Mb. The genome of L. acutangula SG261 was predicted to contain 27,312 protein-coding genes and 72.56% repetitive sequences, of which long terminal repeats (LTRs) were an important form of repetitive sequences, accounting for 67.84% of the genome. Phylogenetic analysis reveals that L. acutangula evolved later than Luffa cylindrica, and Luffa is closely related to Momodica charantia. Comparing the genome of L. acutangula SG261 and L. cylindrica with PacBio data, 67,128 high-quality structural variations (SVs) and 55,978 presence-absence variations (PAVs) were identified in SG261, resulting in 2424 and 1094 genes with variation in the CDS region, respectively, and there are 287 identical genes affected by two different structural variation analyses. In addition, we found that the transcription factor FY (FLOWERING LOCUS Y) families had a large expansion in L. acutangula SG261 (flowering in the morning) compared to L. cylindrica (flowering in the afternoon), which may result in the early flowering time in L. acutangula SG261. This study provides valuable reference for the breeding of and pan-genome research into Luffa species.
Collapse
Affiliation(s)
- Aizheng Huang
- Institute of Agricultural Science Research of Jiangmen, Jiangmen 529060, China;
| | - Shuo Feng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (S.F.)
| | - Zhuole Ye
- Dongguan Agricultural Scientific Research Center, Dongguan 523086, China
| | - Ting Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (S.F.)
| | - Shenglong Chen
- Dongguan Agricultural Scientific Research Center, Dongguan 523086, China
| | - Changming Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (S.F.)
| | - Shijun Chen
- Institute of Agricultural Science Research of Jiangmen, Jiangmen 529060, China;
| |
Collapse
|
5
|
Kumsab J, Yingchutrakul Y, Simanon N, Jankam C, Sonthirod C, Tangphatsornruang S, Butkinaree C. Comparative Proteomic Analysis of Ridge Gourd Seed ( Luffa acutangula (L.) Roxb.) during Artificial Aging. ACS OMEGA 2024; 9:24739-24750. [PMID: 38882140 PMCID: PMC11171090 DOI: 10.1021/acsomega.4c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
Seed aging is a complicated process influenced by environmental conditions, impacting biochemical processes in seeds and causing deterioration that results in reduced viability and vigor. In this study, we investigated the seed aging process of ridge gourd, which is one of the most exported commercial seeds in Thailand using sequential window acquisition of all theoretical fragment ion spectra mass spectrometry. A total of 855 proteins were identified among the two groups (0 d/15 d and 0 d/30 d). The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of differentially expressed proteins revealed that in ridge gourd seeds, the aging process altered the abundance of proteins related to the oxidative stress response, nutrient reservoir, and metabolism pathway. The most identified DEPs were mitochondrial proteins, ubiquitin-proteasome system proteins, ribosomal proteins, carbohydrate metabolism-related proteins, and stress response-related proteins. This study also presented the involvement of aconitase and glutathione pathway-associated enzymes in seed aging, with aconitase and total glutathione being determined as possible suggestive biomarkers for aged ridge gourd seeds. This acquired knowledge has the potential to considerably improve growing methods and seed preservation techniques, enhancing seed storage and maintenance.
Collapse
Affiliation(s)
- Jakkaphan Kumsab
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Nattapon Simanon
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Chonchawan Jankam
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Chutikarn Butkinaree
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| |
Collapse
|
6
|
Namisy A, Chen SY, Huang JH, Unartngam J, Thanarut C, Chung WH. Histopathology and quantification of green fluorescent protein-tagged Fusarium oxysporum f. sp. luffae isolate in resistant and susceptible Luffa germplasm. Microbiol Spectr 2024; 12:e0312723. [PMID: 38174927 PMCID: PMC10846128 DOI: 10.1128/spectrum.03127-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Fusarium oxysporum f. sp. luffae (Folu) is a severe plant pathogen that causes vascular wilt and root rot in Luffa plants worldwide. A green fluorescent protein (GFP)-tagged isolate of Folu (Fomh16-GFP) was utilized to investigate the infection progress and colonization of Fomh16-GFP in resistant (LA140) and susceptible (LA100) Luffa genotypes. Seven days post-inoculation (dpi), it was observed that Fomh16-GFP had successfully invaded and colonized the vascular bundle of all LA100 parts, including the roots, hypocotyl, and stem. Pathogen colonization continued to increase over time, leading to the complete wilting of plants by 14-17 dpi. In LA140, the Fomh16-GFP isolate colonized the roots and hypocotyl vascular system at 7 dpi. Nevertheless, this colonization was restricted in the hypocotyl and decreased significantly, and no fungal growth was detected in the vascular system at 21 dpi. Thus, the resistant genotype might trigger a robust defense mechanism. In addition, while the pathogen was present in LA140, the inoculated plants did not exhibit any symptoms until 28 dpi. Quantitative PCR was utilized to measure the Fomh16-GFP biomass in various parts of LA100 and LA140 at different time points. The findings indicated a positive correlation between the quantity of Fomh16-GFP DNA and disease development in LA100. Alternatively, a high amount of Fomh16-GFP DNA was identified in the roots of LA140. Nonetheless, no significant correlations were found between DNA amount and disease progression in LA140. Aqueous extracts from LA140 significantly reduced Fomh16-GFP spore germination, while no significant reduction was detected using LA100 extracts.IMPORTANCEFusarium wilt of Luffa, caused by Fusarium oxysporum f. sp. luffae (Folu), causes great losses in Luffa plants worldwide. This study used a green fluorescent protein (GFP)-tagged isolate of Folu (Fomh16-GFP) to investigate the infection progress and colonization dynamics of Fomh16-GFP in the resistant and susceptible Luffa genotypes, which could be important in understanding the resistance mechanism of Folu in Luffa plants. In addition, our work highlights the correlations between DNA amount and disease progression in resistant plants using real-time PCR. We observed a positive correlation between the quantity of Fomh16-GFP DNA and disease progression in LA100, while no significant correlation was found in LA140. These results could be valuable to further investigate the resistance mechanism of Luffa genotypes against Folu. Gaining a better understanding of the interaction between Folu and Luffa plants is crucial for effectively managing Fusarium wilt and enhancing resistance in Luffa rootstock and its varieties.
Collapse
Affiliation(s)
- Ahmed Namisy
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Yun Chen
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Jin-Hsing Huang
- Plant Pathology Division, Taiwan Agricultural Research Institute, Council of Agriculture, Taichung, Taiwan
| | - Jintana Unartngam
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Chinnapan Thanarut
- Faculty of Agriculture Production, Division of Pomology Maejo University, Bangkok, Thailand
| | - Wen-Hsin Chung
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, Taiwan
- Master Program for Plant Medicine and Agricultural Practice, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
7
|
Das S, Kumbhakar S, Debnath R, Barik A. Life table parameters and digestive physiology of Aulacophora lewisii Baly (Coleoptera: Chrysomelidae) on three Luffa acutangula (L.) Roxb. (Cucurbitaceae) cultivars. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:134-148. [PMID: 38178797 DOI: 10.1017/s0007485323000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Aulacophora lewisii Baly (Coleoptera: Chrysomelidae) is an important pest of Luffa acutangula (L.) Roxb. (Cucurbitaceae) in India. Larvae of A. lewisii feed on the roots, while adults consume leaves of L. acutangula. In the current study, effects of three L. acutangula cultivars (Abhiskar, Debsundari, and Jaipur Long) on the life table parameters by age-stage, two-sex approach, and key digestive enzymatic activities (amylolytic, proteolytic, and lipolytic) of the larvae and adults of A. lewisii were determined. Further, nutrients (total carbohydrates, proteins, lipids, amino acids, and nitrogen content) and antinutrients (total phenols, flavonols, and tannins) present in the roots and leaves of three cultivars were estimated. The development time (egg to adult emergence) was fastest and slowest on Jaipur Long (31.80 days) and Abhiskar (40.91 days), respectively. Fecundity was highest and lowest on Jaipur Long (279.91 eggs) and Abhiskar (137.18 eggs), respectively. The intrinsic rate of increase (r) was lowest on Abhiskar (0.0511 day-1) and highest on Jaipur Long (0.0872 day-1). The net reproductive rate (R0) was lowest on Abhiskar (23.32 offspring female-1). The mean generation time (T) was shortest on Jaipur Long (52.59 days) and longest on Abhiskar (61.58 days). The amylolytic, proteolytic, and lipolytic activities of larvae and adults of A. lewisii were highest and lowest on Jaipur Long and Abhiskar, respectively. The lower level of nutrients and higher level of antinutrients influenced higher larval development time and lower fecundity of A. lewisii on Abhiskar than other cultivars. Our results suggest that Abhiskar cultivar could be promoted for cultivation.
Collapse
Affiliation(s)
- Susmita Das
- Ecology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan - 713 104, West Bengal, India
| | - Sanoj Kumbhakar
- Ecology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan - 713 104, West Bengal, India
| | - Rahul Debnath
- Ecology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan - 713 104, West Bengal, India
| | - Anandamay Barik
- Ecology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan - 713 104, West Bengal, India
| |
Collapse
|
8
|
Saleem H, Yaqub A, Rafique R, Ali Chohan T, Malik DES, Tousif MI, Khurshid U, Ahemad N, Ramasubburayan R, Rengasamy KR. Nutritional and medicinal plants as potential sources of enzyme inhibitors toward the bioactive functional foods: an updated review. Crit Rev Food Sci Nutr 2023; 64:9805-9828. [PMID: 37255100 DOI: 10.1080/10408398.2023.2217264] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Enzymes are biologically active complex protein molecules that catalyze most chemical reactions in living organisms, and their inhibitors accelerate biological processes. This review emphasizes medicinal food plants and their isolated chemicals inhibiting clinically important enzymes in common diseases. A mechanistic overview was investigated to explain the mechanism of these food bases enzyme inhibitors. The enzyme inhibition potential of medicinal food plants and their isolated substances was searched in Ovid, PubMed, Science Direct, Scopus, and Google Scholar. Cholinesterase, amylase, glucosidase, xanthine oxidase, tyrosinase, urease, lipoxygenase, and others were inhibited by crude extracts, solvent fractions, or isolated pure chemicals from medicinal food plants. Several natural compounds have shown tyrosinase inhibition potential, including quercetin, glabridin, phloretin-4-O-β-D-glucopyranoside, lupinalbin, and others. Some of these compounds' inhibitory kinetics and molecular mechanisms are also discussed. Phenolics and flavonoids inhibit enzyme activity best among the secondary metabolites investigated. Several studies showed flavonoids' significant antioxidant and anti-inflammatory activities, highlighting their medicinal potential. Overall, many medicinal food plants, their crude extracts/fractions, and isolated compounds have been studied, and some promising compounds depending on the enzyme have been found. Still, more studies are recommended to derive potential pharmacologically active functional foods.
Collapse
Affiliation(s)
- Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore, Pakistan
| | - Anam Yaqub
- Fatima Memorial Medical and Dental College, Lahore, Pakistan
| | | | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore, Pakistan
| | - Durr-E-Shahwar Malik
- Institute of Pharmaceutical Sciences, Peoples University of Medical and Health Sciences, NawabShah, Pakistan
| | - Muhammad Imran Tousif
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, Pakistan
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Pakistan
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ramasamy Ramasubburayan
- Marine Biomedical Research Lab & Environmental Toxicology Unit, Department of Prosthodotics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kannan Rr Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| |
Collapse
|
9
|
Nath S, Mukherjee AK. Ethnomedicines for the treatment of scorpion stings: A perspective study. JOURNAL OF ETHNOPHARMACOLOGY 2023; 282:114599. [PMID: 36567038 DOI: 10.1016/j.jep.2021.114599] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scorpion sting is a public health concern with limited clinical symptomatic treatment. The clinical treatment uses anti-scorpion antivenom and prazosin (α-adrenergic inhibitor), often in combination with insulin, to reduce scorpion venom-induced hyperglycemia and other complications. However, these therapies also possess some limitations, necessitating urgent exploration of ethnomedicines, mainly traditional medicinal plants, to treat scorpion stings. Unfortunately, several conventional treatments are not scientifically validated, thus raising questions about their quality and utility. Therefore, pharmacological re-assessment of such medicinal plants to alleviate scorpion stings' complications is essential. AIM OF THE STUDY The principal objectives of this study are to provide a brief overview of medically important scorpions of the world, outline the extant traditional practices, and comprehensively review plants used in conventional ethnic medicines to treat scorpion stings over time. Modern technological advances in identifying and characterizing plant bioactive molecules are also mentioned in this review. MATERIALS AND METHODS The traditionally used medicinal plants against scorpion stings were reviewed from the available literature in the database. The Plant List (http://www.theplantlist.org/) was used to validate the scientific names of the plants mentioned in this study. The search targeted literature on conventional treatments and crude plant extracts or their bioactive components with proven neutralization capacity against scorpion stings. Search words used were 'scorpion sting,' 'treatment for a scorpion sting,' 'antivenom and scorpion sting,' 'traditional treatment for scorpion stings, and 'natural compounds against scorpion stings'. RESULTS A list of more than 200 medicinal plants traditionally used in several countries for treating scorpion stings is presented in this review. Though some myth-based remedies are practiced to treat scorpion stings, no empirical evidence exists to validate this aspect of traditional knowledge. Only 38 traditional medicinal plant extracts have been tested under in-vivo and in-vitro conditions to determine their neutralization potency of scorpion envenomation. Although a few bioactive plant constituents showing scorpion venom neutralization potency have been characterized, they are not yet commercially available for clinical application. CONCLUSIONS There is tremendous potential locked in medicinal plants' traditional knowledge for scorpion envenomation treatment. Translating this knowledge into the clinical application will require pharmacological reassessment, in tandem with isolation and characterization of active compounds to prove their prophylactic prowess. Almost equally important would be the formulation of stringent strategies to conserve such medicinal plants from overexploitation.
Collapse
Affiliation(s)
- Susmita Nath
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, 781035, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabad, India.
| | - Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, 781035, Assam, India; On Deputation from Tezpur University, Tezpur, Assam, India.
| |
Collapse
|
10
|
Li M, Song X, Li J, Chen X, Li J, Hou C. Safety assessment of oil extracted from lacquer (Toxicodendron vernicifluum (Stokes) F.A. Barkley) seed: acute and subchronic toxicity studies in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115901. [PMID: 36336220 DOI: 10.1016/j.jep.2022.115901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Toxicodendron vernicifluum (Stokes) F.A. Barkley (RVS) is an economic tree species and widely distributed in East Asia. Wood parts and raw lacquers of RVS have been used in coatings, herbal medicines or food supplements, and the leaves, flowers, roots, and fruits of RVS are also widely used in medicine traditionally. Lacquer seed oil (LSO) has potential health benefits and has not previously been evaluated for safety. AIM OF THE STUDY The aim of the present study was to investigate the toxicological potential of LSO by acute and subchronic toxicity tests. MATERIALS AND METHODS The characterization of fatty acids of the LSO was carried out by gas chromatography. In the acute toxicity study, LSO was administered at single doses of 5000 or 10000 mg/kg by oral gavage. The subchronic toxicity study was conducted by daily oral administration of LSO at doses of 1250, 2500 and 5000 mg/kg/day for 30 consecutive days. The animals were evaluated for clinical observations, body weight, organ weight, feed consumption, biochemical and hematological parameters, and liver, lung, and kidney histology. RESULTS There were no mortality and toxic changes were observed in acute toxicity study. The results of subchronic toxicity showed no toxicologically significant changes in clinical observations, body weight, organ weight, biochemical or hematological parameters. Histopathologic results indicated slight hepatic steatosis and inflammatory infiltration in the rats of 5000 mg/kg/day LSO treated group. However, the histopathologic observation was not confirmed by hepatic biochemical analysis. CONCLUSIONS These results suggested that the LD50 of LSO is over 10000 mg/kg and LSO is non-toxic for SD rats in acute toxicity study. The no observed adverse effect level (NOAEL) of LSO in rats is considered to be 5000 mg/kg/day, and liver is the potential target organ of LSO for 30-day subchronic toxicity study.
Collapse
Affiliation(s)
- Mengting Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an, China.
| | - Xiaoyu Song
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an, China.
| | - Jie Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an, China.
| | - Xinxin Chen
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an, China.
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an, China.
| | - Chen Hou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
11
|
Buathong R, Duangsrisai S. Plant ingredients in Thai food: a well-rounded diet for natural bioactive associated with medicinal properties. PeerJ 2023; 11:e14568. [PMID: 36879911 PMCID: PMC9985418 DOI: 10.7717/peerj.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/23/2022] [Indexed: 03/05/2023] Open
Abstract
Background Seeking cures for chronic inflammation-associated diseases and infectious diseases caused by critical human pathogens is challenging and time-consuming. Even as the research community searches for novel bioactive agents, consuming a healthy diet with functional ability might be an effective way to delay and prevent the progression of severe health conditions. Many plant ingredients in Thai food are considered medicinal, and these vegetables, herbs, and spices collectively possess multiple biological and pharmacological activities, such as anti-inflammatory, antimicrobial, antidiabetic, antipyretic, anticancer, hepatoprotective, and cardioprotective effects. Methodology In this review, the selected edible plants are unspecific to Thai food, but our unique blend of recipes and preparation techniques make traditional Thai food healthy and functional. We searched three electronic databases: PUBMED, Science Direct, and Google Scholar, using the specific keywords "Plant name" followed by "Anti-inflammatory" or "Antibacterial" or "Antiviral" and focusing on articles published between 2017 and 2021. Results Our selection of 69 edible and medicinal plant species (33 families) is the most comprehensive compilation of Thai food sources demonstrating biological activities to date. Focusing on articles published between 2017 and 2021, we identified a total of 245 scientific articles that have reported main compounds, traditional uses, and pharmacological and biological activities from plant parts of the selected species. Conclusions Evidence indicates that the selected plants contain bioactive compounds responsible for anti-inflammatory, antibacterial, and antiviral properties, suggesting these plants as potential sources for bioactive agents and suitable for consumption for health benefits.
Collapse
Affiliation(s)
- Raveevatoo Buathong
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sutsawat Duangsrisai
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
12
|
Saleem H, Khurshid U, Anwar S, Tousif MI, Mahomoodally FM, Ahemad N. Buxus papillosa C.K. Schneid.: A comprehensive review on traditional uses, botany, phytochemistry, pharmacology, and toxicology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Sun Y, Zhang H, Dong W, He S, Qiao S, Qi X, Hu Q. Integrated analysis of the transcriptome, sRNAome, and degradome reveals the network regulating fruit skin coloration in sponge gourd (Luffa cylindrica). Sci Rep 2022; 12:3338. [PMID: 35228643 PMCID: PMC8885689 DOI: 10.1038/s41598-022-07431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 11/09/2022] Open
Abstract
Sponge gourd fruit skin color is an important quality-related trait because it substantially influences consumer preferences. However, little is known about the miRNAs and genes regulating sponge gourd fruit skin coloration. This study involved an integrated analysis of the transcriptome, sRNAome, and degradome of sponge gourd fruit skins with green skin (GS) and white skin (WS). A total of 4,331 genes were differentially expressed between the GS and WS, with 2,442 down-regulated and 1,889 up-regulated genes in WS. The crucial genes involved in chlorophyll metabolism, chloroplast development, and chloroplast protection were identified (e.g., HEMA, CHLM, CRD1, POR, CAO, CLH, SGR, CAB, BEL1-like, KNAT, ARF, and peroxidase genes). Additionally, 167 differentially expressed miRNAs were identified, with 70 up-regulated and 97 down-regulated miRNAs in WS. Degradome sequencing identified 125 differentially expressed miRNAs and their 521 differentially expressed target genes. The miR156, miR159, miR166, miR167, miR172, and miR393 targeted the genes involved in chlorophyll metabolism, chloroplast development, and chloroplast protection. Moreover, a flavonoid biosynthesis regulatory network was established involving miR159, miR166, miR169, miR319, miR390, miR396, and their targets CHS, 4CL, bHLH, and MYB. The qRT-PCR data for the differentially expressed genes were generally consistent with the transcriptome results. Subcellular localization analysis of selected proteins revealed their locations in different cellular compartments, including nucleus, cytoplasm and endoplasmic reticulum. The study findings revealed the important miRNAs, their target genes, and the regulatory network controlling fruit skin coloration in sponge gourd.
Collapse
|
14
|
Akay O, Altinkok C, Acik G, Yuce H, Ege GK, Genc G. Preparation of a sustainable bio-copolymer based on Luffa cylindrica cellulose and poly(ɛ-caprolactone) for bioplastic applications. Int J Biol Macromol 2022; 196:98-106. [PMID: 34942206 DOI: 10.1016/j.ijbiomac.2021.12.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
In this research, a bio-based graft copolymer (LCC-g-PCL) based on the cellulose of Luffa cylindrica (LCC) main chain possessing poly(ɛ-caprolactone) (PCL) pendant groups is synthesized through a grafting from approach via ring-opening polymerization (ROP). For this purpose, LCC, extracted from luffa sponges by combined method, is utilized for ROP of ɛ-caprolactone (ɛ-CL) as a macro-initiator in the presence of stannous octoate as a catalyst. Fourier transform infrared (FT-IR), proton and carbon nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopies are utilized to structurally indicate the success of ROP, while the achieved graft copolymer is analyzed in detail by comparing with LCC and neat PCL in terms of wettability, thermal and degradation behaviors by conducting water contact angle (WCA) measurements, thermogravimetric and differential scanning calorimetry analyses (TGA and DSC) and in vitro both hydrolytic and enzymatic biodegradation tests, respectively. The results of conducted tests show that the incorporation of PCL groups on LCC provide the increasing hydrophobicity. In addition, the degradation behavior of the LCC-g-PCL copolymer is found to be more pronounced under enzymatic medium rather than hydrolytic conditions. It is anticipated from the results that LCC-g-PCL can be a potential eco-friendly material particularly in bioplastic industry.
Collapse
Affiliation(s)
- Ozge Akay
- Department of Mechatronics Engineering, Technology Faculty, Marmara University, 34722 Istanbul, Turkey
| | - Cagatay Altinkok
- Faculty of Science and Letters, Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Gokhan Acik
- Department of Chemistry, Faculty of Science and Letters, Piri Reis University, Tuzla, TR-34940 Istanbul, Turkey.
| | - Huseyin Yuce
- Department of Mechatronics Engineering, Technology Faculty, Marmara University, 34722 Istanbul, Turkey
| | - Gozde Konuk Ege
- Mechatronics Program, Gedik Vocational High School, Istanbul Gedik University, 34913 Istanbul, Turkey
| | - Garip Genc
- Department of Mechatronics Engineering, Technology Faculty, Marmara University, 34722 Istanbul, Turkey
| |
Collapse
|
15
|
Zhao G, Wang M, Luo C, Li J, Gong H, Zheng X, Liu X, Luo J, Wu H. Metabolome and Transcriptome Analyses of Cucurbitacin Biosynthesis in Luffa ( Luffa acutangula). FRONTIERS IN PLANT SCIENCE 2022; 13:886870. [PMID: 35747880 PMCID: PMC9209774 DOI: 10.3389/fpls.2022.886870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/13/2022] [Indexed: 05/17/2023]
Abstract
Cucurbitacins are extremely bitter compounds mainly present in Cucurbitaceae, where Luffa belongs. However, there is no comprehensive analysis of cucurbitacin biosynthesis in Luffa fruit. Therefore, this study analyzed bitter (WM709) and non-bitter (S1174) genotypes of Luffa to reveal the underlying mechanism of cucurbitacin biosynthesis by integrating metabolome and transcriptome analyses. A total of 422 metabolites were detected, including vitamins, essential amino acids, antioxidants, and antitumor substances. Of these, 131 metabolites showed significant differences between bitter (WM709) and non-bitter (S1174) Luffa fruits. The levels of isocucurbitacin B, cucurbitacin D, 23,24-dihydro cucurbitacin E, cucurbitacin F were significantly higher in bitter than in non-bitter Luffa. Transcriptome analysis showed that Bi, cytochromes P450s (CYP450s), and acyltransferase (ACT) of the cucurbitacin biosynthesis pathway, were significantly up-regulated. Moreover, drought stress and abscisic acid (ABA) activated genes of the cucurbitacin biosynthesis pathway. Furthermore, dual-luciferase reporter and yeast one-hybrid assays demonstrated that ABA-response element binding factor 1 (AREB1) binds to the Bi promoter to activate Bi expression. Comparative analysis of the Luffa and cucumber genomes showed that Bi, CYP450s, and ACT are located in the conserved syntenic loci, and formed a cucurbitacin biosynthesis cluster. This study provides important insights into major genes and metabolites of the cucurbitacin biosynthetic pathway, deepening the understanding of regulatory mechanisms of cucurbitacin biosynthesis in Luffa.
Collapse
Affiliation(s)
- Gangjun Zhao
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Meng Wang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Caixia Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Junxing Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hao Gong
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoming Zheng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoxi Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianning Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Jianning Luo,
| | - Haibin Wu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Haibin Wu,
| |
Collapse
|
16
|
Alshahrani MY, Rafi Z, Alabdallah NM, Shoaib A, Ahmad I, Asiri M, Zaman GS, Wahab S, Saeed M, Khan S. A Comparative Antibacterial, Antioxidant, and Antineoplastic Potential of Rauwolfia serpentina (L.) Leaf Extract with Its Biologically Synthesized Gold Nanoparticles (R-AuNPs). PLANTS (BASEL, SWITZERLAND) 2021; 10:2278. [PMID: 34834641 PMCID: PMC8617663 DOI: 10.3390/plants10112278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 05/29/2023]
Abstract
Rauwolfia serpentina (R. serpentina), belonging to the family Apocynaceae, is a renowned medicinal herb for its different pharmacological activities such as antibacterial, antifungal, anti-inflammatory, and antiproliferative characteristics. This study has done a comparative assessment of the antibacterial, antioxidant, and anti-cancer activity of R. serpentina aqueous leaf extract (RSALE) with encapsulated gold nanoparticles (R-AuNPs). The R-AuNPs are prepared so that they are significant in size, monodispersed, and extremely stable. Their characterization was done by numerous parameters, including UV-visible spectroscopy (528 nm), transmission electron microscopy (~17 d. nm), dynamic light scattering (~68 d. nm), and zeta-potential (~-17 mV). Subsequently, a potent antibacterial activity was depicted via RSALE and R-AuNPs when examined by disc diffusion against various Gram-positive and Gram-negative bacterial strains. The obtained zones of inhibition of RSALE (100 mg/mL) were 34 ± 0.1, 35 ± 0.1, 28.4 ± 0.01, and 18 ± 0.01, although those of R-AuNPs (15 mg/mL) were 24.4 ± 0.12, 22 ± 0.07, 20 ± 0.16, and 17 ± 0.3 against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Bacillus subtilis (MTCC 8114), and Streptococcus pyogenes (ATCC 19615), respectively. However, no zone of inhibition was obtained when tested against Proteus vulgaris (MTCC 1771). Furthermore, the obtained MIC values for Staphylococcus aureus were 0.91, 0.61, and 1.15 mg/mL; for Escherichia coli, 0.79, 0.36, and 1.02 mg/mL; for Bacillus subtilis 0.42, 0.27, and 0.474 mg/mL; and for Streptococcus pyogenes, 7.67, 3.86, and 8.5 mg/mL of pure RSALE, R-AuNPs, and Amoxicillin (control), respectively, incorporating that R-AuNPs have been shown to have a 1.4-fold, 2.1-fold, 1.5-fold, and 1.9-fold enhanced antibacterial activity in contrast to pure RSALE tested against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Streptococcus pyogenes, and Proteus vulgaris, respectively. Additionally, an enhanced antioxidant potential was detected in R-AuNPs compared to RSALE evaluated by the 2,2-Diphenyl-1-Picryl Hydrazyl Radical Scavenging (DPPH) Ferric reducing antioxidant power (FRAP) assay. The determined IC 50 values of RSALE and R-AuNPs were 0.131 ± 0.05 and 0.184 ± 0.02 mg/mL, and 0.110 ± 0.1 and 0.106 ± 0.24 mg/mL via the FRAP and DPPH assays, respectively. In addition, the anti-cancer activity against the human cervical cancer (Hela) cell line was evaluated, and the MTT assay results revealed that R-AuNPs (IC50 88.3 µg/mL) had an enhanced anti-cancer potential in contrast to RSALE (171.5 µg/mL). Subsequently, the findings of this study indicated that R. serpentina leaves and their nanoformulation can be used as a potent source for the treatment of the above-mentioned complications and can be used as a possible agent for novel target-based therapies for the management of different ailments.
Collapse
Affiliation(s)
- Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia; (M.Y.A.); (I.A.); (M.A.); (G.S.Z.)
| | - Zeeshan Rafi
- Nanotechnology and Nanomedicine Lab-6(IIRC), Department of Biosciences, Integral University, Lucknow 226026, India;
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia; (M.Y.A.); (I.A.); (M.A.); (G.S.Z.)
| | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia; (M.Y.A.); (I.A.); (M.A.); (G.S.Z.)
| | - Gaffar Sarwar Zaman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia; (M.Y.A.); (I.A.); (M.A.); (G.S.Z.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia;
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
| | - Salman Khan
- Nanotechnology and Nanomedicine Lab-6(IIRC), Department of Biosciences, Integral University, Lucknow 226026, India;
| |
Collapse
|
17
|
Green Biosynthesis, Antioxidant, Antibacterial, and Anticancer Activities of Silver Nanoparticles of Luffa acutangula Leaf Extract. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5125681. [PMID: 34631882 PMCID: PMC8494549 DOI: 10.1155/2021/5125681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023]
Abstract
Studies on green biosynthesis of newly engineered nanoparticles for their prominent medicinal applications are being the torch-bearing concerns of the state-of-the-art research strategies. In this concern, we have engineered the biosynthesized Luffa acutangula silver nanoparticles of flavonoid O-glycosides in the anisotropic form isolated from aqueous leave extracts of Luffa acutangula, a popular traditional and ayurvedic plant in south-east Asian countries. These were structurally confirmed by Ultraviolet-visible (UV-Vis), Fourier transform infrared spectroscopy accessed with attenuated total reflection (FTIR-ATR) spectral analyses followed by the scanning electron microscopic (SEM) and the X-ray diffraction (XRD) crystallographic studies and found them with the face-centered cubic (fcc) structure. Medicinally, we have explored their significant antioxidant (DPPH and ABTS assays), antibacterial (disc diffusion assay on E. coli, S. aureus, B. subtilis, S. fecilis, and S. boydii), and anticancer (MTT assay on MCF-7, MDA-MB-231, U87, and DBTRG cell lines) potentialities which augmented the present investigation. The molecular docking analysis of title compounds against 3NM8 (DPPH) and 1DNU (ABTS) proteins for antioxidant activity; 5FGK (Gram-Positive Bacteria) and 1AB4 (Gram-Negative Bacteria) proteins for antibacterial activity; and 4GBD (MCF-7), 5FI2 (MDA-MB-231), 1D5R (U87), and 5TIJ (DBTRG) proteins for anticancer activity has affirmed the promising ligand-protein binding interactions among the hydroxy groups of the title compounds and aspartic acid of the concerned enzymatic proteins. The binding energy varying from -9.1645 to -7.7955 for Cosmosioside (1, Apigenin-7-glucoside) and from -9.2690 to -7.8306 for Cynaroside (2, Luteolin-7-glucoside) implies the isolated compounds as potential bioactive compounds. In addition, the performed studies like QSAR, ADMET, bioactivity properties, drug scores, and toxicity risks confirmed them as potential drug candidates and aspartic acid receptor antagonists. This research auxiliary augmented the existing array of phytological nanomedicines with new drug candidates that are credible with multiple bioactivities.
Collapse
|
18
|
Zhao G, Luo C, Luo J, Li J, Gong H, Zheng X, Liu X, Guo J, Zhou L, Wu H. A mutation in LacDWARF1 results in a GA-deficient dwarf phenotype in sponge gourd (Luffa acutangula). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3443-3457. [PMID: 34390352 PMCID: PMC8440308 DOI: 10.1007/s00122-021-03938-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/07/2020] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE A dwarfism gene LacDWARF1 was mapped by combined BSA-Seq and comparative genomics analyses to a 65.4 kb physical genomic region on chromosome 05. Dwarf architecture is one of the most important traits utilized in Cucurbitaceae breeding because it saves labor and increases the harvest index. To our knowledge, there has been no prior research about dwarfism in the sponge gourd. This study reports the first dwarf mutant WJ209 with a decrease in cell size and internodes. A genetic analysis revealed that the mutant phenotype was controlled by a single recessive gene, which is designated Lacdwarf1 (Lacd1). Combined with bulked segregate analysis and next-generation sequencing, we quickly mapped a 65.4 kb region on chromosome 5 using F2 segregation population with InDel and SNP polymorphism markers. Gene annotation revealed that Lac05g019500 encodes a gibberellin 3β-hydroxylase (GA3ox) that functions as the most likely candidate gene for Lacd1. DNA sequence analysis showed that there is an approximately 4 kb insertion in the first intron of Lac05g019500 in WJ209. Lac05g019500 is transcribed incorrectly in the dwarf mutant owing to the presence of the insertion. Moreover, the bioactive GAs decreased significantly in WJ209, and the dwarf phenotype could be restored by exogenous GA3 treatment, indicating that WJ209 is a GA-deficient mutant. All these results support the conclusion that Lac05g019500 is the Lacd1 gene. In addition, RNA-Seq revealed that many genes, including those related to plant hormones, cellular process, cell wall, membrane and response to stress, were significantly altered in WJ209 compared with the wild type. This study will aid in the use of molecular marker-assisted breeding in the dwarf sponge gourd.
Collapse
Affiliation(s)
- Gangjun Zhao
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Caixia Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- College of Agriculture & Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Jianning Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Junxing Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Hao Gong
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Xiaoming Zheng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Xiaoxi Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Jinju Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Lingyan Zhou
- College of Agriculture & Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Haibin Wu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
19
|
Antimicrobial Properties, Cytotoxic Effects, and Fatty Acids Composition of Vegetable Oils from Purslane, Linseed, Luffa, and Pumpkin Seeds. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the present study, the antimicrobial and cytotoxic activities, as well as the fatty acids composition in vegetable seed oils from linseed, purslane, luffa, and pumpkin were evaluated. For this purpose, two linseed oils and one luffa oil were commercially obtained, while purslane and pumpkin oils were obtained from own cultivated seeds. The results showed a variable fatty acids composition among the tested oils, with α-linolenic, linoleic, oleic, palmitic, and stearic acid being the most abundant compounds. In regards to particular oils, linseed oils were a rich source of α-linolenic acid, luffa and pumpkin oil were abundant in linoleic acid, while purslane oil presented a balanced composition with an almost similar amount of both fatty acids. Luffa oil was the most effective against two of the tested cancer cell lines, namely HeLa (cervical carcinoma) and NCI-H460 (non-small cell lung cancer), while it also showed moderate toxicity against non-tumor cells (PLP2 cell line). Regarding the antibacterial activity, linseed oil 3 and pumpkin oil showed the highest activity against most of the tested bacteria (especially against Enterobacter cloacae and Escherichia coli) with MIC and MBC values similar to the used positive controls (E211 and E224). All the tested oils showed significant antifungal activities, especially luffa and pumpkin oil, and for most of the tested fungi they were more effective than the positive controls, as for example in the case of Aspergillus versicolor, A. niger, and Penicillium verrucosum var. cyclopium. In conclusion, the results of our study showed promising antimicrobial and cytotoxic properties for the studied seed oils which could be partly attributed to their fatty acids composition, especially the long-chain ones with 12–18 carbons.
Collapse
|
20
|
Sunhre L, Kar A, Panda S. Evaluation of antithyroid potential of Luffa acutangula peel extract and its chemical constituents as identified by HR-LC/MS. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:2819-2827. [PMID: 32624590 PMCID: PMC7316940 DOI: 10.1007/s13197-020-04313-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/24/2020] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Although some reports are there indicating the medicinal values of fruit peels, on vegetable peels investigations are meager. The present study is an attempt to explore the hitherto unknown potential of Luffa acutangula peel extract in T4-induced hyperthyroid female mice. Animals were made hyperthyroid by administering pre-standardized dose of l-thyroxin (l-T4 at 0.5 mg/kg/day) for 12 consecutive days and then the effects of the test peel extract at 25 and 50 mg/kg for 15 days were studied on the changes in serum thyroid hormones, glucose, different lipids; hepatic lipid peroxidation (LPO); enzymatic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, and in reduced glutathione. The main chemical constituents of the extract were identified by high resolution liquid chromatography mass spectrometry. Administration of the test peel extract to the hyperthyroid mice at both the test doses decreased the levels of serum thyroid hormones, glucose and tissue LPO suggesting its antithyroid, antihyperglycemic and antiperoxidative potential. These positive effects were also supported by an improved lipid profile as well as liver histology. LC-MS analyses revealed the presence of kaempferol-3-O-rutinoside, kameferol-O-neohesporoside, quercetin, cinnamic acid ethyl ester, caffeic acid derivatives such as 4-O-caffeyol quinic acid, 3-sinapoylquinic acid and 4,5-dihydroxyprenyl caffeate, orientin and sinapic acid. It is presumed that the antithyroid and anti-hyperglycemic actions of the test plant extract could be the result of antioxidative properties of these phytochemicals.
Collapse
Affiliation(s)
- Lata Sunhre
- School of Life Sciences, Devi Ahilya University, Indore, India
| | - Anand Kar
- School of Life Sciences, Devi Ahilya University, Indore, India
| | - Sunanda Panda
- School of Pharmacy, Devi Ahilya University, Indore, India
| |
Collapse
|
21
|
Ruang-areerate P, Shearman J, Kongkachana W, Jomchai N, Yoocha T, U-thoomporn S, Narong N, Sheedy JR, Mekiyanon S, Pootakham W, Tangphatsornruang S. The complete mitochondrial genome of Luffa acutangula. Mitochondrial DNA B Resour 2020; 5:3208-3209. [PMID: 33458114 PMCID: PMC7781975 DOI: 10.1080/23802359.2020.1810165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Based on PacBio de novo assembly, we report the first complete mitochondrial genome of Luffa acutangula (460,333 bp) containing nine large chloroplast-derived sequences (1.9–17.3 kb) across the mitogenome. The base composition of the mitogenome in descending order is A: 28.02%, C: 22.04%, G: 21.83% and T: 28.10%, and the G + C content is 43.87%. There are 63 mitochondrial genes including 40 protein-coding genes, 3 rRNA genes and 20 tRNA genes. Additionally, a total of 288 repeats ranging from 31 to 5,301 bp were identified, accounting for 5.7% of the mitogenome. Two large direct repeats (5,301 and 405 bp) within the mitogenome were found for the formation of four subgenomic molecules. A phylogenetic analysis showed that L. acutangula was closely related to other species in Cucurbiaceae. This mitogenome provides useful genetic information for evolutionary studies.
Collapse
Affiliation(s)
- Panthita Ruang-areerate
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Jeremy Shearman
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Wasitthee Kongkachana
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Nukoon Jomchai
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Thippawan Yoocha
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Sonicha U-thoomporn
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Nattapol Narong
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | | | - Supat Mekiyanon
- Chia Tai Company Limited, Phra Khanong District, Bangkok, Thailand
| | - Wirulda Pootakham
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | | |
Collapse
|
22
|
Phytochemical Composition and Enzyme Inhibition Studies of Buxus papillosa C.K. Schneid. Processes (Basel) 2020. [DOI: 10.3390/pr8070757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The current research work is an endeavor to study the chemical profiling and enzyme-inhibition potential of different polarity solvent (n-hexane, dichloromethane—DCM and methanol—MeOH) extracts from the aerial and stem parts of Buxus papillosa C.K. Schneid. All the extracts were analyzed for HPLC-PDA phenolic quantification, while both (aerial and stem) DCM extracts were studied for UHPLC-MS phytochemical composition. The inhibitory activity against the clinically important enzymes having crucial role in different pathologies like skin diseases (tyrosinase), inflammatory problems (lipoxygenase—LOX) and diabetes mellitus (α-amylase) were studied using standard in vitro bioassays. The DCM extracts upon UHPLC-MS analysis conducted in both negative and positive ionization modes has led to the tentative identification of 52 important secondary metabolites. Most of these belonged to the alkaloid, flavonoid, phenolic and triterpenoid classes. The HPLC-PDA polyphenolic quantification identified the presence of 10 phenolic compounds. Catechin was present in significant amounts in aerial-MeOH (7.62 ± 0.45 μg/g extract) and aerial-DCM (2.39 ± 0.51-μg/g extract) extracts. Similarly, higher amounts of epicatechin (2.76 ± 0.32-μg/g extract) and p-hydroxybenzoic acid (1.06 ± 0.21 μg/g extract) were quantified in aerial-DCM and stem-MeOH extracts, respectively. Likewise, all the extracts exhibited moderate inhibition against all the tested enzymes. These findings explain the wide usage of this plant in folklore medicine and suggest that it could be further studied as an origin of novel bioactive phytocompounds and for the designing of new pharmaceuticals.
Collapse
|
23
|
Cheng JX, Zhang BD, Zhu WF, Zhang CF, Qin YM, Abe M, Akihisa T, Liu WY, Feng F, Zhang J. Traditional uses, phytochemistry, and pharmacology of Ficus hispida L.f.: A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112204. [PMID: 31669442 DOI: 10.1016/j.jep.2019.112204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ficus hispida L.f. (Moraceae) has long been used as a traditional medicine in India, China, Sri Lanka, Australia, and Myanmar in the treatment of diarrhea, ulcer, anemia, diabetes, inflammation, and cancer. AIM OF THE REVIEW This review provides a systematic comment on the botany, traditional uses, and phytochemical and pharmacological studies of F. hispida, with an aim to make critical update of the current knowledge and obtain opportunities for further therapeutic potential. MATERIALS AND METHODS The information was derived from scientific literature databases including PubMed, Baidu Scholar, Google Scholar, Web of Science, and Science Direct. Additional information was gathered from books, Ph.D. and M.Sc. dissertations, and unpublished materials. RESULTS AND DISCUSSION F. hispida is used especially in Chinese and Indian traditional medical systems as a remedy for skin disorders, respiratory diseases, and urinary diseases. Wound healing, anti-inflammatory, antinociceptive, sedative, antidiarrheal, antiulcer, antimicrobial, antioxidant, hepatoprotective, antineoplastic, and antidiabetic activities have been reported for crude extracts and isolated metabolites, but the methodologies in these studies often have inadequate design and low technical quality. More than 76 compounds have been isolated from F.hispida, including sesquiterpenoids and triterpenoids, flavonoids, coumarins, phenylpropionic acids, benzoic acid derivatives, alkaloids, steroids, other glycosides, and alkanes, but the method of bioassay-guided fractionation is seldom applied in the isolation from F. hispida. CONCLUSION F. hispida is used widely in traditional medicines and has multiple pharmacological effects that could support traditional uses. However, pharmacological studies should be viewed with caution because of the inappropriate experimental design. More in vitro and in vivo research is urgently needed to study the molecular mechanisms and assess the effective and safe dose of F. hispida.
Collapse
Affiliation(s)
- Jia-Xin Cheng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Bo-Dou Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Wan-Fang Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Chao-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yi-Min Qin
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao, 266000, China
| | - Masahiko Abe
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Toshihiro Akihisa
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Wen-Yuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, 223003, China.
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|