1
|
Wang A, Dey S, Subhan S, Patel J, Frishman WH, Aronow WS. Cardiovascular Effects of Cannabinoids. Cardiol Rev 2025; 33:36-40. [PMID: 37382432 DOI: 10.1097/crd.0000000000000566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Marijuana is now one of the most widely used substances in the United States that has been rising in prevalence given increasing legalization and recreational and medical usage. Despite its widespread use, there have been increasing concerns regarding the cardiovascular safety of marijuana. Recent studies have found a link between marijuana use and the development of cardiovascular disease. Most notably, marijuana has been found to be associated with various cardiac complications, including atherosclerosis, myocardial infarction, stroke, cardiomyopathy, arrhythmia, and arteritis. Given these growing concerns, this article seeks to examine the effects and significance of marijuana on cardiovascular health.
Collapse
Affiliation(s)
- Andy Wang
- From the Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Subo Dey
- From the Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Sarah Subhan
- From the Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Jay Patel
- From the Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - William H Frishman
- From the Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
2
|
Gwam C, Kelly E, Douglas S, Recker A, Plate JF. Marijuana Use Is Associated with Increased Rates of Hip Dislocation and Lower Insurance Reimbursement among Total Hip Arthroplasty Recipients. J Long Term Eff Med Implants 2025; 35:17-23. [PMID: 39704596 DOI: 10.1615/jlongtermeffmedimplants.2024049017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
This study utilizes an all-payer database to compare 90-d and 1-year outcomes between marijuana and non-marijuana users undergoing total hip arthroplasty (THA). The primary aim of this study focused on 90-d and 1-year opioid consumption among marijuana users and non-users who underwent THA. Our secondary aim focused on comparing 90-d and 1-year rates of readmissions, revisions and adverse events between the two groups. A retrospective review was performed in the Mariner Database for all primary THA patients from 2010 to 2018. Marijuana users were identified utilizing International Classification of Diseases (ICD) 9 and 10 codes and matched 1:1 to non-marijuana users on age, sex, Charlson Comorbidity Index (CCI), obesity, alcohol, tobacco, illicit drug use, history of drug abuse, and presence of psychiatric history. This yielded a total of 1654 patients in each group. The 90-d and 1-year outcomes included opioid consumption, episode of care costs, readmissions, revisions, and complications. Chi-square was employed to assess categorical variables, while t-tests were employed for continuous variables. There was no difference in opioid consumption among marijuana users and non-marijuana users who underwent a THA. Marijuana use was associated with lower 90-d costs of care when compared with non-marijuana users. Marijuana users had higher rates of hip dislocation within 90 d and 1 year of surgery. Marijuana use is associated with higher 90-d and 1-year dislocation rates. THA recipients who use marijuana should be counseled concerning this increased risk. Prospective randomized control trials are needed to verify the results of this study.
Collapse
Affiliation(s)
- Chukwuweike Gwam
- Department of Orthopaedics, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27101, USA
| | - Erin Kelly
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott Douglas
- Department of Orthopaedic Surgery, Sinai Hospital, Baltimore, MD 21215, USA
| | | | - Johannes F Plate
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1070; Department of Orthopaedic Surgery and Rehabilitation Medicine, University of Heidelberg, Schlierbacher Landstrasse 20
| |
Collapse
|
3
|
Ramsay S, Yew WP, Brookes S, Zagorodnyuk V. A combination of peripherally restricted CB 1 and CB 2 cannabinoid receptor agonists reduces bladder afferent sensitisation in cystitis. Eur J Pharmacol 2024; 985:177078. [PMID: 39532227 DOI: 10.1016/j.ejphar.2024.177078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Cannabinoid agonists can potentially ameliorate lower urinary tract symptoms (LUTS), including pain associated with interstitial cystitis/bladder pain syndrome (IC/BPS). This study aims to determine the contributions of the cannabinoid 1 receptors (CB1Rs) and CB2Rs in regulating the activity of different functional classes of afferents, comparing normal healthy bladder with bladders from guinea pigs with protamine/zymosan-induced cystitis. The mechanosensitivity of different functional afferent classes was determined by ex vivo single-unit extracellular recordings. Peripherally restricted CB1R preferential agonists, ACEA and PrNMI and peripherally restricted CB2R selective agonists, 4Q3C and olorinab all reduced the mechanosensitivity of mucosal bladder afferents. The potency and efficacy of these synthetic cannabinoid agonists were significantly increased in cystitis compared to controls. Combined application of CB1R agonists, ACEA or PrNMI with the CB2R agonist, 4Q3C produced additive inhibitory effects. ACEA and PrNMI also inhibited the stretch-induced firing of high-threshold muscular bladder afferents in animals with cystitis. In contrast, low- and high-threshold muscular-mucosal bladder afferents were unaffected by the CB1R and CB2R agonists in control and cystitis. Our data indicated that peripherally restricted CB1R and CB2R agonists effectively reduce the sensitisation of probable nociceptive afferents in the bladder in cystitis. The findings also suggest a potential benefit of simultaneously targeting both the CB1Rs and CB2Rs to ameliorate LUTS in cystitis.
Collapse
Affiliation(s)
- Stewart Ramsay
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Wai Ping Yew
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Simon Brookes
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia.
| |
Collapse
|
4
|
Boccella S, Fusco A, Ricciardi F, Morace AM, Bonsale R, Perrone M, Marabese I, De Gregorio D, Belardo C, Posa L, Rullo L, Piscitelli F, di Marzo V, Nicois A, Marfella B, Cristino L, Luongo L, Guida F, Candeletti S, Gobbi G, Romualdi P, Maione S. Acute Kappa opioid receptor blocking disrupts the pro-cognitive effect of cannabidiol in neuropathic rats. Neuropharmacology 2024:110265. [PMID: 39674399 DOI: 10.1016/j.neuropharm.2024.110265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Cannabidiol has been shown to ameliorate neuropathic pain and its affective components. Previous studies highlighted the pharmacological interaction between the CBD and opioid system, particularly the MOR, but the understanding of the interaction between CBD and kappa opioid receptor (KOR), physiologically stimulated by the endogenous opioid dynorphin, remains elusive. We assessed the pharmacological interactions between CBD and nor-BNI, a selective KOR antagonist in a rat neuropathic pain model. We show an increase in dynorphin peptide and its KOR receptors in the hippocampus' dentate gyrus (DG) of neuropathic rats showing allodynia, and memory deficits. Consistent with these findings, neuropathic pain was associated with long-term potentiation (LTP) impairment in the entorhinal cortex-DG, also referred to as the lateral perforant pathway (LPP). Moreover, a downregulation of the endocannabinoid 2-AG and an upregulation of the cannabinoid CB1 receptors in the DG were detected in neuropathic pain animals. Either an acute KOR antagonist administration or one-week CBD treatment normalized dynorphin levels and improved affective symptoms, LTP and receptor expression, whereas only CBD showed an anti-allodynic effect. In addition, CBD normalized the SNI-induced changes in neuroplasticity as well as endocannabinoid and GABA levels in the DG. Noteworthy, the acute blockade of the KOR carried out after CBD repeated administration causes the re-installment of some neuropathic condition symptoms. As a whole, these original results indicate a critical relationship between the adaptive changes in the hippocampus produced by CBD and the need to maintain the recovered physiological dynorphin tone to preserve the therapeutic effect of CBD in neuropathic rats.
Collapse
Affiliation(s)
- Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy.
| | - Antimo Fusco
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Federica Ricciardi
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Andrea Maria Morace
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Roozbe Bonsale
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Michela Perrone
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Danilo De Gregorio
- IRCCS San Raffaele Scientific Institute; Vita Salute San Raffaele University, Milan, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Luca Posa
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy
| | - Vincenzo di Marzo
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy; Faculty of Medicine and Faculty of Agricultural and Food Sciences, Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec City, QC, Canada; Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada; Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Alessandro Nicois
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy
| | - Brenda Marfella
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada; Research Institute, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
5
|
D'Andre S, Novotny P, Walters C, Lewis-Peters S, Thomé S, Tofthagen CS, Giridhar KV, Loprinzi C. Topical Cannabidiol for Established Chemotherapy-Induced Neuropathy: A Pilot Randomized Placebo-Controlled Trial. Cannabis Cannabinoid Res 2024; 9:e1556-e1564. [PMID: 39016024 DOI: 10.1089/can.2023.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Background: Patients have been known to use cannabinoids for treating established chemotherapy-induced peripheral neuropathy (CIPN) based on anecdotal information and retrospective reports suggesting that such might be beneficial. In response, a double-blinded, placebo-controlled, randomized, pilot clinical trial was developed to evaluate whether resultant data would support a phase III trial for testing whether a cannabidiol (CBD) cream might improve CIPN. Methods: Forty patients with established CIPN were randomized, in a double-blinded manner, to topical CBD or a placebo cream. The study product was applied for 2 weeks, followed by a crossover for 2 weeks. Neuropathy was evaluated using the European Organization of Research and Treatment of Cancer (EORTC)-CIPN20, the Chemotherapy-Induced Peripheral Neuropathy Assessment Tool, and the Global Impression of Change instruments. Side effects were recorded by symptom diaries. Results: The EORTC-CIPN20 scores were similar in the patients receiving CBD versus the placebo. Likewise, the toxicity scores were similar in patients who received the CBD versus the placebo. Conclusions: This pilot trial did not support that the studied CBD isolate cream improved painful established CIPN. It was well tolerated overall. Clinical Trial Registration Number: NCT05388058.
Collapse
Affiliation(s)
- Stacy D'Andre
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul Novotny
- Department of Statistics, Mayo Clinic, Rochester, Minnesota, USA
| | - Camille Walters
- Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Stephan Thomé
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Charles Loprinzi
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Eadie L, Lo LA, Boivin M, Deol JK, MacCallum CA. Clinical guidance for cannabidiol-associated hepatotoxicity: A narrative review. J Gastroenterol Hepatol 2024; 39:2522-2532. [PMID: 39228144 DOI: 10.1111/jgh.16730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/22/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
There is increasing evidence that cannabidiol (CBD) use is associated with clinically significant liver enzyme (LE) elevations and drug-induced liver injury (DILI). The proportion of LE elevations and DILI events reported in the literature meet the Council for International Organizations of Medical Sciences' (CIOMS) classification of a common adverse drug reaction. However, these potential adverse events are unknown to many clinicians and may be overlooked. The increasing use of CBD for both medical and non-medical use necessitates clear direction in the diagnosis and management of CBD-associated hepatotoxicity. To our knowledge, no such clinical guidance currently exists. For people presenting with elevated LEs, CBD use should be screened for and be considered in the differential diagnosis. This narrative review will provide clinicians with guidance in the prevention, detection, and management of CBD-related hepatotoxicity.
Collapse
Affiliation(s)
- Lauren Eadie
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsay A Lo
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | - Jagpaul K Deol
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Caroline A MacCallum
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Yeh YA, Hsu HC, Lin MC, Chen TS, Lin WC, Huang HM, Lin YW. Electroacupuncture Regulates Cannabinoid Receptor 1 Expression in a Mouse Fibromyalgia Model: Pharmacological and Chemogenetic Modulation. Life (Basel) 2024; 14:1499. [PMID: 39598297 PMCID: PMC11595423 DOI: 10.3390/life14111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Fibromyalgia is a chronic illness usually accompanied by long-lasting, general pain throughout the body, often accompanied by anxiety, depression, fatigue, and sleep disruption. Meanwhile, doctors and scientists have not entirely discovered detailed mechanisms; patients always have an exaggerated sensation to pervasive pain without satisfied medical service. Given the lack of knowledge on its underlying mechanism, current treatments aim to provide pain and/or symptom relief. The present study aimed to clarify the role of cannabinoid receptor 1 (CB1) signaling in a mouse fibromyalgia pain model. To develop the mouse fibromyalgia model, mice were subjected to intermittent cold stress (ICS). Our results indicated that mechanical (2.09 ± 0.09 g) and thermal hyperalgesia (4.77 ± 0.29 s), which were evaluated by von Frey and Hargraves' tests, were induced by ICS, suggesting successful modeling. The hurting replies were then provoked by electroacupuncture (EA) but not for sham EA mice. Further, in a Western blot analysis, we found significantly decreased CB1 protein levels in the thalamus, somatosensory cortex, and anterior cingulate cortex. In addition, the levels of pain-related protein kinases and transcription factor were increased. Treatment with EA reliably increased CB1 expression in various brain regions sequentially alleviated by nociceptive mediators. Furthermore, the administration of a CB1 agonist significantly attenuated fibromyalgia pain, reversed EA analgesia by the CB1 antagonist, and further reversed the chemogenetic inhibition of SSC. Our innovative findings evidence the role of CB1 signaling in the interaction of EA and fibromyalgia, suggesting its potential for clinical trials and as a treatment target.
Collapse
Affiliation(s)
- Yu-An Yeh
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan;
| | - Hsin-Cheng Hsu
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan;
- Department of Traditional Chinese Medicine, China Medical University Hsinchu Hospital, China Medical University, Hsinchu 302056, Taiwan
| | - Ming-Chia Lin
- Department of Nuclear Medicine, E-DA Hospital, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Tzu-Shan Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Wei-Cheng Lin
- Graduate Institute of Sports and Health Management, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Hsiang-Ming Huang
- Department of Neurosurgery, China Medical University Hsinchu Hospital, China Medical University, Hsinchu 302056, Taiwan
| | - Yi-Wen Lin
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
8
|
Datta I, Erridge S, Holvey C, Coomber R, Guru R, Holden W, Darweish Medniuk A, Sajad M, Searle R, Usmani A, Varma S, Rucker JJ, Platt M, Sodergren MH. UK medical cannabis registry: A clinical outcome analysis of medical cannabis therapy in chronic pain patients with and without co-morbid sleep impairment. Pain Pract 2024. [PMID: 39545361 DOI: 10.1111/papr.13438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Chronic pain (CP) affects 35.0%-51.3% of the UK population, with 67%-88% reporting sleep disturbances. Cannabis-based medicinal products (CBMPs) have shown therapeutic potential in managing CP. Evidence suggests poor sleep worsens pain perception; therefore, this study aimed to assess patient-reported outcome measures (PROMs) following CBMP treatment in CP patients with and without co-morbid sleep impairment. METHODS A prospective cohort study of CP patients from the UK Medical Cannabis Registry was conducted. Participants were separated by baseline single-item sleep quality scale (SQS) score into sleep impaired (SQS ≤3) and unimpaired (SQS ≥4) cohorts. The primary outcome assessed changes in PROMs from baseline to 1-, 3-, 6-, and 12-months. Participants completed the following: SQS, General Anxiety Disorder-7, EQ-5D-5L, Brief Pain Inventory (BPI), and Short-Form McGill Pain Questionnaire-2. Significance was defined as p < 0.050. RESULTS 1139 participants met the inclusion criteria (sleep impaired: n = 517, 45.4%; sleep unimpaired: n = 622, 54.61%). The sleep impaired cohort showed improvements in all PROMs at each follow-up (p < 0.010). The sleep unimpaired cohort showed similar results (p < 0.050), except in SQS and ED-5Q-5L: self-care and anxiety/depression scores (p > 0.050). However, the sleep impaired cohort observed greater improvements in BPI pain severity (p < 0.050) and SQS (p < 0.001) than the sleep unimpaired cohort at all follow-ups. 2817 adverse events were self-reported between both cohorts (p = 0.197). DISCUSSION These findings align with literature that shows associated improvements in pain outcomes following CBMP administration. Sleep impaired individuals were more likely to experience greater pain severity improvements. However, this was not confirmed on multivariate logistic regression analysis and instead may be confounded by baseline pain severity. CONCLUSION Whilst these results show promise for the effects of CBMPs on CP, they must be examined within the limitations of the study design. These findings provide further evidence to support the design of subsequent randomized controlled trials to verify causality between CBMPs and pain outcomes.
Collapse
Affiliation(s)
- Ishita Datta
- Department of Surgery and Cancer, Medical Cannabis Research Group, Imperial College London, London, UK
| | - Simon Erridge
- Department of Surgery and Cancer, Medical Cannabis Research Group, Imperial College London, London, UK
- Curaleaf Clinic, London, UK
| | | | - Ross Coomber
- Curaleaf Clinic, London, UK
- St. George's Hospital NHS Trust, London, UK
| | - Rahul Guru
- Curaleaf Clinic, London, UK
- Cardiff and Vale University Health Board, Cardiff, UK
| | | | | | | | | | | | | | - James J Rucker
- Curaleaf Clinic, London, UK
- Department of Psychological Medicine, Kings College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | | | - Mikael H Sodergren
- Department of Surgery and Cancer, Medical Cannabis Research Group, Imperial College London, London, UK
- Curaleaf Clinic, London, UK
| |
Collapse
|
9
|
Jagtiani A, Livingston MD, Barry CM, Talavera-Brown S, LaBounty H, Skinner JR, Livingston BJ, Lincoln AN, Komro KA. Tribal Identity, Pain Interference, and Substance Use Among American Indian and Alaska Native Adolescents. JAMA Pediatr 2024; 178:1192-1198. [PMID: 39312248 PMCID: PMC11420823 DOI: 10.1001/jamapediatrics.2024.3284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/08/2024] [Indexed: 09/26/2024]
Abstract
Importance Substance use is high among American Indian/Alaska Native adolescents. Pain interference is a risk factor for substance use, and identifying potential protective factors, such as Tribal identity, is important to help inform culturally grounded substance use prevention strategies. Objective To examine the protective potential of Tribal identity as a moderator in the association between pain interference and substance use in American Indian/Alaska Native adolescents. Design, Setting, and Participants This cross-sectional study of 10th-grade students self-identifying as American Indian/Alaska Native was conducted among students enrolled at 20 high schools on or near the Cherokee Nation Reservation. Data for this study were collected from the baseline assessments of a cluster randomized trial to prevent substance use among adolescents living on or near the Cherokee Nation Reservation. Inclusion criteria for high schools' participation included being located within counties that partially or fully fall within the Cherokee Nation reservation, a town population of 3000 individuals or fewer, and class sizes between 30 and 100 students. Exclusion criteria included high schools within metropolitan and micropolitan cores (per the US Census Bureau's Rural-Urban Commuting Area codes) and the existence of an established community drug prevention coalition. Student surveys were conducted from September 2021 to May 2024. Exposure Pain interference in the 7 days prior to baseline assessment. Main Outcomes and Measures The primary outcomes were past 30-day alcohol use, marijuana use, and prescription opioid misuse. Generalized estimating equations Poisson models were used, with an exchangeable correlation structure clustered on the school level using baseline data from a cluster randomized trial to prevent alcohol and substance use among adolescents. For each substance, a separate multivariable model was fit, which included pain interference, Tribal identity, an interaction term between pain interference and Tribal identity, age, gender, food insecurity, anxiety symptoms, and depressive symptoms. Results Among 514 self-identified American Indian/Alaska Native students at 20 high schools on or near the Cherokee Nation Reservation, mean (SD) participant age was 15.59 (0.62) years, and 252 participants (49.0%) self-identified as female. Pain interference was associated with alcohol use and prescription opioid misuse in American Indian/Alaska Native adolescents, controlling for age, gender, food insecurity, anxiety symptoms, and depressive symptoms. Tribal identity significantly moderated the association between pain interference and alcohol use (coefficient, -0.13; 95% CI, -0.23 to -0.02). Conclusions and Relevance When Tribal identity was high, the adverse association of pain interference with alcohol use was significantly attenuated. This demonstrates a protective role of Tribal identity on alcohol use, which can inform future substance use prevention efforts among American Indian/Alaska Native adolescents. Trial Registration ClinicalTrials.gov Identifier: NCT04839978.
Collapse
Affiliation(s)
- Ashna Jagtiani
- Department of Behavioral, Social, and Health Education Sciences, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Melvin D. Livingston
- Department of Behavioral, Social, and Health Education Sciences, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Caroline M. Barry
- Department of Behavioral, Social, and Health Education Sciences, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Sierra Talavera-Brown
- Department of Behavioral, Social, and Health Education Sciences, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | | | | | - Bethany J. Livingston
- Department of Behavioral, Social, and Health Education Sciences, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | | | - Kelli A. Komro
- Department of Behavioral, Social, and Health Education Sciences, Rollins School of Public Health, Emory University, Atlanta, Georgia
| |
Collapse
|
10
|
Clarke H, Miles S, Peer M, Fitzcharles MA. The Elusive Truth of Cannabinoids for Rheumatic Pain. Curr Rheumatol Rep 2024; 26:392-402. [PMID: 39120750 DOI: 10.1007/s11926-024-01162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE OF REVIEW Medical cannabis (MC) has entered mainstream medicine by a unique route. Regulatory acceptance as a medical product in many jurisdictions has bypassed the traditional evidence-based pathway required for therapies. Easier access to MC, especially related to recreational legalization of cannabis, has led to widespread use by patients for symptom relief of a variety of medical conditions and often without medical oversight. Musculoskeletal pain remains the most common reason for MC use. This review examines real-world issues pertaining to MC and offers some guidance for clinical care of patients with rheumatic diseases being treated with MC. RECENT FINDINGS Controlled clinical studies of cannabis products in patients with rheumatic diseases have been small and tested a range of compounds, routes of administration, and clinical populations, limiting our ability to generate conclusions on MC's effectiveness in this population. Observational cohort studies and surveys suggest that use of MC and related products in patients with rheumatic diseases improves pain and associated symptoms but is commonly accompanied by mild to moderate side effects. Conflicting evidence contributes to practitioner and patient uncertainty regarding the use of MC for rheumatic disease-related pain. Despite promising preclinical and observational evidence that MC and cannabis-derived compounds are useful in the management of rheumatic disease-related pain, there remains limited high-quality clinical evidence to substantiate these findings. There are a significant number of clinical trials on this topic currently planned or underway, however, suggesting the next decade may yield more clarity. Nevertheless, given that many people with rheumatic diseases are using cannabis products, healthcare professionals must remain apprised of the evidence pertaining to cannabinoids, communicate such evidence to patients in a meaningful way that is free from personal bias and stigma, and maintain strong collaborative clinical care pertaining to MC.
Collapse
Affiliation(s)
- Hance Clarke
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Canada
- Department of Anesthesia and Pain Management, Pain Research Unit, Toronto General Hospital, Toronto, Canada
- Transitional Pain Service, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Sarah Miles
- Department of Anesthesia and Pain Management, University Health Network, Sinai Health System, and Women's College Hospital, Toronto, ON, Canada
| | - Miki Peer
- Department of Anesthesia and Pain Management, University Health Network, Sinai Health System, and Women's College Hospital, Toronto, ON, Canada
| | - Mary-Ann Fitzcharles
- Department of Rheumatology, Montreal General Hospital, McGill University, Montreal, Canada.
- Alan Edwards Pain Management Unit, Montreal General Hospital, McGill University, Montreal, Canada.
| |
Collapse
|
11
|
Liao J, Gu Q, Liu Z, Wang H, Yang X, Yan R, Zhang X, Song S, Wen L, Wang Y. Edge advances in nanodrug therapies for osteoarthritis treatment. Front Pharmacol 2024; 15:1402825. [PMID: 39539625 PMCID: PMC11559267 DOI: 10.3389/fphar.2024.1402825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
As global population and lifestyles change, osteoarthritis (OA) is becoming a major healthcare challenge world. OA, a chronic condition characterized by inflammatory and degeneration, often present with joint pain and can lead to irreversible disability. While there is currently no cure for OA, it is commonly managed using nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and glucosamine. Although these treatments can alleviate symptoms, it is difficult to effectively deliver and sustain therapeutic agents within joints. The emergence of nanotechnology, particularly in form of smart nanomedicine, has introduced innovative therapeutic approaches for OA treatment. Nanotherapeutic strategies offer promising advantages, including more precise targeting of affected areas, prolonged therapeutic effects, enhanced bioavailability, and reduced systemic toxicity compared to traditional treatments. While nanoparticles show potential as a viable delivery system for OA therapies based on encouraging lab-based and clinical trials results, there remails a considerable gap between current research and clinical application. This review highlights recent advances in nanotherapy for OA and explore future pathways to refine and optimize OA treatments strategies.
Collapse
Affiliation(s)
- Jinfeng Liao
- Department of Dermatology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Qingjia Gu
- Department of ENT, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Zheng Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Xian Yang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongkai Yan
- Department of Radiology, Ohio state university, Columbus, OH, United States
| | - Xiaofeng Zhang
- Greenwich Hospital, Yale New Haven Health, Greenwich, CT, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lebin Wen
- Department of Thyroid, Sichuan Second Hospital of TCM, Chengdu, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Halman A, Chenhall R, Perkins D. Changes in Pain and Mental Health Symptoms Associated with Prescribed Medicinal Cannabis Use: A One-Year Longitudinal Study. J Pain Palliat Care Pharmacother 2024:1-13. [PMID: 39432717 DOI: 10.1080/15360288.2024.2414898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
Chronic pain and mental health issues like depression and anxiety significantly contribute to disease burden in Western countries. While cannabinoids are suggested to have analgesic, anxiolytic and antidepressant properties, evidence, especially for long-term use, is inconclusive. This 12-month observational study evaluated the effects of prescribed medicinal cannabis for 96 patients suffering from pain, as well as sleep disturbances, depression and anxiety. Treatment outcomes for pain, depression, anxiety and sleep problems were assessed at 3, 6, and 12 months using validated instruments. Significant reductions were observed in pain scores and the interference of pain on daily functions, alongside improvements in mental health and sleep. Many patients reported notable improvements in pain severity and reduced use of pain medications in the first 6 months, with a decline at 12 months. Additionally, sustained improvements in depression, anxiety, stress and sleep were observed, with about half reporting substantial improvement. Adverse effects were common but mostly mild or moderate, most commonly dry mouth and sleepiness. These results show that prescribed medicinal cannabis treatment is associated with improvements in chronic pain and mental health symptoms, such as depression, anxiety and stress. However, findings also suggest reduced effectiveness with longer-term use, emphasizing the need for additional research.
Collapse
Affiliation(s)
- Andreas Halman
- School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Richard Chenhall
- School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel Perkins
- School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Jurga M, Jurga A, Jurga K, Kaźmierczak B, Kuśmierczyk K, Chabowski M. Cannabis-Based Phytocannabinoids: Overview, Mechanism of Action, Therapeutic Application, Production, and Affecting Environmental Factors. Int J Mol Sci 2024; 25:11258. [PMID: 39457041 PMCID: PMC11508795 DOI: 10.3390/ijms252011258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
This review provides an overview of cannabis-based phytocannabinoids, focusing on their mechanisms of action, therapeutic applications, and production processes, along with the environmental factors that affect their quality and efficacy. Phytocannabinoids such as THC (∆9-tetrahydrocannabinol), CBD (cannabidiol), CBG (cannabigerol), CBN (cannabinol), and CBC (cannabichromene) exhibit significant therapeutic potential in treating various physical and mental health conditions, including chronic pain, epilepsy, neurodegenerative diseases, skin disorders, and anxiety. The cultivation of cannabis plays a crucial role in determining cannabinoid profiles, with indoor cultivation offering more control and consistency than outdoor methods. Environmental factors such as light, water, temperature, humidity, nutrient management, CO2, and the drying method used are key to optimizing cannabinoid content in inflorescences. This review outlines the need for broader data transfer between the health industry and technological production, especially in terms of what concentration and cannabinoid ratios are effective in treatment. Such data transfer would provide cultivators with information on what environmental parameters should be manipulated to obtain the required final product.
Collapse
Affiliation(s)
- Marta Jurga
- 4th Military Teaching Hospital, 50-981 Wroclaw, Poland; (M.J.); (K.J.)
| | - Anna Jurga
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; (A.J.); (B.K.)
| | - Kacper Jurga
- 4th Military Teaching Hospital, 50-981 Wroclaw, Poland; (M.J.); (K.J.)
| | - Bartosz Kaźmierczak
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; (A.J.); (B.K.)
| | | | - Mariusz Chabowski
- 4th Military Teaching Hospital, 50-981 Wroclaw, Poland; (M.J.); (K.J.)
- Faculty of Medicine, Wroclaw University of Science and Technology, Hoene-Wrońskiego 13c, 58-376 Wroclaw, Poland
| |
Collapse
|
14
|
Hosoki H, Asahi T, Nozaki C. Cannabinoid CB2 receptors enhance high-fat diet evoked peripheral neuroinflammation. Life Sci 2024; 355:123002. [PMID: 39173999 DOI: 10.1016/j.lfs.2024.123002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
It is known that the cannabinoid type 2 (CB2) receptor has an anti-inflammatory role. Therefore, animals without CB2 receptors show enhanced inflammation and pain in the model of chronic pain, e.g., neuropathic pain. We previously proposed the upregulated leptin signaling at the peripheral nerve as one of the underlying molecular mechanisms of pain exacerbation in nerve-injured CB2 knockouts, as they displayed robust upregulation of leptin receptors and leptin signaling in the peripheral nerve. Due to these past results, we hypothesized that CB2 receptor deficiency might also modify the peripheral neuroinflammation led by chronic exposure to a high-fat diet (HFD). Interestingly, CB2 knockout animals showed significant resistance to HFD-induced neuroinflammation. Namely, 5-week feeding of HFD induced substantial hypersensitivity in WT animals, while tactile sensitivity of HFD-fed CB2 knockouts remained intact. HFD-fed WT animals also displayed the robust upregulation of chemokine CXCR4 expression with increased macrophage infiltration, which was never observed in HFD-fed CB2 knockout mice. Moreover, 5-week HFD exposure led significant increase of CD11b+Ly6G-Ly6Chigh cells and a decrease of CD11b+Ly6G+Ly6Clow cells in the spleen of WT animals, which was also not found in either HFD-fed CB2 knockouts or standard diet-fed WT and CB2 animals. Together with past reports, these results suggest that CB2 receptors might have a double-sided regulatory role in the context of inflammation development or, more widely, immune system regulation. We propose that CB2 signaling is not always anti-inflammatory and could take a pro-inflammatory role depending on the cause of the inflammation.
Collapse
Affiliation(s)
- Haruka Hosoki
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toru Asahi
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan; Comprehensive Research Organization, Waseda University, Tokyo, Japan; Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
| | - Chihiro Nozaki
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan; Global Center for Science and Engineering, Waseda University, Tokyo, Japan.
| |
Collapse
|
15
|
Galla R, Mulè S, Ferrari S, Grigolon C, Molinari C, Uberti F. Palmitoylethanolamide as a Supplement: The Importance of Dose-Dependent Effects for Improving Nervous Tissue Health in an In Vitro Model. Int J Mol Sci 2024; 25:9079. [PMID: 39201765 PMCID: PMC11354262 DOI: 10.3390/ijms25169079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Palmitoylethanolamide (PEA) is a highly lipophilic molecule with low solubility, making absorption difficult. Recent techniques like micronisation, ultra-micronisation and combining PEA with solvents have improved their bioavailability and stability. Our study analysed particle size differences and absorption kinetics using specific solvents (PEAΩ and PEA DynoΩ) over time (0.5 h-6 h) in a dose-dependent manner (200 mg-1800 mg). The results showed that PEAΩ and PEA DynoΩ achieved 82-63% absorption at 3 h, compared to 30-60% for micronised, ultra-micronised PEA and a commercial product, highlighting the optimal dose range of 300 mg-600 mg. In addition, a 3D model of the peripheral nerve was utilised to explain the efficacy after gut passage and support the most effective dose (300 mg or 600 mg) achieved at the gut level. PEAΩ and PEA DynoΩ, which are associated with better intestinal bioavailability compared to PEA-micronised, PEA ultra-micronised and a commercial product, have allowed not only a reduction in the inflammatory context but also an improvement of peripheral nerve well-being by increasing specific markers like MPZ (26-36% vs. 8-15%), p75 (25-32% vs. 13-16%) and NRG1 (22-29.5% vs. 11-14%). These results highlight the potential of advanced PEA formulations to overcome solubility challenges and maintain in vitro efficacy, modulating peripheral nerve well-being.
Collapse
Affiliation(s)
- Rebecca Galla
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy (C.G.)
- Noivita S.r.l.s., Spin Off of University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Simone Mulè
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy (C.G.)
| | - Sara Ferrari
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy (C.G.)
| | - Chiara Grigolon
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy (C.G.)
| | - Claudio Molinari
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy (C.G.)
| | - Francesca Uberti
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale, UPO, 13100 Vercelli, Italy (C.G.)
| |
Collapse
|
16
|
Shalata W, Abu Saleh O, Tourkey L, Shalata S, Neime AE, Abu Juma’a A, Soklakova A, Tourkey L, Jama AA, Yakobson A. The Efficacy of Cannabis in Oncology Patient Care and Its Anti-Tumor Effects. Cancers (Basel) 2024; 16:2909. [PMID: 39199679 PMCID: PMC11352579 DOI: 10.3390/cancers16162909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
As the legalization of medical cannabis expands across several countries, interest in its potential advantages among cancer patients and caregivers is burgeoning. However, patients seeking to integrate cannabis into their treatment often encounter frustration when their oncologists lack adequate information to offer guidance. This knowledge gap is exacerbated by the scarcity of published literature on the benefits of medical cannabis, leaving oncologists reliant on evidence-based data disheartened. This comprehensive narrative article, tailored for both clinicians and patients, endeavors to bridge these informational voids. It synthesizes cannabis history, pharmacology, and physiology and focuses on addressing various symptoms prevalent in cancer care, including insomnia, nausea and vomiting, appetite issues, pain management, and potential anti-cancer effects. Furthermore, by delving into the potential mechanisms of action and exploring their relevance in cancer treatment, this article aims to shed light on the potential benefits and effects of cannabis in oncology.
Collapse
Affiliation(s)
- Walid Shalata
- The Legacy Heritage Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Omar Abu Saleh
- Department of Dermatology and Venereology, Emek Medical Centre, Afula 18341, Israel
| | - Lena Tourkey
- The Legacy Heritage Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
| | - Sondos Shalata
- Nutrition Unit, Galilee Medical Center, Nahariya 22000, Israel
| | - Ala Eddin Neime
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ali Abu Juma’a
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Arina Soklakova
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Lama Tourkey
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ashraf Abu Jama
- The Legacy Heritage Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
| | - Alexander Yakobson
- The Legacy Heritage Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
17
|
Maglaviceanu A, Peer M, Rockel J, Bonin RP, Fitzcharles MA, Ladha KS, Bhatia A, Leroux T, Kotra L, Kapoor M, Clarke H. The State of Synthetic Cannabinoid Medications for the Treatment of Pain. CNS Drugs 2024; 38:597-612. [PMID: 38951463 DOI: 10.1007/s40263-024-01098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 07/03/2024]
Abstract
Synthetic cannabinoids are compounds made in the laboratory to structurally and functionally mimic phytocannabinoids from the Cannabis sativa L. plant, including delta-9-tetrahydrocannabinol (THC). Synthetic cannabinoids (SCs) can signal via the classical endogenous cannabinoid system (ECS) and the greater endocannabidiome network, highlighting their signalling complexity and far-reaching effects. Dronabinol and nabilone, which mimic THC signalling, have been approved by the Food and Drug Administration (FDA) for treating nausea associated with cancer chemotherapy and/or acquired immunodeficiency syndrome (AIDS). However, there is ongoing interest in these two drugs as potential analgesics for a variety of other clinical conditions, including neuropathic pain, spasticity-related pain, and nociplastic pain syndromes including fibromyalgia, osteoarthritis, and postoperative pain, among others. In this review, we highlight the signalling mechanisms of FDA-approved synthetic cannabinoids, discuss key clinical trials that investigate their analgesic potential, and illustrate challenges faced when bringing synthetic cannabinoids to the clinic.
Collapse
Affiliation(s)
- Anca Maglaviceanu
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Miki Peer
- Department of Anesthesia and Pain Management, University Health Network, Sinai Health System, and Women's College Hospital, Toronto, ON, Canada
| | - Jason Rockel
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| | - Mary-Ann Fitzcharles
- Department of Rheumatology, McGill University, Montreal, Canada
- Alan Edwards Pain Management Unit, McGill University, Montreal, Canada
| | - Karim S Ladha
- Department of Anesthesia, St. Michael's Hospital, Toronto, Canada
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Anuj Bhatia
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, Toronto Western Hospital-University Health Network, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Timothy Leroux
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Lakshmi Kotra
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Mohit Kapoor
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Hance Clarke
- Krembil Research Institute, University Health Network, Toronto, Canada.
- Department of Anesthesia, St. Michael's Hospital, Toronto, Canada.
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada.
- Department of Anaesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada.
- Transitional Pain Service, Pain Research Unit, Department of Anaesthesia and Pain Management, Toronto General Hospital, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
18
|
Carruthers ER, Grimsey NL. Cannabinoid CB 2 receptor orthologues; in vitro function and perspectives for preclinical to clinical translation. Br J Pharmacol 2024; 181:2247-2269. [PMID: 37349984 DOI: 10.1111/bph.16172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Cannabinoid CB2 receptor agonists are in development as therapeutic agents, including for immune modulation and pain relief. Despite promising results in rodent preclinical studies, efficacy in human clinical trials has been marginal to date. Fundamental differences in ligand engagement and signalling responses between the human CB2 receptor and preclinical model species orthologues may contribute to mismatches in functional outcomes. This is a tangible possibility for the CB2 receptor in that there is a relatively large degree of primary amino acid sequence divergence between human and rodent. Here, we summarise CB2 receptor gene and protein structure, assess comparative molecular pharmacology between CB2 receptor orthologues, and review the current status of preclinical to clinical translation for drugs targeted at the CB2 receptor, focusing on comparisons between human, mouse and rat receptors. We hope that raising wider awareness of, and proposing strategies to address, this additional challenge in drug development will assist in ongoing efforts toward successful therapeutic translation of drugs targeted at the CB2 receptor. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Emma R Carruthers
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
19
|
Hu Z, Qin Z, Xie J, Qu Y, Yin L. Cannabidiol and its application in the treatment of oral diseases: therapeutic potentials, routes of administration and prospects. Biomed Pharmacother 2024; 176:116271. [PMID: 38788594 DOI: 10.1016/j.biopha.2024.116271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 05/26/2024] Open
Abstract
Cannabidiol (CBD), one of the most important active ingredients in cannabis, has been reported to have some pharmacological effects such as antibacterial and analgesic effects, and to have therapeutic potential in the treatment of oral diseases such as oral cancer, gingivitis and periodontal diseases. However, there is a lack of relevant systematic research and reviews. Therefore, based on the etiology and clinical symptoms of several common oral diseases, this paper focuses on the therapeutic potential of CBD in periodontal diseases, pulp diseases, oral mucosal diseases, oral cancer and temporomandibular joint diseases. The pharmacological effects of CBD and the distribution and function of its receptors in the oral cavity are also summarized. In order to provide reference for future research and further clinical application of CBD, we also summarize several possible routes of administration and corresponding characteristics. Finally, the challenges faced while applying CBD clinically and possible solutions are discussed, and we also look to the future.
Collapse
Affiliation(s)
- Zonghao Hu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Zishun Qin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jinhong Xie
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Yue Qu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Lihua Yin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
20
|
Ward AM, Shokati T, Klawitter J, Klawitter J, Nguyen V, Kozell L, Abbas AI, Jones D, Christians U. Identification and Characterization of Cannabichromene's Major Metabolite Following Incubation with Human Liver Microsomes. Metabolites 2024; 14:329. [PMID: 38921465 PMCID: PMC11206029 DOI: 10.3390/metabo14060329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Cannabichromene (CBC) is a minor cannabinoid within the array of over 120 cannabinoids identified in the Cannabis sativa plant. While CBC does not comprise a significant portion of whole plant material, it is available to the public in a purified and highly concentrated form. As minor cannabinoids become more popular due to their potential therapeutic properties, it becomes crucial to elucidate their metabolism in humans. Therefore, the goal of this was study to identify the major CBC phase I-oxidized metabolite generated in vitro following incubation with human liver microsomes. The novel metabolite structure was identified as 2'-hydroxycannabicitran using gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. Following the identification, in silico molecular modeling experiments were conducted and predicted 2'-hydroxycannabicitran to fit in the orthosteric site of both the CB1 and CB2 receptors. When tested in vitro utilizing a competitive binding assay, the metabolite did not show significant binding to either the CB1 or CB2 receptors. Further work necessitates the determination of potential activity of CBC and the here-identified phase I metabolite in other non-cannabinoid receptors.
Collapse
Affiliation(s)
- Alexandra M. Ward
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.M.W.); (V.N.)
| | - Touraj Shokati
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (J.K.); (J.K.)
| | - Jost Klawitter
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (J.K.); (J.K.)
| | - Jelena Klawitter
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (J.K.); (J.K.)
| | - Vu Nguyen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.M.W.); (V.N.)
| | - Laura Kozell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (L.K.); (A.I.A.)
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA
- Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| | - Atheir I. Abbas
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (L.K.); (A.I.A.)
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA
- Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| | - David Jones
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Uwe Christians
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (J.K.); (J.K.)
| |
Collapse
|
21
|
Zhou YP, Zhang LL, Sun Y, Brugarolas P. Imaging of Pain using Positron Emission Tomography. IRADIOLOGY 2024; 2:339-361. [PMID: 39440326 PMCID: PMC11493400 DOI: 10.1002/ird3.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 10/25/2024]
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging technique that utilizes biologically active radiolabeled compounds to image biochemical processes. As such, PET can provide important pathophysiological information associated with pain of different etiologies. As such, the information obtained using PET often combined with MRI or CT can provide useful information for diagnosing and monitoring changes associated with pain. This review covers the most important PET tracers that have been used to image pain including tracers for fundamental biological processes such as glucose metabolism and cerebral blood flow to receptor-specific tracers such as ion channels and neurotransmitters. For tracer type, we describe the structure and radiochemical synthesis of the tracer followed by a brief summary of the available preclinical and clinical studies. By providing a summary of the PET tracers that have been employed for PET imaging of pain, this review aims to serve as a reference for preclinical, translational and clinical investigators interested in molecular imaging of pain. Finally, the review ends with an outlook of the needs and opportunities in this area.
Collapse
Affiliation(s)
- Yu-Peng Zhou
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lauren L Zhang
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yang Sun
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pedro Brugarolas
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
Masoumi M, Manavi MA, Mohammad Jafari R, Mirzaei A, Hedayatyanfard K, Beigmohammadi MT, Dehpour AR. Cannabidiol Anticonvulsant Effects Against Lithium-Pilocarpine-Induced Status Epilepticus in Male Rats Are Mediated by Neuroinflammation Modulation and Cannabinoids 1 (CB1), But Not CB2 and GABA A Receptors. Cannabis Cannabinoid Res 2024; 9:797-808. [PMID: 37976207 DOI: 10.1089/can.2023.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Background: Status epilepticus (SE) is a series of seizures that can lead to serious neurological damages. Cannabidiol (CBD) is extracted from the cannabis plant, which has been approved as an antiseizure medication. This study aimed to determine the efficacy of various doses of CBD on lithium-pilocarpine-induced SE in rats and possible involvement of multiple pharmacological pathways. We hypothesized that cannabinoid receptors type 1 (CB1) and CB2, as well as GABAA receptors, might have important roles in the anticonvulsant effects of CBD against SE by its anti-inflammatory effects. Methods: SE was induced by intraperitoneal (i.p.) injection of lithium (127 mg/kg, i.p.) and pilocarpine (60 mg/kg, i.p., 20 h after lithium). Forty-two male rats were divided into seven groups (including control and sham groups), and the treated groups received different doses of CBD (1, 3, 5, 10, and 25 mg/kg, i.p.). SE score was recorded over the next 2 h following pilocarpine injection. Then, we measured the levels of pro-inflammatory cytokines, including interleukin (IL)-lβ and tumor necrosis factor (TNF)-α, using ELISA kits. Also we analyzed the expression of CB1, CB2, and GABAA receptors using the Western blot technique. Results: CBD at 5 mg/kg significantly reduced Racine's scale and duration of seizures, and increased the onset time of seizure. Moreover, CBD 5 mg/kg caused significant reductions in the elevated levels of IL-lβ and TNF-α, as well as a significant increase in the decreased level of CB1 receptor expression compared to the control group. In other word, CBD reverted the effects of SE in terms of neuroinflammation and CB1 receptor. Based on the obtained results, CBD was not able to restore the declined levels of CB2 or GABAA receptors. Conclusion: Our study found anticonvulsant effects of CBD on the SE rat model induced by lithium-pilocarpine with probable involvement of CB1 receptors and anti-inflammatory effects by reducing IL-1β and TNF-α markers independent of CB2 and GABAA receptors.
Collapse
Affiliation(s)
- Mahla Masoumi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mirzaei
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Keshvad Hedayatyanfard
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Beigmohammadi
- Department of Intensive Care, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Manca A, Valz C, Chiara F, Mula J, Palermiti A, Billi M, Antonucci M, Nicolò AD, Luxardo N, Imperiale D, Vischia F, De Cori D, Cusato J, D'Avolio A. Cannabinoid levels description in a cohort of patients with chronic and neuropathic pain treated with Cannabis decoction: A possible role of TDM. Biomed Pharmacother 2024; 175:116686. [PMID: 38713939 DOI: 10.1016/j.biopha.2024.116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024] Open
Abstract
The phytocomplex of Cannabis is made up of approximately 500 substances: terpeno-phenols metabolites, including Δ-9-tetrahydrocannabinol and cannabidiol, exhibit pharmacological activity. Medical Cannabis has several pharmacological potential applications, in particular in the management of chronic and neuropathic pain. In the literature, a few data are available concerning cannabis pharmacokinetics, efficacy and safety. Thus, aim of the present study was the evaluation of cannabinoid pharmacokinetics in a cohort of patients, with chronic and neuropathic pain, treated with inhaled medical cannabis and decoction, as a galenic preparation. In this study, 67 patients were enrolled. Dried flower tops with different THC and CBD concentrations were used: Bedrocan® medical cannabis with THC level standardized at 19% and with a CBD level below 1%, Bediol® medical cannabis with THC and CBD level standardized at similar concentration of 6.5% and 8%, respectively. Cannabis was administered as a decoction in 47 patients and inhaled in 11 patients. The blood withdrawn was obtained before the new dose administration at the steady state and metabolites plasma concentrations were measured with an UHPLC-MS/MS method. Statistically significant differences were found in cannabinoids plasma exposure between inhaled and oral administration of medical cannabis, between male and female and cigarette smokers. For the first time, differences in cannabinoid metabolites exposures between different galenic formulations were suggested in patients. Therapeutic drug monitoring could be useful to allow for dose adjustment, but further studies in larger cohorts of patients are required in order to confirm these data.
Collapse
Affiliation(s)
- Alessandra Manca
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Cristina Valz
- SC Terapia del dolore - ASL Città di Torino, Turin 10144, Italy
| | - Francesco Chiara
- University of Turin, Department of Clinical and Biological Sciences, Laboratory of Clinical Pharmacology San Luigi A.O.U., RegioneGonzole 10, Orbassano, Turin 10043, Italy
| | - Jacopo Mula
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Alice Palermiti
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Martina Billi
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Miriam Antonucci
- SCDU Infectious Diseases, Amedeo di Savoia Hospital, ASL Città di Torino, Turin 10149, Italy
| | - Amedeo De Nicolò
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Nicola Luxardo
- SC Terapia del dolore - ASL Città di Torino, Turin 10144, Italy
| | - Daniele Imperiale
- Neurology Unit, Maria Vittoria Hospital, ASL Città di Torino, Turin 10144, Italy
| | - Flavio Vischia
- Department of Mental Health - Psychiatric Unit West, Turin 10149, Italy
| | - David De Cori
- Department of Mental Health - Psychiatric Unit West, Turin 10149, Italy
| | - Jessica Cusato
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy.
| | - Antonio D'Avolio
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| |
Collapse
|
24
|
Le K, Le KDR, Nguyen J, Hua J, Munday S. The Role of Medicinal Cannabis as an Emerging Therapy for Opioid Use Disorder. Pain Ther 2024; 13:435-455. [PMID: 38676910 PMCID: PMC11111657 DOI: 10.1007/s40122-024-00599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
This narrative review explores current insights into the potential use of medicinal cannabis-related products as an emerging therapy for opioid use disorder in the landscape of increasing knowledge about medicinal cannabis-based products, commercialisation and global legalisation. Preclinical studies have provided preliminary insight into the putative neurobiological mechanisms that underpin the potential for medicinal cannabis to be considered a therapeutic in opioid use disorder and addiction. With the progressive legalisation of cannabis in many jurisdictions worldwide, contemporary research has highlighted further evidence that medicinal cannabis may have efficacy in reducing cravings and withdrawal effects, and therefore may be considered as an adjunct or standalone to current medications for opioid use disorder. Despite this potential, the landscape of research in this space draws from a large number of observational studies, with a paucity of rigorous randomised controlled trials to ascertain a true understanding of effect size and safety profile. With current challenges in implementation that arise from political and legal qualms about adopting medicinal cannabis on the background of associated social stigma, significant hurdles remain to be addressed by government, policy-makers, healthcare providers and researchers before medical cannabis can be introduced globally for the treatment of opioid use disorder.
Collapse
Affiliation(s)
- Kelvin Le
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Khang Duy Ricky Le
- Department of General Surgical Specialties, The Royal Melbourne Hospital, 300 Grattan St., Parkville, Melbourne, VIC, 3050, Australia.
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Geelong Clinical School, Deakin University, Geelong, VIC, Australia.
- Department of Medical Education, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.
| | - Johnny Nguyen
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Parkville, VIC, Australia
- Department of Pharmacy, Alfred Health, Melbourne, VIC, Australia
| | - Jean Hua
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Parkville, VIC, Australia
- Department of Pharmacy, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Sarah Munday
- The Royal Children's Hospital, Melbourne, VIC, Australia
- Monash Bioethics Centre, Faculty of Arts, Monash University, Clayton, VIC, Australia
| |
Collapse
|
25
|
Sobieraj J, Strzelecka K, Sobczak M, Oledzka E. How Biodegradable Polymers Can be Effective Drug Delivery Systems for Cannabinoids? Prospectives and Challenges. Int J Nanomedicine 2024; 19:4607-4649. [PMID: 38799700 PMCID: PMC11128233 DOI: 10.2147/ijn.s458907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Cannabinoids are compounds found in and derived from the Cannabis plants that have become increasingly recognised as significant modulating factors of physiological mechanisms and inflammatory reactions of the organism, thus inevitably affecting maintenance of homeostasis. Medical Cannabis popularity has surged since its legal regulation growing around the world. Numerous promising discoveries bring more data on cannabinoids' pharmacological characteristics and therapeutic applications. Given the current surge in interest in the medical use of cannabinoids, there is an urgent need for an effective method of their administration. Surpassing low bioavailability, low water solubility, and instability became an important milestone in the advancement of cannabinoids in pharmaceutical applications. The numerous uses of cannabinoids in clinical practice remain restricted by limited administration alternatives, but there is hope when biodegradable polymers are taken into account. The primary objective of this review is to highlight the wide range of indications for which cannabinoids may be used, as well as the polymeric carriers that enhance their effectiveness. The current review described a wide range of therapeutic applications of cannabinoids, including pain management, neurological and sleep disorders, anxiety, and cancer treatment. The use of these compounds was further examined in the area of dermatology and cosmetology. Finally, with the use of biodegradable polymer-based drug delivery systems (DDSs), it was demonstrated that cannabinoids can be delivered specifically to the intended site while also improving the drug's physicochemical properties, emphasizing their utility. Nevertheless, additional clinical trials on novel cannabinoids' formulations are required, as their full spectrum therapeutical potential is yet to be unravelled.
Collapse
Affiliation(s)
- Jan Sobieraj
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Katarzyna Strzelecka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Marcin Sobczak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Ewa Oledzka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| |
Collapse
|
26
|
Blebea NM, Pricopie AI, Vlad RA, Hancu G. Phytocannabinoids: Exploring Pharmacological Profiles and Their Impact on Therapeutical Use. Int J Mol Sci 2024; 25:4204. [PMID: 38673788 PMCID: PMC11050509 DOI: 10.3390/ijms25084204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Phytocannabinoids, a diverse group of naturally occurring compounds extracted from the Cannabis plant, have attracted interest due to their potential pharmacological effects and medicinal uses. This comprehensive review presents the intricate pharmacological profiles of phytocannabinoids while exploring the diverse impacts these substances have on biological systems. From the more than one hundred cannabinoids which were identified in the Cannabis plant so far, cannabidiol (CBD) and tetrahydrocannabinol (THC) are two of the most extensively studied phytocannabinoids. CBD is a non-psychoactive compound, which exhibits potential anti-inflammatory, neuroprotective, and anxiolytic properties, making it a promising candidate for a wide array of medical conditions. THC, known for its psychoactive effects, possesses analgesic and antiemetic properties, contributing to its therapeutic potential. In addition to THC and CBD, a wide range of additional phytocannabinoids have shown intriguing pharmacological effects, including cannabichromene (CBC), cannabigerol (CBG), and cannabinol (CBN). The endocannabinoid system, made up of the enzymes involved in the production and breakdown of endocannabinoids, cannabinoid receptors (CB1 and CB2), and endogenous ligands (endocannabinoids), is essential for preserving homeostasis in several physiological processes. Beyond their effects on the endocannabinoid system, phytocannabinoids are studied for their ability to modify ion channels, neurotransmitter receptors, and anti-oxidative pathways. The complex interaction between phytocannabinoids and biological systems offers hope for novel treatment approaches and lays the groundwork for further developments in the field of cannabinoid-based medicine. This review summarizes the state of the field, points out information gaps, and emphasizes the need for more studies to fully realize the therapeutic potential of phytocannabinoids.
Collapse
Affiliation(s)
- Nicoleta Mirela Blebea
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, “Ovidius” University from Constanța, 900470 Constanța, Romania;
| | - Andreea Iulia Pricopie
- Biochemistry and Chemistry of Environmental Factors Department, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Robert-Alexandru Vlad
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Gabriel Hancu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania
| |
Collapse
|
27
|
Remily EA, Bains SS, Dubin J, Hameed D, Reich J, Livesey MG, Chen Z, Moore MC, Ingari JV. Elevated risk of prosthetic infections in cannabis users after shoulder arthroplasty. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2024; 34:1381-1387. [PMID: 38183443 DOI: 10.1007/s00590-023-03802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/25/2023] [Indexed: 01/08/2024]
Abstract
INTRODUCTION An increasing number of states are beginning to legalize recreational cannabis use, and as such, more patients using cannabis are undergoing shoulder arthroplasty procedures. The present study sought to examine the impact of cannabis use on post-operative outcomes. The primary outcomes of interest were postoperative complications, which included infection, periprosthetic fractures, periprosthetic joint infections (PJI), dislocations, and aseptic loosening as well as medical complications. Secondary outcomes were risk factors for PJI and aseptic loosening at two-years. METHODS A private, nationwide, all-payer database (Pearldiver Technologies) was queried to identify shoulder arthroplasty patients from 2010 to 2020. Those not using tobacco or cannabis ("control", n = 10,000), tobacco users (n = 10,000), cannabis users (n = 155), and concurrent tobacco and cannabis users (n = 9,842) were identified. Risk factors for PJI and aseptic loosening at two-years were further quantified utilizing multivariable logistic regression analysis. RESULTS Compared to non-users, cannabis users experienced the highest odds for PJI and aseptic revisions, which were followed by concurrent cannabis and tobacco users and tobacco-only users. Concurrent users, as well as tobacco users were at higher risk for dislocation. Cannabis use was the most significant risk factor for PJI, followed by concurrent use and male sex. CONCLUSIONS Our study found cannabis use to cause greater risk for superficial and deep infection. More research involving randomized trials are needed to fully elucidate the impact of cannabis use on shoulder arthroplasty procedures. Clinically, these findings can appropriately guide surgeons and patients alike regarding expectations prior to undergoing TSA.
Collapse
Affiliation(s)
- Ethan A Remily
- LifeBridge Health, Sinai Hospital of Baltimore, Rubin Institute for Advanced Orthopedics, 2401 West Belvedere Avenue, Baltimore, MD, 21215, USA
| | - Sandeep S Bains
- LifeBridge Health, Sinai Hospital of Baltimore, Rubin Institute for Advanced Orthopedics, 2401 West Belvedere Avenue, Baltimore, MD, 21215, USA
| | - Jeremy Dubin
- LifeBridge Health, Sinai Hospital of Baltimore, Rubin Institute for Advanced Orthopedics, 2401 West Belvedere Avenue, Baltimore, MD, 21215, USA
| | - Daniel Hameed
- LifeBridge Health, Sinai Hospital of Baltimore, Rubin Institute for Advanced Orthopedics, 2401 West Belvedere Avenue, Baltimore, MD, 21215, USA
| | - Jeremy Reich
- LifeBridge Health, Sinai Hospital of Baltimore, Rubin Institute for Advanced Orthopedics, 2401 West Belvedere Avenue, Baltimore, MD, 21215, USA
| | - Michael G Livesey
- Department of Orthopaedic Surgery, University of Maryland, Baltimore, MD, USA
| | - Zhongming Chen
- LifeBridge Health, Sinai Hospital of Baltimore, Rubin Institute for Advanced Orthopedics, 2401 West Belvedere Avenue, Baltimore, MD, 21215, USA
| | - Mallory C Moore
- LifeBridge Health, Sinai Hospital of Baltimore, Rubin Institute for Advanced Orthopedics, 2401 West Belvedere Avenue, Baltimore, MD, 21215, USA
| | - John V Ingari
- LifeBridge Health, Sinai Hospital of Baltimore, Rubin Institute for Advanced Orthopedics, 2401 West Belvedere Avenue, Baltimore, MD, 21215, USA.
| |
Collapse
|
28
|
Kallurkar A, Kaye AD, Shekoohi S. Marijuana Use, Vaping, and Preoperative Anesthetic and Surgical Considerations in Clinical Practice. Anesthesiol Clin 2024; 42:53-63. [PMID: 38278592 DOI: 10.1016/j.anclin.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
In recent years, marijuana and vaping have acquired widespread popularity, with millions of people using them for a variety of reasons, including recreational purposes. However, these practices have often overlooked the implications on surgery and the preoperative anesthesia considerations. Marijuana can influence a patient's response to anesthesia, alter postoperative pain management, and increase the risk of complications, whereas vaping can have negative effects on the respiratory system and hinder the body's ability to recover after surgery.
Collapse
Affiliation(s)
- Anusha Kallurkar
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA; Department of Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA.
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA
| |
Collapse
|
29
|
Lo BD, Chen SY, Stem M, Papanikolaou A, Gabre-Kidan A, Safar B, Efron JE, Atallah C. Prevalence of cannabis use disorder and perioperative outcomes in adult colectomy patients: A propensity score-matched analysis. World J Surg 2024; 48:701-712. [PMID: 38342773 DOI: 10.1002/wjs.12085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/06/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND The decriminalization of cannabis across the United States has led to an increased number of patients reporting cannabis use prior to surgery. However, it is unknown whether preoperative cannabis use disorder (CUD) increases the risk of postoperative complications among adult colectomy patients. METHODS Adult patients undergoing an elective colectomy were retrospectively analyzed from the National Inpatient Sample database (2004-2018). To control for potential confounders, patients with CUD, defined using ICD-9/10 codes, were propensity score matched to patients without CUD in a 1:1 ratio. The association between preoperative CUD and composite morbidity, the primary outcome of interest, was assessed. Subgroup analyses were performed after stratification by age (≥50 years). RESULTS Among 432,018 adult colectomy patients, 816 (0.19%) reported preoperative CUD. The prevalence of CUD increased nearly three-fold during the study period from 0.8/1000 patients in 2004 to 2.0/1000 patients in 2018 (P-trend<0.001). After propensity score matching, patients with CUD exhibited similar rates of composite morbidity (140 of 816; 17.2%) as those without CUD (151 of 816; 18.5%) (p = 0.477). Patients with CUD also had similar anastomotic leak rates (CUD: 5.64% vs. No CUD: 6.25%; p = 0.601), hospital lengths of stay (CUD: 5 days, IQR 4-7 vs. No CUD: 5 days, IQR 4-7) (p = 0.415), and hospital charges as those without CUD. Similar findings were seen among patients aged ≥50 years in the subgroup analysis. CONCLUSIONS Though the prevalence of CUD has increased drastically over the past 15 years, preoperative CUD was not associated with an increased risk of composite morbidity among adult patients undergoing an elective colectomy.
Collapse
Affiliation(s)
- Brian D Lo
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sophia Y Chen
- Colorectal Research Unit, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Miloslawa Stem
- Colorectal Research Unit, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angelos Papanikolaou
- Colorectal Research Unit, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alodia Gabre-Kidan
- Colorectal Research Unit, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bashar Safar
- Division of Colon and Rectal Surgery, Department of Surgery, NYU Grossman School of Medicine, New York City, New York, USA
| | - Jonathan E Efron
- Colorectal Research Unit, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chady Atallah
- Division of Colon and Rectal Surgery, Department of Surgery, NYU Grossman School of Medicine, New York City, New York, USA
| |
Collapse
|
30
|
Safi K, Sobieraj J, Błaszkiewicz M, Żyła J, Salata B, Dzierżanowski T. Tetrahydrocannabinol and Cannabidiol for Pain Treatment-An Update on the Evidence. Biomedicines 2024; 12:307. [PMID: 38397910 PMCID: PMC10886939 DOI: 10.3390/biomedicines12020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
In light of the current International Association for the Study of Pain (IASP) clinical practice guidelines (CPGs) and the European Society for Medical Oncology (ESMO) guidelines, the topic of cannabinoids in relation to pain remains controversial, with insufficient research presently available. Cannabinoids are an attractive pain management option due to their synergistic effects when administered with opioids, thereby also limiting the extent of respiratory depression. On their own, however, cannabinoids have been shown to have the potential to relieve specific subtypes of chronic pain in adults, although controversies remain. Among these subtypes are neuropathic, musculoskeletal, cancer, and geriatric pain. Another interesting feature is their effectiveness in chemotherapy-induced peripheral neuropathy (CIPN). Analgesic benefits are hypothesized to extend to HIV-associated neuropathic pain, as well as to lower back pain in the elderly. The aim of this article is to provide an up-to-date review of the existing preclinical as well as clinical studies, along with relevant systematic reviews addressing the roles of various types of cannabinoids in neuropathic pain settings. The impact of cannabinoids in chronic cancer pain and in non-cancer conditions, such as multiple sclerosis and headaches, are all discussed, as well as novel techniques of administration and relevant mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomasz Dzierżanowski
- Palliative Medicine Clinic, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland
| |
Collapse
|
31
|
Arthur P, Kalvala AK, Surapaneni SK, Singh MS. Applications of Cannabinoids in Neuropathic Pain: An Updated Review. Crit Rev Ther Drug Carrier Syst 2024; 41:1-33. [PMID: 37824417 PMCID: PMC11228808 DOI: 10.1615/critrevtherdrugcarriersyst.2022038592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuropathic pain is experienced due to injury to the nerves, underlying disease conditions or toxicity induced by chemotherapeutics. Multiple factors can contribute to neuropathic pain such as central nervous system (CNS)-related autoimmune and metabolic disorders, nerve injury, multiple sclerosis and diabetes. Hence, development of pharmacological interventions to reduce the drawbacks of existing chemotherapeutics and counter neuropathic pain is an urgent unmet clinical need. Cannabinoid treatment has been reported to be beneficial for several disease conditions including neuropathic pain. Cannabinoids act by inhibiting the release of neurotransmitters from presynaptic nerve endings, modulating the excitation of postsynaptic neurons, activating descending inhibitory pain pathways, reducing neural inflammation and oxidative stress and also correcting autophagy defects. This review provides insights on the various preclinical and clinical therapeutic applications of cannabidiol (CBD), cannabigerol (CBG), and cannabinol (CBN) in various diseases and the ongoing clinical trials for the treatment of chronic and acute pain with cannabinoids. Pharmacological and genetic experimental strategies have well demonstrated the potential neuroprotective effects of cannabinoids and also elaborated their mechanism of action for the therapy of neuropathic pain.
Collapse
Affiliation(s)
- Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Anil Kumar Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Mandip Sachdeva Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| |
Collapse
|
32
|
Hansen JS, Boix F, Hasselstrøm JB, Sørensen L, Kjolby M, Gustavsen S, Hansen R, Petersen T, Sellebjerg F, Kasch H, Rasmussen PV, Finnerup NB, Sædder EA, Svendsen KB. Pharmacokinetics and pharmacodynamics of cannabis-based medicine in a patient population included in a randomized, placebo-controlled, clinical trial. Clin Transl Sci 2024; 17:e13685. [PMID: 38054364 PMCID: PMC10772478 DOI: 10.1111/cts.13685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
Information on the pharmacokinetics (PK) and pharmacodynamics (PD) of orally administered cannabis-based medicine (CBM) in capsule formulation in patient populations is sparse. In this exploratory study, we aimed to evaluate the PK and PD in a probable steady state of CBM in neuropathic pain and spasticity in a population of patients with multiple sclerosis (MS). Of 134 patients participating in a randomized, double-blinded, placebo-controlled, trial, 23 patients with MS (17 female) mean age 52 years (range 21-67) were enrolled in this substudy. They received oral capsules containing Δ9 -tetrahydrocannabinol (THC, n = 4), cannabidiol (CBD, n = 6), a combination (THC&CBD, n = 4), or placebo (n = 9). Maximum doses were 22.5 mg (THC) and 45 mg (CBD) a day divided into three administrations. PD parameters were evaluated for pain and spasticity. Blood samples were analyzed using an ultra-high-performance liquid chromatography-tandem mass spectrometer after protein precipitation and phospholipid removal. PK parameters were estimated using computerized modeling. The variation in daily dose and PK between individuals was considerable in a steady state, yet comparable with previous reports from healthy controls. Based on a simulation of the best model, the estimated PK parameters (mean) for THC (5 mg) were Cmax 1.21 ng/mL, Tmax 2.68 h, and half-life 2.75 h, and for CBD (10 mg) were Cmax 2.67 ng/mL, Tmax 0.10 h, and half-life 4.95 h, respectively. No effect was found on the PD parameters, but the placebo response was considerable. More immediate adverse events were registered in the active treatment groups compared with the placebo group.
Collapse
Affiliation(s)
- Julie Schjødtz Hansen
- Department of NeurologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Fernando Boix
- Section for Drug Abuse Research, Department of Forensic Sciences, Division of Laboratory MedicineOslo University HospitalOsloNorway
| | | | | | - Mads Kjolby
- Department of Clinical PharmacologyAarhus University HospitalAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Stefan Gustavsen
- Danish Multiple Sclerosis Center, Department of NeurologyCopenhagen University Hospital – RigshospitaletGlostrupDenmark
| | | | - Thor Petersen
- Department of NeurologyHospital of Southern Jutland and Research Unit in NeurologyAabenraaDenmark
- Department of Regional Health ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of NeurologyCopenhagen University Hospital – RigshospitaletGlostrupDenmark
| | - Helge Kasch
- Department of NeurologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Nanna Brix Finnerup
- Department of NeurologyAarhus University HospitalAarhusDenmark
- Danish Pain Research Centre, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Eva Aggerholm Sædder
- Department of Clinical PharmacologyAarhus University HospitalAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Kristina Bacher Svendsen
- Department of NeurologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
33
|
Brikenstein N, Birenboim M, Kenigsbuch D, Shimshoni JA. Optimization of Trimming Techniques for Enhancing Cannabinoid and Terpene Content in Medical Cannabis Inflorescences. Med Cannabis Cannabinoids 2024; 7:111-118. [PMID: 39015609 PMCID: PMC11249524 DOI: 10.1159/000539192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/25/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Cannabis sativa L. inflorescences are widely used in the medicinal field as treatments for a variety of symptoms and illnesses due to their unique phytochemicals such as cannabinoids and terpenes. Common postharvest procedures for cannabis inflorescence include trimming, followed by drying, curing, and subsequent storage. The postharvest trimming step, particularly its timing (pre- or post-drying) and the extent of trimming, is not optimally refined in terms of its impact on the cannabinoid and terpene content. In this study, our objective was to identify the optimal trimming conditions for a commercially available medicinal cannabis hybrid chemovar, with the goal of maximizing its cannabinoid and terpene content. Methods To achieve this, we investigated the effects of pre- versus post-drying trimming and evaluated the impact of mild versus aggressive trimming prior to drying on the cannabinoid and terpene profiles using liquid and gas chromatography. Results Our results indicated that pre-drying mild trimming yielded the highest cannabinoid concentration, possibly due to optimal balance between stress signals and precursor influx from the sugar leaves to the inflorescence. On the other, post-drying trimming yielded the highest terpene content. Conclusion Identifying the optimal trimming conditions that maximize both cannabinoid and terpene levels in cannabis is challenging. Therefore, growers face a decision in their trimming practices: to prioritize either enhanced cannabinoid content or increased aromatic terpene concentrations, as optimizing for both simultaneously appears to be difficult.
Collapse
Affiliation(s)
- Nimrod Brikenstein
- Department of Food Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- Department of Plant Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Matan Birenboim
- Department of Food Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- Department of Plant Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - David Kenigsbuch
- Department of Postharvest Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Jakob A. Shimshoni
- Department of Food Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
34
|
Stienrut P, Pongpirul K, Phutrakool P, Savigamin C, Sermsaksasithorn P, Chanhom O, Jeamjumrus P, Pongchaichanon P, Nootim P, Soisamrong M, Chuthaputti A, Wanaratna K, Thaneerat T. Medical Cannabis Prescription Practices and Quality of Life in Thai Patients: A Nationwide Prospective Observational Cohort Study. Med Cannabis Cannabinoids 2024; 7:125-137. [PMID: 39144529 PMCID: PMC11324265 DOI: 10.1159/000540153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/25/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction The legalization of cannabis in Thailand has renewed interest in its traditional medical use. This study aimed to explore the prescribing patterns of traditional practitioners and assess the impact of cannabis oil on patients' quality of life, with a specific focus on comparing outcomes between cancer and non-cancer patients. Methods We conducted a prospective observational cohort study across 30 sites in 21 Thai provinces to analyze the use of "Ganja Oil," a cannabis extract in 10% coconut oil, prescribed for symptoms like pain, anorexia, and insomnia across a diverse patient group, including cancer and migraines. Quality of life was assessed using the Edmonton Symptom Assessment Scale (ESAS) and EQ-5D-5L at baseline, 1, 2, and 3 months. The study included a predefined subgroup analysis to compare the effects on cancer versus non-cancer patients. Data management was facilitated through Research Electronic Data Capture (REDCap), with statistical analysis performed using Stata/MP. Results Among 21,284 participants, the mean age was 54.10 ± 15.32 years, with 52.49% being male. The baseline EQ-5D-5L index was 0.85 ± 0.24. Significant differences in EQ-5D-5L indices were seen between cancer patients (0.79 ± 0.32) and non-cancer patients (0.85 ± 0.23; p < 0.001). ESAS scores also differed significantly between these groups for all symptoms, except anxiety. The most frequent prescription of Ganja Oil was oral administration at bedtime (88.26%), with the predominant dosage being three drops daily, approximately 0.204 mg of tetrahydrocannabinol in total. Posttreatment, significant improvements were noted: the EQ-5D-5L index increased by 0.11 points (95% CI: 0.11, 0.11; p < 0.001) overall, 0.13 points (95% CI: 0.12, 0.14; p < 0.001) for cancer patients, and 0.11 points (95% CI: 0.10, 0.11; p < 0.001) for non-cancer patients. ESAS pain scores improved by -2.66 points (95% CI: -2.71, -2.61; p < 0.001) overall, -2.01 points (95% CI: -2.16, -1.87; p < 0.001) for cancer patients, and -2.75 points (95% CI: -2.80, -2.70; p < 0.001) for non-cancer patients, with similar significant improvements in other symptoms. Conclusion Our study indicates potential benefits of Ganja Oil for improving quality of life among Thai patients, as a complementary treatment. These findings must be viewed in light of the study's design limitations. Further controlled studies are essential to ascertain its efficacy and inform dosing guidelines.
Collapse
Affiliation(s)
- Pramote Stienrut
- Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Nonthaburi, Thailand
| | - Krit Pongpirul
- Center of Excellence in Preventive and Integrative Medicine and Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Infection Biology and Microbiomes, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Bumrungrad International Hospital, Bangkok, Thailand
| | - Phanupong Phutrakool
- Chula Data Management Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chatuthanai Savigamin
- Center of Excellence in Preventive and Integrative Medicine and Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pim Sermsaksasithorn
- Center of Excellence in Preventive and Integrative Medicine and Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ornpapha Chanhom
- Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Nonthaburi, Thailand
| | - Panthakan Jeamjumrus
- Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Nonthaburi, Thailand
| | - Pimlada Pongchaichanon
- Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Nonthaburi, Thailand
| | - Preecha Nootim
- Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Nonthaburi, Thailand
| | - Mala Soisamrong
- Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Nonthaburi, Thailand
| | - Anchalee Chuthaputti
- Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Nonthaburi, Thailand
| | - Kulthanit Wanaratna
- Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Nonthaburi, Thailand
| | - Tewan Thaneerat
- Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Nonthaburi, Thailand
| |
Collapse
|
35
|
Asiedu K. Neurophysiology of corneal neuropathic pain and emerging pharmacotherapeutics. J Neurosci Res 2024; 102:e25285. [PMID: 38284865 DOI: 10.1002/jnr.25285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 01/30/2024]
Abstract
The altered activity generated by corneal neuronal injury can result in morphological and physiological changes in the architecture of synaptic connections in the nervous system. These changes can alter the sensitivity of neurons (both second-order and higher-order projection) projecting pain signals. A complex process involving different cell types, molecules, nerves, dendritic cells, neurokines, neuropeptides, and axon guidance molecules causes a high level of sensory rearrangement, which is germane to all the phases in the pathomechanism of corneal neuropathic pain. Immune cells migrating to the region of nerve injury assist in pain generation by secreting neurokines that ensure nerve depolarization. Furthermore, excitability in the central pain pathway is perpetuated by local activation of microglia in the trigeminal ganglion and alterations of the descending inhibitory modulation for corneal pain arriving from central nervous system. Corneal neuropathic pain may be facilitated by dysfunctional structures in the central somatosensory nervous system due to a lesion, altered synaptogenesis, or genetic abnormality. Understanding these important pathways will provide novel therapeutic insight.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Lee BH, Sideris A, Ladha KS, Johnson RL, Wu CL. Cannabis and Cannabinoids in the Perioperative Period. Anesth Analg 2024; 138:16-30. [PMID: 35551150 DOI: 10.1213/ane.0000000000006070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cannabis use is increasingly common, and with a growing number of jurisdictions implementing legalization frameworks, it is likely that providers will encounter more patients who use cannabis. Therefore, it is important for providers to understand the implications of cannabis use and practical considerations for the perioperative period. Cannabis affects multiple organ systems and may influence intraoperative anesthesia, as well as postoperative pain management. The effects of cannabis and key anesthetic considerations are reviewed here.
Collapse
Affiliation(s)
- Bradley H Lee
- From the Department of Anesthesiology, Critical Care & Pain Management, Hospital for Special Surgery, New York, New York
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
| | - Alexandra Sideris
- From the Department of Anesthesiology, Critical Care & Pain Management, Hospital for Special Surgery, New York, New York
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
| | - Karim S Ladha
- Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Rebecca L Johnson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christopher L Wu
- From the Department of Anesthesiology, Critical Care & Pain Management, Hospital for Special Surgery, New York, New York
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
37
|
Pandey K, Hoda W. Cannabinoids in anesthesia and chronic pain: Where do we stand? Saudi J Anaesth 2024; 18:100-104. [PMID: 38313715 PMCID: PMC10833032 DOI: 10.4103/sja.sja_710_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 02/06/2024] Open
Abstract
Cannabis derivatives have been conventionally employed globally for their curative and restorative properties for various ailments. However, its recreational use and consequent legal restrictions have substantially cramped its scientific research. An emerging interest regarding the profound therapeutic potential of cannabinoids has been observed among clinicians. Despite a rich cultural background, high-quality research on cannabinoids is lacking in the Indian scenario. This review readdresses the challenges on this front and brings an insight into the current status of cannabinoids and their utility in scientific exploration. Cannabinoids have a significant medicinal value in various clinical disorders. Its use so far has been based on scarce resources and corroborations, as evidence-based substantiation is limited. Through this review article, we emphasize the remarkable role enacted by cannabinoids in the treatment of various clinical disorders and an utterly significant need to formulate stringent research methodologies to promote its systematic investigation.
Collapse
Affiliation(s)
- Khushboo Pandey
- Department of Anaesthesiology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Wasimul Hoda
- Department of Anaesthesiology, Rajendra Institute of Medical Sciences, Bariatu, Ranchi, Jharkhand, India
| |
Collapse
|
38
|
Iannotti FA. Cannabinoids, Endocannabinoids, and Synthetic Cannabimimetic Molecules in Neuromuscular Disorders. Int J Mol Sci 2023; 25:238. [PMID: 38203407 PMCID: PMC10779239 DOI: 10.3390/ijms25010238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Neuromuscular disorders (NMDs) encompass a large heterogeneous group of hereditary and acquired diseases primarily affecting motor neurons, peripheral nerves, and the skeletal muscle system. The symptoms of NMDs may vary depending on the specific condition, but some of the most common ones include muscle weakness, pain, paresthesias, and hyporeflexia, as well as difficulties with swallowing and breathing. NMDs are currently untreatable. Therapeutic options include symptomatic and experimental medications aimed at delaying and alleviating symptoms, in some cases supplemented by surgical and physical interventions. To address this unmet medical need, ongoing research is being conducted on new treatments, including studies on medical cannabis, endocannabinoids, and related molecules with cannabimimetic properties. In this context, a significant amount of knowledge about the safety and effectiveness of cannabinoids in NMDs has been obtained from studies involving patients with multiple sclerosis experiencing pain and spasticity. In recent decades, numerous other preclinical and clinical studies have been conducted to determine the potential benefits of cannabinoids in NMDs. This review article aims to summarize and provide an unbiased point of view on the current knowledge about the use of cannabinoids, endocannabinoids, and synthetic analogs in NMDs, drawing from an array of compelling studies.
Collapse
Affiliation(s)
- Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry (ICB), National Research Council of Italy (CNR), 80078 Pozzuoli, NA, Italy
| |
Collapse
|
39
|
Pearl-Dowler L, Posa L, Lopez-Canul M, Teggin A, Gobbi G. Anti-allodynic and medullary modulatory effects of a single dose of delta-9-tetrahydrocannabinol (THC) in neuropathic rats tolerant to morphine. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110805. [PMID: 37257771 DOI: 10.1016/j.pnpbp.2023.110805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Neuropathic pain (NP) is often treated with opioids, the prolonged use of which causes tolerance to their analgesic effect and can potentially cause death by overdose. The phytocannabinoid delta-9-tetrahydrocannabinol (THC) may be an effective alternative analgesic to treat NP in morphine-tolerant subjects. Male Wistar rats developed NP after spared nerve injury, and were then treated with increasing doses of THC (1, 1.5, 2, 2.5, and 5 mg/kg, intraperitoneally), which reduced mechanical allodynia at the dose of 2.5 and 5 mg/kg. Another group of NP rats were treated with morphine (5 mg/kg, twice daily for 7 days, subcutaneously), until tolerance developed, and on day 8 received a single dose of THC (2.5 mg/kg), which significantly reduced mechanical allodynia. To evaluate the modulation of THC in the descending pain pathway, in vivo electrophysiological recordings of pronociceptive ON cells and antinociceptive OFF cells in the rostroventral medulla (RVM) were recorded after intra-PAG microinjection of THC (10 μg/μl). NP rats with morphine tolerance, compared to the control one, showed a tonic reduction of the spontaneous firing rate of ON cells by 44%, but the THC was able to further decrease it (a hallmark of many analgesic drugs acting at supraspinal level). On the other hand, the firing rate, of the antinociceptive OFF cells was increased after morphine tolerance by 133%, but the THC failed to further activate it. Altogether, these findings indicate that a single dose of THC produces antiallodynic effect in individuals with NP who are tolerant to morphine, acting mostly on the ON cells of the descending pain pathways, but not on OFF cells.
Collapse
Affiliation(s)
- Leora Pearl-Dowler
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Luca Posa
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Martha Lopez-Canul
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Alexandra Teggin
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.
| |
Collapse
|
40
|
Kwon IS, Hwang YN, Park JH, Na HH, Kwon TH, Park JS, Kim KC. Metallothionein Family Proteins as Regulators of Zinc Ions Synergistically Enhance the Anticancer Effect of Cannabidiol in Human Colorectal Cancer Cells. Int J Mol Sci 2023; 24:16621. [PMID: 38068944 PMCID: PMC10705991 DOI: 10.3390/ijms242316621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Cannabidiol (CBD) is a chemical obtained from Cannabis sativa; it has therapeutic effects on anxiety and cognition and anti-inflammatory properties. Although pharmacological applications of CBD in many types of tumors have recently been reported, the mechanism of action of CBD is not yet fully understood. In this study, we perform an mRNA-seq analysis to identify the target genes of CBD after determining the cytotoxic concentrations of CBD using an MTT assay. CBD treatment regulated the expression of genes related to DNA repair and cell division, with metallothionein (MT) family genes being identified as having highly increased expression levels induced by CBD. It was also found that the expression levels of MT family genes were decreased in colorectal cancer tissues compared to those in normal tissues, indicating that the downregulation of MT family genes might be highly associated with colorectal tumor progression. A qPCR experiment revealed that the expression levels of MT family genes were increased by CBD. Moreover, MT family genes were regulated by CBD or crude extract but not by other cannabinoids, suggesting that the expression of MT family genes was specifically induced by CBD. A synergistic effect between CBD and MT gene transfection or zinc ion treatment was found. In conclusion, MT family genes as novel target genes could synergistically increase the anticancer activity of CBD by regulating the zinc ions in human colorectal cancer cells.
Collapse
Affiliation(s)
- In-Seo Kwon
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
| | - Yu-Na Hwang
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
| | - Ju-Hee Park
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
| | - Han-Heom Na
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
- Kangwon Center for System Imaging, Chuncheon 24341, Kangwon, Republic of Korea
| | - Tae-Hyung Kwon
- Chuncheon Bioindustry Foundation, Chuncheon 24232, Kangwon, Republic of Korea;
| | - Jin-Sung Park
- Korean Pharmacopuncture Institute, Seoul 07525, Republic of Korea;
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
- Kangwon Center for System Imaging, Chuncheon 24341, Kangwon, Republic of Korea
| |
Collapse
|
41
|
Zamith Cunha R, Semprini A, Salamanca G, Gobbo F, Morini M, Pickles KJ, Roberts V, Chiocchetti R. Expression of Cannabinoid Receptors in the Trigeminal Ganglion of the Horse. Int J Mol Sci 2023; 24:15949. [PMID: 37958932 PMCID: PMC10648827 DOI: 10.3390/ijms242115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Cannabinoid receptors are expressed in human and animal trigeminal sensory neurons; however, the expression in the equine trigeminal ganglion is unknown. Ten trigeminal ganglia from five horses were collected post-mortem from an abattoir. The expression of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), and the cannabinoid-related receptors like transient receptor potential vanilloid type 1 (TRPV1), peroxisome proliferator-activated receptor gamma (PPARɣ), and G protein-related receptor 55 (GPR55) in the trigeminal ganglia (TG) of the horse were studied, using immunofluorescence on cryosections and formalin-fixed paraffin-embedded (FFPE) sections. Neurons and glial cells were identified using fluorescent Nissl staining NeuroTrace® and an antibody directed against the glial marker glial fibrillary acidic protein (GFAP), respectively. Macrophages were identified by means of an antibody directed against the macrophages/microglia marker ionized calcium-binding adapter molecule 1 (IBA1). The protein expression of CB1R, CB2R, TRPV1, and PPARɣ was found in the majority of TG neurons in both cryosections and FFPE sections. The expression of GPR55 immunoreactivity was mainly detectable in FFPE sections, with expression in the majority of sensory neurons. Some receptors were also observed in glial cells (CB2R, TRPV1, PPARγ, and GPR55) and inflammatory cells (PPARγ and GPR55). These results support further investigation of such receptors in disorders of equine trigeminal neuronal excitability.
Collapse
Affiliation(s)
- Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Alberto Semprini
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Francesca Gobbo
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Maria Morini
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Kirstie J. Pickles
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Veronica Roberts
- Bristol Vet School, University of Bristol, Bristol BS40 5DU, UK;
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| |
Collapse
|
42
|
Livesey MG, Bains SS, Stern JM, Chen Z, Dubin JA, Monárrez R, Remily EA, Ingari JV. Cannabis Use in Patients With Distal Radius Fractures: A Moment of Unity? Hand (N Y) 2023:15589447231196905. [PMID: 37787484 DOI: 10.1177/15589447231196905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
BACKGROUND As legalization of cannabis spreads, an increasing number of patients who use cannabis are being seen in the clinical setting. This study examined the impact of cannabis and tobacco use on postoperative complications following open reduction and internal fixation (ORIF) of distal radius fractures. METHODS A national, all-payer database was queried to identify patients who underwent ORIF of a distal radius fracture between 2015 and 2020 (n = 970 747). Patients were stratified into the following groups: (1) tobacco use (n = 86 941), (2) cannabis use (n = 898), (3) tobacco and cannabis use (n = 9842), and (4) neither tobacco nor cannabis use ("control", 747 892). Multivariable logistic regression was used to identify risk factors for infection, nonunion, and malunion within the first postoperative year. RESULTS Concomitant use of tobacco and cannabis was associated with a higher rate of nonunion (5.0%) compared to tobacco or cannabis use alone (P < .001). Multivariate analysis identified cannabis-only use (odds ratio [OR] 1.25), tobacco-only use (OR 2.17), and concurrent tobacco and cannabis use (OR 1.78) as risk factors for infection within the first postoperative year. Similarly, cannabis-only use (OR 1.47), tobacco-only use (OR 1.92), and concurrent tobacco and cannabis use (OR 2.52) were associated with an increased risk of malunion. CONCLUSIONS Cannabis use is associated with an elevated risk of infection and malunion following operative management of a distal radius fracture. Concomitant use of cannabis and tobacco poses an elevated risk of nonunion and malunion compared to tobacco use alone.
Collapse
Affiliation(s)
- Michael G Livesey
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sandeep S Bains
- Rubin Institute for Advanced Orthopedics, Baltimore, MD, USA
| | | | - Zhongming Chen
- Rubin Institute for Advanced Orthopedics, Baltimore, MD, USA
| | - Jeremy A Dubin
- Rubin Institute for Advanced Orthopedics, Baltimore, MD, USA
| | - Rubén Monárrez
- Rubin Institute for Advanced Orthopedics, Baltimore, MD, USA
| | - Ethan A Remily
- Rubin Institute for Advanced Orthopedics, Baltimore, MD, USA
| | - John V Ingari
- Rubin Institute for Advanced Orthopedics, Baltimore, MD, USA
| |
Collapse
|
43
|
Benredjem B, Pineyro G. A type II cannabis extract and a 1:1 blend of Δ(9)-tetrahydrocannabinol and cannabidiol display distinct antinociceptive profiles and engage different endocannabinoid targets when administered into the subarachnoid space. Front Pharmacol 2023; 14:1235255. [PMID: 37745077 PMCID: PMC10514912 DOI: 10.3389/fphar.2023.1235255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction: Cannabis extracts are being increasingly used to mitigate chronic pain. Current guidelines for their prescription rely on Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) content as well as the ratio of these major cannabinoids present in the blend. Here we assessed whether these descriptors were representative of product effectiveness to produce a desired outcome such as analgesia. Methods: In this study, we used a rat model of diabetic neuropathy and assessed the reduction in mechanical allodynia following intrathecal injection of pure THC, pure CBD, a 1:1 mix of these compounds and a "balanced" chemotype II cannabis extract. Engagement of endocannabinoid targets by different treatments was investigated using CB1 (AM251) and CB2 (AM630) receptor antagonists as well as a TRPV1 channel blocker (capsazepine). Results: Antinociceptive responses induced by an equivalent amount of THC administered in its pure form, as a THC:CBD mix or as a "balanced" extract were distinct. Furthermore, the 1:1 THC:CBD mix and the balanced extract had not only different response profiles but their relative engagement of CB1, CB2 receptors and TRPV1 channels was distinct. Discussion: These findings indicate that antinociceptive responses and targets engaged by blended cannabinoids are composition-specific, and cannot be simply inferred from THC and CBD contents. This information may have implications in relation to the way medicinal cannabis products are prescribed.
Collapse
Affiliation(s)
- Besma Benredjem
- Département de Pharmacologie, Université de Montréal, Montreal, QC, Canada
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Graciela Pineyro
- Département de Pharmacologie, Université de Montréal, Montreal, QC, Canada
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
| |
Collapse
|
44
|
Maia J, Fonseca BM, Teixeira N, Correia-da-Silva G. Unveiling the angiogenic effects of cannabinoids: Enhancers or inhibitors? Biochem Pharmacol 2023; 215:115686. [PMID: 37463627 DOI: 10.1016/j.bcp.2023.115686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
Cannabinoids are compounds found in the cannabis sativa plant. Cannabinoids, such as delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), have potential therapeutic benefits in various medical conditions. Some can activate the cannabinoid receptors type-1 and -2 (CB1 and CB2), that are part of the endocannabinoid system (ECS), alongside the endocannabinoids and their metabolic enzymes. The ECS regulates physiological and cognitive processes and is a potential therapeutic target for a wide range of health conditions like chronic pain, anxiety, and neurodegenerative diseases. Synthetic cannabinoids, are associated with serious health risks, including addiction, psychosis, and death. Nonetheless, some of these molecules are also being explored for pharmacological applications. Angiogenesis is the process of forming new blood vessels from existing ones, crucial for growth, repair, and tissue maintenance. Dysregulation of this process is associated with several diseases, including cancer, diabetic retinopathy and reproductive pathologies, such as preeclampsia. Recent data suggests that cannabinoids may affect angiogenesis. Here, we reviewed their impact on pro-angiogenic factors, extracellular matrix enzymes and inhibitors, immune-inflammatory responses, angiogenic pathways and functional assays, focusing on the main compounds for each cannabinoid class: THC and CBD for phytocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG) for endocannabinoids and WIN-55, JWH-133, XLR-11, LYR-7 and LYR-8, for the synthetic cannabinoids. Despite conflicting reports about the actions of phytocannabinoids and endocannabinoids on angiogenesis, the ability to modulate the angiogenic process is undoubtedly confirmed. This may open a new therapeutical route for angiogenesis-related pathologies. In addition, synthetic cannabinoids present anti-angiogenic actions in several cell models, hinting their potential as anti-angiogenic drugs.
Collapse
Affiliation(s)
- J Maia
- UCIBIO - Applied Molecular Biosciences Unit, Biochemistry Lab., Biological Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - B M Fonseca
- UCIBIO - Applied Molecular Biosciences Unit, Biochemistry Lab., Biological Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - N Teixeira
- UCIBIO - Applied Molecular Biosciences Unit, Biochemistry Lab., Biological Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - G Correia-da-Silva
- UCIBIO - Applied Molecular Biosciences Unit, Biochemistry Lab., Biological Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
45
|
Wood JS, Gordon WH, Morgan JB, Williamson RT. Cannabicitran: Its unexpected racemic nature and potential origins. Chirality 2023; 35:540-548. [PMID: 37142400 DOI: 10.1002/chir.23571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/06/2023]
Abstract
Cannabicitran is a cannabinoid found in levels up to ~10% in commercial "purified" cannabidiol (CBD) extracts. The structure of this natural product was first reported more than 50 years ago. However, few studies have investigated cannabicitran or its origin despite the rapidly increasing interest in the use of cannabinoids for the treatment of a wide range of physiological conditions. Following on a recent detailed NMR and computational characterization of cannabicitran, our group initiated ECD and TDDFT studies aimed at unequivocally determining the absolute configuration of cannabicitran present in Cannabis sativa extracts. To our surprise, we discovered the natural product was racemic, raising questions around its presumed enzymatic origin. Herein, we report the isolation and absolute configuration of (-)-cannabicitran and (+)-cannabicitran. Several possible scenarios for production of the racemate in the plant and/or during extract processing are discussed.
Collapse
Affiliation(s)
- Jared S Wood
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - William H Gordon
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Jeremy B Morgan
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - R Thomas Williamson
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
46
|
Mishra G, Singh P, Pottoo FH, Javed MN, Zeleke MM, Yimer YS. Nutraceuticals for Fibromyalgia and Neuropathic Pain. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2023:133-191. [DOI: 10.4018/978-1-7998-4120-3.ch007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Both neuropathic pain and fibromyalgia are horrific painful conditions arising due to impairment in the somatosensory nervous system and the musculoskeletal system, respectively. They share some common symptoms like hyperalgesia, allodynia, insomnia, cognitive deficits, and mood disturbances. It is believed that fibromyalgia is the consequence of dysfunction of the central nervous system, autonomic nervous system, imbalance in neurotransmitters, and psychological and emotional stress. Henceforth, these pain syndromes have become a major challenge for healthcare professionals due to their complex etiology and poor availability and effectiveness of the drugs. Notably, the available synthetic drugs possess serious side effects including physical dependence and tolerance. Therefore, researchers are now seeking natural-based therapy for modulating chronic pain conditions. This chapter has been written with the intention of exploring the beneficial effects of various nutraceuticals including herbal dietary supplements in neuropathic pain and fibromyalgia.
Collapse
Affiliation(s)
- Garima Mishra
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Ethiopia
| | - Pradeep Singh
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Ethiopia
| | - Faheem Hyder Pottoo
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Md Noushad Javed
- School of Pharmaceutical Sciences and Research, Jamia Hamdard, India
| | - Mulugeta Molla Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Ethiopia
| | | |
Collapse
|
47
|
Yerofeyeva AV, Pinchuk SV, Rjabceva SN, Molchanova AY. The role of cannabinoid CB1 receptors in the antinociceptive and reparative actions of mesenchymal stem cells in rats with peripheral neuropathic pain. IBRAIN 2023; 9:245-257. [PMID: 37786759 PMCID: PMC10527798 DOI: 10.1002/ibra.12129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 10/04/2023]
Abstract
Mesenchymal stem cells (MSCs) can produce antinociceptive and reparative effects. Presumably, the MSCs-induced antinociception may be partly due to the involvement of the endocannabinoid system. The study aimed to evaluate the antinociceptive and reparative effects of adipose-derived MSCs (ADMSCs) upon pharmacological modulation of cannabinoid CB1 receptor in peripheral tissues or on ADMSCs' membranes in a rat model of peripheral neuropathy. ADMSCs were injected into the area of rat sciatic nerve injury (i) with no additional treatments, (ii) at the tissue CB1 receptor activation by endogenous agonist anandamide (AEA) or blockade with a selective AM251 antagonist; and (iii) preincubated with AEA or AM251. The evaluation of CB1 receptor activity involved analyzing nociceptive responses, gait parameters, and histology. Transplantation of ADMSCs upon activation of CB1 receptors, both on AMSCs' membranes or in the area of nerve injury, accelerated the analgesia and recovery of dynamic gait parameters, abolished static gait disturbances, and promoted the fastest nerve regeneration. Only blockade of CB1 receptors on ADMSCs shortened ADMSCs-induced analgesia and decreased the number of preserved nerve fibers. CB1 receptors on ADMSCs significantly contribute to their pain-relieving and tissue-repairing capabilities by stimulating the growth factors secretion and suppressing the release of pro-inflammatory cytokines. Peripheral CB1 receptors do not significantly influence ADMSC-induced antinociception.
Collapse
Affiliation(s)
| | - Sergey V. Pinchuk
- Institute of Biophysics and Cell EngineeringNational Academy of Sciences of BelarusMinskBelarus
| | | | - Alla Y. Molchanova
- Institute of PhysiologyNational Academy of Sciences of BelarusMinskBelarus
| |
Collapse
|
48
|
Stone HV, Topping FJ, Veiga AX, Pop A, Miles D, Knych D, Warren J, Loft MS, López AM, Silcock A, Mann IS, Millet A. Diastereoselective and Scalable Synthesis of 6-( S)-Hydroxycannabidivarin. J Org Chem 2023; 88:11767-11777. [PMID: 37525362 DOI: 10.1021/acs.joc.3c01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The synthesis of 6-(S)-hydroxycannabidivarin was required to assess its biological activity in the treatment of neurological disorders. A novel and scalable synthesis has been developed where the key step involves a Friedel-Crafts alkylation of phloroglucinol with (1S,2R,5R)-2-hydroxy-2-methyl-5-(prop-1-en-2-yl)cyclohex-3-en-1-ylbenzoate. Careful optimization of the reaction conditions identified trifluoromethanesulfonic acid in isopropyl acetate as the best catalyst/solvent combination, providing optimum regioselectivity, diastereoselectivity, and yield for this step. This enabled the multigram synthesis of 6-(S)-hydroxycannabidivarin in 10 steps from S-(+)-carvone.
Collapse
Affiliation(s)
- Hannah V Stone
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Frederick J Topping
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Alberte X Veiga
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Alexandru Pop
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Daniel Miles
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Dominika Knych
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - John Warren
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Michael S Loft
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Alejandro Montellano López
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Alan Silcock
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Inderjit S Mann
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| | - Antoine Millet
- Discovery and Medicinal Chemistry Department, Jazz Pharmaceuticals Inc., Building 735, Kent Science Park, Sittingbourne ME9 8AG, U.K
| |
Collapse
|
49
|
Le Bozec A, Guédon M, Brugel M, Laurent M, Carlier C, Hettler D, Perrier M, Aubert L, Slimano F, Mongaret C, Bouché O. Prevalence of cannabidiol (CBD) consumption and cancer patients' expectations in one oncology day-hospital: A cross-sectional study and questionnaire validation. J Oncol Pharm Pract 2023:10781552231187136. [PMID: 37437182 DOI: 10.1177/10781552231187136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
INTRODUCTION The growing interest of cannabidiol (CBD) in medical care prompted French health authorities to explore the potential of CBD in cancer-related severe symptoms. This study aimed to assess the prevalence of CBD use among cancer patients with potential associated factors and to measure the cancer patient's health literacy (HL) on CBD consumption. METHODS In a prospective study in oncology day-care hospital including patients from 29 October to 20 December 2021, we collected demographic, biological, and oncological characteristics. Patient CBD HL was measured by the hetero-questionnaire 8-item-CBD HL scale (HLS-8-CBD) whose conception has been validated by a psychometric analysis. RESULTS Among 363 participants, 20 patients (5.5%) reported CBD use. Factors associated with CBD use were: age <60 years (odd ratio = 7.80[1.36-13.32], p < 10-4 versus ≥60 years), smoking history (OR = 5.53[1.81-16.88], p < 0.01), and no smoking cessation (OR = 5.07[1.66-15.46], p < 0.01). CBD use was also associated with a better CBD total HL score than non-users (p-value = 0.02). CONCLUSION Identification of factors associated with CBD use and a relatively high patient CBD HL in CBD users showed that CBD use in cancer patients care represented a new concern and should enhance health professionals to consider CBD with its associated drug-related problems.
Collapse
Affiliation(s)
| | - Marie Guédon
- CHU Reims, Department of Pharmacy, Reims, France
| | - Mathias Brugel
- CHU Reims, Service de Gastroentérologie et Oncologie Digestive, Reims, France
| | | | - Claire Carlier
- CHU Reims, Oncology Day-Hospital, Reims, France
- Institut Jean Godinot, Département d'Oncologie Médicale, Reims, France
| | | | - Marine Perrier
- CHU Reims, Service de Gastroentérologie et Oncologie Digestive, Reims, France
| | - Léa Aubert
- CHU Reims, Oncology Day-Hospital, Reims, France
| | - Florian Slimano
- Université de Reims Champagne-Ardenne, Biospect, CHU Reims, Department of Pharmacy, Reims, France
| | - Céline Mongaret
- Université de Reims Champagne-Ardenne, BIOS, CHU Reims, Department of Pharmacy, Reims, France
| | - Olivier Bouché
- Université de Reims Champagne-Ardenne, Biospect, CHU Reims, Oncology Day-Hospital, Reims, France
| |
Collapse
|
50
|
Stasiłowicz-Krzemień A, Sip S, Szulc P, Cielecka-Piontek J. Determining Antioxidant Activity of Cannabis Leaves Extracts from Different Varieties-Unveiling Nature's Treasure Trove. Antioxidants (Basel) 2023; 12:1390. [PMID: 37507928 PMCID: PMC10376652 DOI: 10.3390/antiox12071390] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Cannabis leaves contain a diverse range of antioxidants, including cannabinoids, flavonoids, and phenolic compounds, which offer significant health benefits. Utilising cannabis leaves as a source of antioxidants presents a cost-effective approach because they are typically discarded during the cultivation of cannabis plants for their seeds or fibres. Therefore, this presented study aimed to assess the antioxidant activity of the leaves of selected hemp cultivars, such as Białobrzeska, Tygra, and Henola, based on the results obtained with the 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid, ferric reducing antioxidant power, cupric reducing antioxidant capacity, and 2,2-Diphenyl-1-picrylhydrazyl assays. The cannabinoid profile was analysed for the antioxidant activity to the contents of cannabidiol (CBD), cannabigerol (CBG), Δ9-tetrahydrocannabinol (Δ9-THC), and cannabichromene (CBC), determined based on chromatographic assays. The following variables were tested: the impact of various extractants (methanol, ethanol, and isopropanol), and their mixtures (50:50, v/v, as well as extraction methods (maceration and ultra-sound-assisted extraction) significant in obtaining hemp extracts characterised by different cannabinoid profiles. The results revealed that the selection of extractant and extraction conditions significantly influenced the active compounds' extraction efficiency and antioxidant activity. Among the tested conditions, ultrasound-assisted extraction using methanol yielded the highest cannabinoid profile: CBD = 184.51 ± 5.61; CBG = 6.10 ± 0.21; Δ9-THC = 0.51 ± 0.01; and CBC = 0.71 ± 0.01 μg/g antioxidant potential in Białobrzeska leaf extracts.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Szymon Sip
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|