1
|
Shah DD, Chorawala MR, Pandya AJ, Kothari N, Prajapati BG, Parekh PS. Advancing the Battle against Cystic Fibrosis: Stem Cell and Gene Therapy Insights. Curr Med Sci 2024; 44:1155-1174. [PMID: 39676146 DOI: 10.1007/s11596-024-2936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/03/2024] [Indexed: 12/17/2024]
Abstract
Cystic fibrosis (CF) is a hereditary disorder characterized by mutations in the CFTR gene, leading to impaired chloride ion transport and subsequent thickening of mucus in various organs, particularly the lungs. Despite significant progress in CF management, current treatments focus mainly on symptom relief and do not address the underlying genetic defects. Stem cell and gene therapies present promising avenues for tackling CF at its root cause. Stem cells, including embryonic, induced pluripotent, mesenchymal, hematopoietic, and lung progenitor cells, offer regenerative potential by differentiating into specialized cells and modulating immune responses. Similarly, gene therapy aims to correct CFTR gene mutations by delivering functional copies of the gene into affected cells. Various approaches, such as viral and nonviral vectors, gene editing with CRISPR-Cas9, small interfering RNA (siRNA) therapy, and mRNA therapy, are being explored to achieve gene correction. Despite their potential, challenges such as safety concerns, ethical considerations, delivery system optimization, and long-term efficacy remain. This review provides a comprehensive overview of the current understanding of CF pathophysiology, the rationale for exploring stem cell and gene therapies, the types of therapies available, their mechanisms of action, and the challenges and future directions in the field. By addressing these challenges, stem cell and gene therapies hold promise for transforming CF management and improving the quality of life of affected individuals.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Aanshi J Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, 384012, India.
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | | |
Collapse
|
2
|
Kohn A, Herriges MJ, Basak P, Ma L, Thapa BR, Kotton DN, Hawkins FJ. Targeted pre-conditioning and cell transplantation in the murine lower respiratory tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.622518. [PMID: 39605510 PMCID: PMC11601482 DOI: 10.1101/2024.11.12.622518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Transplantation of airway basal stem cells could achieve a durable cure for genetic diseases of the airway, such as cystic fibrosis and primary ciliary dyskinesia. Recent work demonstrated the potential of primary- and pluripotent stem cell (PSC)-derived basal cells to efficiently engrai into the mouse trachea aier injury. However, there are many hurdles to overcome in translating these approaches to humans including developing safe and efficient methods for delivery in larger animal models. We propose a model which targets preconditioning and cell-delivery to the intrapulmonary airways utilizing a micro- bronchoscope for delivery. The detergent polidocanol was adapted for distal lung pre-conditioning, inducing intrapulmonary airway epithelial denudation by 5 and 24-hours post-delivery. While initial re- epithelialization of airways occurred later than tracheas, complete repair was observed within 7-days. Both PSC-derived and primary basal cells delivered via micro-bronchoscope post-polidocanol injury engraied in tracheas and intrapulmonary airways, respectively. Transplanted cells differentiated into ciliated and secretory lineages while maintaining a population of basal cells. These findings demonstrate the utility of bronchoscopically targeted pre-conditioning and cell delivery to the conducting intra- pulmonary airways, providing an important framework for pre-clinical translation of approaches for engineered airway epithelial regeneration.
Collapse
|
3
|
Serna Villa V, Ren X. Lung Progenitor and Stem Cell Transplantation as a Potential Regenerative Therapy for Lung Diseases. Transplantation 2024; 108:e282-e291. [PMID: 38416452 DOI: 10.1097/tp.0000000000004959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Chronic lung diseases are debilitating illnesses ranking among the top causes of death globally. Currently, clinically available therapeutic options capable of curing chronic lung diseases are limited to lung transplantation, which is hindered by donor organ shortage. This highlights the urgent need for alternative strategies to repair damaged lung tissues. Stem cell transplantation has emerged as a promising avenue for regenerative treatment of the lung, which involves delivery of healthy lung epithelial progenitor cells that subsequently engraft in the injured tissue and further differentiate to reconstitute the functional respiratory epithelium. These transplanted progenitor cells possess the remarkable ability to self-renew, thereby offering the potential for sustained long-term treatment effects. Notably, the transplantation of basal cells, the airway stem cells, holds the promise for rehabilitating airway injuries resulting from environmental factors or genetic conditions such as cystic fibrosis. Similarly, for diseases affecting the alveoli, alveolar type II cells have garnered interest as a viable alveolar stem cell source for restoring the lung parenchyma from genetic or environmentally induced dysfunctions. Expanding upon these advancements, the use of induced pluripotent stem cells to derive lung progenitor cells for transplantation offers advantages such as scalability and patient specificity. In this review, we comprehensively explore the progress made in lung stem cell transplantation, providing insights into the current state of the field and its future prospects.
Collapse
Affiliation(s)
- Vanessa Serna Villa
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | | |
Collapse
|
4
|
Hynds RE, Magin CM, Ikonomou L, Aschner Y, Beers MF, Burgess JK, Heise RL, Hume PS, Krasnodembskaya AD, Mei SHJ, Misharin AV, Park JA, Reynolds SD, Tschumperlin DJ, Tanneberger AE, Vaidyanathan S, Waters CM, Zettler PJ, Weiss DJ, Ryan AL. Stem cells, cell therapies, and bioengineering in lung biology and diseases 2023. Am J Physiol Lung Cell Mol Physiol 2024; 327:L327-L340. [PMID: 38772903 PMCID: PMC11442098 DOI: 10.1152/ajplung.00052.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
Repair and regeneration of a diseased lung using stem cells or bioengineered tissues is an exciting therapeutic approach for a variety of lung diseases and critical illnesses. Over the past decade, increasing evidence from preclinical models suggests that mesenchymal stromal cells, which are not normally resident in the lung, can be used to modulate immune responses after injury, but there have been challenges in translating these promising findings to the clinic. In parallel, there has been a surge in bioengineering studies investigating the use of artificial and acellular lung matrices as scaffolds for three-dimensional lung or airway regeneration, with some recent attempts of transplantation in large animal models. The combination of these studies with those involving stem cells, induced pluripotent stem cell derivatives, and/or cell therapies is a promising and rapidly developing research area. These studies have been further paralleled by significant increases in our understanding of the molecular and cellular events by which endogenous lung stem and/or progenitor cells arise during lung development and participate in normal and pathological remodeling after lung injury. For the 2023 Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases Conference, scientific symposia were chosen to reflect the most cutting-edge advances in these fields. Sessions focused on the integration of "omics" technologies with function, the influence of immune cells on regeneration, and the role of the extracellular matrix in regeneration. The necessity for basic science studies to enhance fundamental understanding of lung regeneration and to design innovative translational studies was reinforced throughout the conference.
Collapse
Affiliation(s)
- Robert E Hynds
- Epithelial Cell Biology in ENT Research Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Chelsea M Magin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Laertis Ikonomou
- Department of Oral Biology, University at Buffalo, State University of New York, Buffalo, New York, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York, United States
| | - Yael Aschner
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine and PENN-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Janette K Burgess
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Patrick S Hume
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Anna D Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Shirley H J Mei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Jin-Ah Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States
| | - Susan D Reynolds
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States
| | - Alicia E Tanneberger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sriram Vaidyanathan
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Christopher M Waters
- Department of Physiology and Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Patricia J Zettler
- Moritz College of Law, Drug Enforcement and Policy Center, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, Burlington, Vermont, United States
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
5
|
Upadhyay K, Nigam N, Gupta S, Tripathi SK, Jain A, Puri B. Current and future therapeutic approaches of CFTR and airway dysbiosis in an era of personalized medicine. J Family Med Prim Care 2024; 13:2200-2208. [PMID: 39027867 PMCID: PMC11254065 DOI: 10.4103/jfmpc.jfmpc_1085_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 07/20/2024] Open
Abstract
Cystic fibrosis (CF) is a life-threatening genetic disorder caused by mutations in the CFTR gene. This leads to a defective protein that impairs chloride transport, resulting in thick mucus buildup and chronic inflammation in the airways. The review discusses current and future therapeutic approaches for CFTR dysfunction and airway dysbiosis in the era of personalized medicine. Personalized medicine has revolutionized CF treatment with the advent of CFTR modulator therapies that target specific genetic mutations. These therapies have significantly improved patient outcomes, slowing disease progression, and enhancing quality of life. It also highlights the growing recognition of the airway microbiome's role in CF pathogenesis and discusses strategies to modulate the microbiome to further improve patient outcomes. This review discusses various therapeutic approaches for cystic fibrosis (CFTR) mutations, including adenovirus gene treatments, nonviral vectors, CRISPR/cas9 methods, RNA replacement, antisense-oligonucleotide-mediated DNA-based therapies, and cell-based therapies. It also introduces airway dysbiosis with CF and how microbes influence the lungs. The review highlights the importance of understanding the cellular and molecular causes of CF and the development of personalized medicine to improve quality of life and health outcomes.
Collapse
Affiliation(s)
- Kirti Upadhyay
- Cytogenetics Lab, Centre for Advance Research, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Nitu Nigam
- Cytogenetics Lab, Centre for Advance Research, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Surbhi Gupta
- Cytogenetics Lab, Centre for Advance Research, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Surya Kant Tripathi
- Department of Respiratory Medicine, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Amita Jain
- Department of Microbiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Bipin Puri
- King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Turuvekere Vittala Murthy N, Vlasova K, Renner J, Jozic A, Sahay G. A new era of targeting cystic fibrosis with non-viral delivery of genomic medicines. Adv Drug Deliv Rev 2024; 209:115305. [PMID: 38626860 DOI: 10.1016/j.addr.2024.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Cystic fibrosis (CF) is a complex genetic respiratory disorder that necessitates innovative gene delivery strategies to address the mutations in the gene. This review delves into the promises and challenges of non-viral gene delivery for CF therapy and explores strategies to overcome these hurdles. Several emerging technologies and nucleic acid cargos for CF gene therapy are discussed. Novel formulation approaches including lipid and polymeric nanoparticles promise enhanced delivery through the CF mucus barrier, augmenting the potential of non-viral strategies. Additionally, safety considerations and regulatory perspectives play a crucial role in navigating the path toward clinical translation of gene therapy.
Collapse
Affiliation(s)
| | - Kseniia Vlasova
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Jonas Renner
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201, USA; Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
7
|
Selvaraj S, Feist WN, Viel S, Vaidyanathan S, Dudek AM, Gastou M, Rockwood SJ, Ekman FK, Oseghale AR, Xu L, Pavel-Dinu M, Luna SE, Cromer MK, Sayana R, Gomez-Ospina N, Porteus MH. High-efficiency transgene integration by homology-directed repair in human primary cells using DNA-PKcs inhibition. Nat Biotechnol 2024; 42:731-744. [PMID: 37537500 DOI: 10.1038/s41587-023-01888-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Therapeutic applications of nuclease-based genome editing would benefit from improved methods for transgene integration via homology-directed repair (HDR). To improve HDR efficiency, we screened six small-molecule inhibitors of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key protein in the alternative repair pathway of non-homologous end joining (NHEJ), which generates genomic insertions/deletions (INDELs). From this screen, we identified AZD7648 as the most potent compound. The use of AZD7648 significantly increased HDR (up to 50-fold) and concomitantly decreased INDELs across different genomic loci in various therapeutically relevant primary human cell types. In all cases, the ratio of HDR to INDELs markedly increased, and, in certain situations, INDEL-free high-frequency (>50%) targeted integration was achieved. This approach has the potential to improve the therapeutic efficacy of cell-based therapies and broaden the use of targeted integration as a research tool.
Collapse
Affiliation(s)
- Sridhar Selvaraj
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - William N Feist
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Sebastien Viel
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Immunology Department, Lyon Sud University Hospital, Pierre-Bénite, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Sriram Vaidyanathan
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Amanda M Dudek
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Marc Gastou
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Sarah J Rockwood
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Freja K Ekman
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Aluya R Oseghale
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Liwen Xu
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Mara Pavel-Dinu
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Sofia E Luna
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - M Kyle Cromer
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ruhi Sayana
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Lau CH, Rouhani MJ, Maughan EF, Orr JC, Kolluri KK, Pearce DR, Haughey EK, Sutton L, Flatau S, Balboa PL, Bageta ML, O'Callaghan C, Smith CM, Janes SM, Hewitt R, Petrof G, Martinez AE, McGrath JA, Butler CR, Hynds RE. Lentiviral expression of wild-type LAMA3A restores cell adhesion in airway basal cells from children with epidermolysis bullosa. Mol Ther 2024; 32:1497-1509. [PMID: 38429928 PMCID: PMC11081864 DOI: 10.1016/j.ymthe.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
The hallmark of epidermolysis bullosa (EB) is fragile attachment of epithelia due to genetic variants in cell adhesion genes. We describe 16 EB patients treated in the ear, nose, and throat department of a tertiary pediatric hospital linked to the United Kingdom's national EB unit between 1992 and 2023. Patients suffered a high degree of morbidity and mortality from laryngotracheal stenosis. Variants in laminin subunit alpha-3 (LAMA3) were found in 10/15 patients where genotype was available. LAMA3 encodes a subunit of the laminin-332 heterotrimeric extracellular matrix protein complex and is expressed by airway epithelial basal stem cells. We investigated the benefit of restoring wild-type LAMA3 expression in primary EB patient-derived basal cell cultures. EB basal cells demonstrated weak adhesion to cell culture substrates, but could otherwise be expanded similarly to non-EB basal cells. In vitro lentiviral overexpression of LAMA3A in EB basal cells enabled them to differentiate in air-liquid interface cultures, producing cilia with normal ciliary beat frequency. Moreover, transduction restored cell adhesion to levels comparable to a non-EB donor culture. These data provide proof of concept for a combined cell and gene therapy approach to treat airway disease in LAMA3-affected EB.
Collapse
Affiliation(s)
- Chun Hang Lau
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, UCL Great Ormond Street Institute of Child Health, University College London, 20c Guilford Street, London WC1N 1DZ, UK
| | - Maral J Rouhani
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK; Ear, Nose, and Throat Department, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| | - Elizabeth F Maughan
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, UCL Great Ormond Street Institute of Child Health, University College London, 20c Guilford Street, London WC1N 1DZ, UK; Ear, Nose, and Throat Department, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| | - Jessica C Orr
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, UCL Great Ormond Street Institute of Child Health, University College London, 20c Guilford Street, London WC1N 1DZ, UK; Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Krishna K Kolluri
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - David R Pearce
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Elizabeth K Haughey
- Infection, Immunity, and Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Liam Sutton
- Ear, Nose, and Throat Department, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| | - Sam Flatau
- Ear, Nose, and Throat Department, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| | - Pablo Lopez Balboa
- Department of Dermatology, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| | - Maria Laura Bageta
- Department of Dermatology, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| | - Christopher O'Callaghan
- Infection, Immunity, and Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Claire M Smith
- Infection, Immunity, and Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Richard Hewitt
- Ear, Nose, and Throat Department, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| | - Gabriela Petrof
- Department of Dermatology, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| | - Anna E Martinez
- Department of Dermatology, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| | - John A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, St Thomas Street, London SE1 9RT, UK
| | - Colin R Butler
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, UCL Great Ormond Street Institute of Child Health, University College London, 20c Guilford Street, London WC1N 1DZ, UK; Ear, Nose, and Throat Department, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK.
| | - Robert E Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, UCL Great Ormond Street Institute of Child Health, University College London, 20c Guilford Street, London WC1N 1DZ, UK; UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
9
|
Bardin E, Pranke I, Hinzpeter A, Sermet-Gaudelus I. [Therapeutics in cystic fibrosis: Clinical revolution and new challenges]. Med Sci (Paris) 2024; 40:258-267. [PMID: 38520101 DOI: 10.1051/medsci/2024014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024] Open
Abstract
Over time, cystic fibrosis has become a model of synergy between research in pathophysiology and cell biology, and clinical advances. Therapies targeting the CFTR protein, in particular CFTR modulators, have transformed the prognosis of patients, bringing the hope of a normal life with the possibility of starting a family and growing old, challenging established statistics. However, patients are not yet cured, and side effects remain insufficiently documented. Epidemiological changes create new challenges for the management of cystic fibrosis. Approximately 10 % of patients still lack a therapeutic option. The community of researchers, pharmaceutical industries, patient associations, and health authorities remains committed to monitor the long-term effects of these still poorly characterised treatments, and to explore new pharmacological approaches, such as gene therapies.
Collapse
Affiliation(s)
- Emmanuelle Bardin
- Université Paris Cité, Inserm U1151, Institut Necker Enfants Malades, Paris, France
| | - Iwona Pranke
- Université Paris Cité, Inserm U1151, Institut Necker Enfants Malades, Paris, France
| | - Alexandre Hinzpeter
- Université Paris Cité, Inserm U1151, Institut Necker Enfants Malades, Paris, France
| | | |
Collapse
|
10
|
Lee RE, Mascenik TM, Major SC, Galiger JR, Bulik-Sullivan E, Siesser PF, Lewis CA, Bear JE, Le Suer JA, Hawkins FJ, Pickles RJ, Randell SH. Viral airway injury promotes cell engraftment in an in vitro model of cystic fibrosis cell therapy. Am J Physiol Lung Cell Mol Physiol 2024; 326:L226-L238. [PMID: 38150545 PMCID: PMC11280688 DOI: 10.1152/ajplung.00421.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023] Open
Abstract
Cell therapy is a potential treatment for cystic fibrosis (CF). However, cell engraftment into the airway epithelium is challenging. Here, we model cell engraftment in vitro using the air-liquid interface (ALI) culture system by injuring well-differentiated CF ALI cultures and delivering non-CF cells at the time of peak injury. Engraftment efficiency was quantified by measuring chimerism by droplet digital PCR and functional ion transport in Ussing chambers. Using this model, we found that human bronchial epithelial cells (HBECs) engraft more efficiently when they are cultured by conditionally reprogrammed cell (CRC) culture methods. Cell engraftment into the airway epithelium requires airway injury, but the extent of injury needed is unknown. We compared three injury models and determined that severe injury with partial epithelial denudation facilitates long-term cell engraftment and functional CFTR recovery up to 20% of wildtype function. The airway epithelium promptly regenerates in response to injury, creating competition for space and posing a barrier to effective engraftment. We examined competition dynamics by time-lapse confocal imaging and found that delivered cells accelerate airway regeneration by incorporating into the epithelium. Irradiating the repairing epithelium granted engrafting cells a competitive advantage by diminishing resident stem cell proliferation. Intentionally, causing severe injury to the lungs of people with CF would be dangerous. However, naturally occurring events like viral infection can induce similar epithelial damage with patches of denuded epithelium. We found that viral preconditioning promoted effective engraftment of cells primed for viral resistance.NEW & NOTEWORTHY Cell therapy is a potential treatment for cystic fibrosis (CF). Here, we model cell engraftment by injuring CF air-liquid interface cultures and delivering non-CF cells. Successful engraftment required severe epithelial injury. Intentionally injuring the lungs to this extent would be dangerous. However, naturally occurring events like viral infection induce similar epithelial damage. We found that viral preconditioning promoted the engraftment of cells primed for viral resistance leading to CFTR functional recovery to 20% of the wildtype.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Teresa M Mascenik
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Sidra C Major
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jacob R Galiger
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Emily Bulik-Sullivan
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Priscila F Siesser
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Catherine A Lewis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jake A Le Suer
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, United States
- Department of Medicine, The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Finn J Hawkins
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, United States
- Department of Medicine, The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Raymond J Pickles
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Scott H Randell
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
11
|
Zhang M, Lu H, Xie L, Liu X, Cun D, Yang M. Inhaled RNA drugs to treat lung diseases: Disease-related cells and nano-bio interactions. Adv Drug Deliv Rev 2023; 203:115144. [PMID: 37995899 DOI: 10.1016/j.addr.2023.115144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
In recent years, RNA-based therapies have gained much attention as biomedicines due to their remarkable therapeutic effects with high specificity and potency. Lung diseases offer a variety of currently undruggable but attractive targets that could potentially be treated with RNA drugs. Inhaled RNA drugs for the treatment of lung diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, and acute respiratory distress syndrome, have attracted more and more attention. A variety of novel nanoformulations have been designed and attempted for the delivery of RNA drugs to the lung via inhalation. However, the delivery of RNA drugs via inhalation poses several challenges. It includes protection of the stability of RNA molecules, overcoming biological barriers such as mucus and cell membrane to the delivery of RNA molecules to the targeted cytoplasm, escaping endosomal entrapment, and circumventing unwanted immune response etc. To address these challenges, ongoing researches focus on developing innovative nanoparticles to enhance the stability of RNA molecules, improve cellular targeting, enhance cellular uptake and endosomal escape to achieve precise delivery of RNA drugs to the intended lung cells while avoiding unwanted nano-bio interactions and off-target effects. The present review first addresses the pathologic hallmarks of different lung diseases, disease-related cell types in the lung, and promising therapeutic targets in these lung cells. Subsequently we highlight the importance of the nano-bio interactions in the lung that need to be addressed to realize disease-related cell-specific delivery of inhaled RNA drugs. This is followed by a review on the physical and chemical characteristics of inhaled nanoformulations that influence the nano-bio interactions with a focus on surface functionalization. Finally, the challenges in the development of inhaled nanomedicines and some key aspects that need to be considered in the development of future inhaled RNA drugs are discussed.
Collapse
Affiliation(s)
- Mengjun Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haoyu Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Liangkun Xie
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Xulu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China.
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
12
|
Li B, Manan RS, Liang SQ, Gordon A, Jiang A, Varley A, Gao G, Langer R, Xue W, Anderson D. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat Biotechnol 2023; 41:1410-1415. [PMID: 36997680 PMCID: PMC10544676 DOI: 10.1038/s41587-023-01679-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/18/2023] [Indexed: 04/07/2023]
Abstract
The expanding applications of nonviral genomic medicines in the lung remain restricted by delivery challenges. Here, leveraging a high-throughput platform, we synthesize and screen a combinatorial library of biodegradable ionizable lipids to build inhalable delivery vehicles for messenger RNA and CRISPR-Cas9 gene editors. Lead lipid nanoparticles are amenable for repeated intratracheal dosing and could achieve efficient gene editing in lung epithelium, providing avenues for gene therapy of congenital lung diseases.
Collapse
Affiliation(s)
- Bowen Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Rajith Singh Manan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shun-Qing Liang
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Akiva Gordon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allen Jiang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew Varley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Guangping Gao
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Daniel Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
13
|
Ma L, Thapa BR, Le Suer JA, Tilston-Lünel A, Herriges MJ, Berical A, Beermann ML, Wang F, Bawa PS, Kohn A, Ysasi AB, Kiyokawa H, Matte TM, Randell SH, Varelas X, Hawkins FJ, Kotton DN. Airway stem cell reconstitution by the transplantation of primary or pluripotent stem cell-derived basal cells. Cell Stem Cell 2023; 30:1199-1216.e7. [PMID: 37625411 PMCID: PMC10528754 DOI: 10.1016/j.stem.2023.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/13/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
Life-long reconstitution of a tissue's resident stem cell compartment with engrafted cells has the potential to durably replenish organ function. Here, we demonstrate the engraftment of the airway epithelial stem cell compartment via intra-airway transplantation of mouse or human primary and pluripotent stem cell (PSC)-derived airway basal cells (BCs). Murine primary or PSC-derived BCs transplanted into polidocanol-injured syngeneic recipients give rise for at least two years to progeny that stably display the morphologic, molecular, and functional phenotypes of airway epithelia. The engrafted basal-like cells retain extensive self-renewal potential, evident by the capacity to reconstitute the tracheal epithelium through seven generations of secondary transplantation. Using the same approach, human primary or PSC-derived BCs transplanted into NOD scid gamma (NSG) recipient mice similarly display multilineage airway epithelial differentiation in vivo. Our results may provide a step toward potential future syngeneic cell-based therapy for patients with diseases resulting from airway epithelial cell damage or dysfunction.
Collapse
Affiliation(s)
- Liang Ma
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Bibek R Thapa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biology, Boston University, Boston, MA 02215, USA
| | - Jake A Le Suer
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Andrew Tilston-Lünel
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael J Herriges
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Andrew Berical
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mary Lou Beermann
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Pushpinder S Bawa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Anat Kohn
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alexandra B Ysasi
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hirofumi Kiyokawa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Taylor M Matte
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Scott H Randell
- Marsico Lung Institute/Cystic Fibrosis Center, Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Finn J Hawkins
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
14
|
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disease caused by variants in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. CFTR dysfunction results in abnormal chloride and bicarbonate transport in epithelial cells, leading to a multiorgan disease dominated by respiratory and digestive manifestations. The respiratory disease, which is characterized by airway mucus plugging, chronic bacterial infection and progressive development of bronchiectasis, may lead to chronic respiratory failure, which is the main cause of premature death in people with CF. Over the past 50 years, major progress has been obtained by implementing multidisciplinary care, including nutritional support, airway clearance techniques and antibiotics in specialized CF centers. The past 10 years have further seen the progressive development of oral medications, called CFTR modulators, that partially restore ion transport and lead to a major improvement in clinical manifestations and lung function, presumably resulting in longer survival. Although an increasing proportion of people with CF are being treated with CFTR modulators, challenges remain regarding access to CFTR modulators due to their high cost, and their lack of marketing approval and/or effectiveness in people with rare CFTR variants. The anticipated increase in the number of adults with CF and their aging also challenge the current organization of CF care. The purpose of this review article is to describe current status and future perspective of CF disease and care.
Collapse
Affiliation(s)
- Isabelle Fajac
- Department of Respiratory Medicine and National Cystic Fibrosis Reference Centre, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 27 rue du faubourg Saint-Jacques, 75014 Paris, France; Université Paris Cité, Inserm U1016, Institut Cochin, 24 rue du faubourg Saint-Jacques, 75014 Paris, France; ERN-LUNG, CF Core Network, Frankfurt, Germany.
| | - Pierre-Régis Burgel
- Department of Respiratory Medicine and National Cystic Fibrosis Reference Centre, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 27 rue du faubourg Saint-Jacques, 75014 Paris, France; Université Paris Cité, Inserm U1016, Institut Cochin, 24 rue du faubourg Saint-Jacques, 75014 Paris, France; ERN-LUNG, CF Core Network, Frankfurt, Germany.
| |
Collapse
|
15
|
Hsiung T, James L, Chang SH, Geraci TC, Angel LF, Chan JCY. Advances in lung bioengineering: Where we are, where we need to go, and how to get there. FRONTIERS IN TRANSPLANTATION 2023; 2:1147595. [PMID: 38993882 PMCID: PMC11235378 DOI: 10.3389/frtra.2023.1147595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 07/13/2024]
Abstract
Lung transplantation is the only potentially curative treatment for end-stage lung failure and successfully improves both long-term survival and quality of life. However, lung transplantation is limited by the shortage of suitable donor lungs. This discrepancy in organ supply and demand has prompted researchers to seek alternative therapies for end-stage lung failure. Tissue engineering (bioengineering) organs has become an attractive and promising avenue of research, allowing for the customized production of organs on demand, with potentially perfect biocompatibility. While breakthroughs in tissue engineering have shown feasibility in practice, they have also uncovered challenges in solid organ applications due to the need not only for structural support, but also vascular membrane integrity and gas exchange. This requires a complex engineered interaction of multiple cell types in precise anatomical locations. In this article, we discuss the process of creating bioengineered lungs and the challenges inherent therein. We summarize the relevant literature for selecting appropriate lung scaffolds, creating decellularization protocols, and using bioreactors. The development of completely artificial lung substitutes will also be reviewed. Lastly, we describe the state of current research, as well as future studies required for bioengineered lungs to become a realistic therapeutic modality for end-stage lung disease. Applications of bioengineering may allow for earlier intervention in end-stage lung disease and have the potential to not only halt organ failure, but also significantly reverse disease progression.
Collapse
Affiliation(s)
- Tiffany Hsiung
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, United States
| | - Les James
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, United States
| | - Stephanie H Chang
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, United States
- Department of Cardiothoracic Surgery, NYU Transplant Institute, NYU Langone Health, New York, NY, United States
| | - Travis C Geraci
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, United States
- Department of Cardiothoracic Surgery, NYU Transplant Institute, NYU Langone Health, New York, NY, United States
| | - Luis F Angel
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, United States
- Department of Cardiothoracic Surgery, NYU Transplant Institute, NYU Langone Health, New York, NY, United States
| | - Justin C Y Chan
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, United States
- Department of Cardiothoracic Surgery, NYU Transplant Institute, NYU Langone Health, New York, NY, United States
| |
Collapse
|
16
|
Egan ME. Non-Modulator Therapies: Developing a Therapy for Every Cystic Fibrosis Patient. Clin Chest Med 2022; 43:717-725. [PMID: 36344076 DOI: 10.1016/j.ccm.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy brings hope to most patients with cystic fibrosis (CF), but not all. For approximately 12% of CF patients with premature termination codon mutations, large deletions, insertions, and frameshifts, the CFTR modulator therapy is not effective. Many believe that genetic-based therapies such as RNA therapies, DNA therapies, and gene editing technologies will be needed to treat mutations that are not responsive to modulator therapy. Delivery of these therapeutic agents to affected cells is the major challenge that will need to be overcome if we are to harness the power of these emerging therapies for the treatment of CF.
Collapse
Affiliation(s)
- Marie E Egan
- Division of Pulmonary Allergy Immunology Sleep Medicine, Department of Pediatrics, Pediatric Pulmonary Allergy Immunology and Sleep Medicine, Yale Cystic Fibrosis Center, School of Medicine, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520, USA.
| |
Collapse
|
17
|
Abstract
Acute and chronic lung diseases are a leading cause of morbidity and mortality globally. Unfortunately, these diseases are increasing in frequency and we have limited treatment options for severe lung diseases. New therapies are needed that not only treat symptoms or slow disease progression, but also enable the regeneration of functional lung tissue. Both airways and alveoli contain populations of epithelial stem cells with the potential to self-renew and produce differentiated progeny. Understanding the mechanisms that determine the behaviour of these cells, and their interactions with their niches, will allow future generations of respiratory therapies that protect the lungs from disease onset, promote regeneration from endogenous stem cells or enable regeneration through the delivery of exogenous cells. This review summarises progress towards each of these goals, highlighting the challenges and opportunities of developing pro-regenerative (bio)pharmaceutical, gene and cell therapies for respiratory diseases.
Collapse
Affiliation(s)
- Robert E. Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1DZ, UK
- UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| |
Collapse
|
18
|
Sui H, Xu X, Su Y, Gong Z, Yao M, Liu X, Zhang T, Jiang Z, Bai T, Wang J, Zhang J, Xu C, Luo M. Gene therapy for cystic fibrosis: Challenges and prospects. Front Pharmacol 2022; 13:1015926. [PMID: 36304167 PMCID: PMC9592762 DOI: 10.3389/fphar.2022.1015926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Cystic fibrosis (CF) is a life-threatening autosomal-recessive disease caused by mutations in a single gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). CF effects multiple organs, and lung disease is the primary cause of mortality. The median age at death from CF is in the early forties. CF was one of the first diseases to be considered for gene therapy, and efforts focused on treating CF lung disease began shortly after the CFTR gene was identified in 1989. However, despite the quickly established proof-of-concept for CFTR gene transfer in vitro and in clinical trials in 1990s, to date, 36 CF gene therapy clinical trials involving ∼600 patients with CF have yet to achieve their desired outcomes. The long journey to pursue gene therapy as a cure for CF encountered more difficulties than originally anticipated, but immense progress has been made in the past decade in the developments of next generation airway transduction viral vectors and CF animal models that reproduced human CF disease phenotypes. In this review, we look back at the history for the lessons learned from previous clinical trials and summarize the recent advances in the research for CF gene therapy, including the emerging CRISPR-based gene editing strategies. We also discuss the airway transduction vectors, large animal CF models, the complexity of CF pathogenesis and heterogeneity of CFTR expression in airway epithelium, which are the major challenges to the implementation of a successful CF gene therapy, and highlight the future opportunities and prospects.
Collapse
Affiliation(s)
- Hongshu Sui
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Xinghua Xu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Yanping Su
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Zhaoqing Gong
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Minhua Yao
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xiaocui Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ting Zhang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ziyao Jiang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Tianhao Bai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Junzuo Wang
- The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Jingjun Zhang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Changlong Xu
- The Reproductive Medical Center of Nanning Second People’s Hospital, Nanning, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Mingjiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| |
Collapse
|
19
|
Fajac I, Sermet-Gaudelus I. Emerging medicines to improve the basic defect in cystic fibrosis. Expert Opin Emerg Drugs 2022; 27:229-239. [PMID: 35731915 DOI: 10.1080/14728214.2022.2092612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a severe autosomal recessive disorder featuring exocrine pancreatic insufficiency and bronchiectasis. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) encoding the CFTR protein, which is an anion channel. CF treatment has long been based only on intensive symptomatic treatment. During the last 10 years, new drugs called CFTR modulators aiming at restoring the CFTR protein function have become available, and they will benefit around 80% of patients with CF. However, more than 10% of CFTR mutations do not produce any CFTR protein for CFTR modulators to act upon. AREAS COVERED The development of CFTR modulators and their effectiveness in patients with CF will be reviewed. Then, the different strategies to treat patients bearing mutations non-responsive to CFTR modulators will be covered. They comprise DNA- and RNA-based therapies, readthrough agents for nonsense mutations, and cell-based therapies. EXPERT OPINION CF disease has changed tremendously since the advent of CFTR modulators. For mutations that are not amenable to CFTR modulators, new approaches that are being developed benefit from advances in molecular therapy, but many challenges will have to be solved before they can be safely translated to patients.
Collapse
Affiliation(s)
- Isabelle Fajac
- AP-HP. Centre - Université Paris Cité; Hôpital Cochin, Centre de Référence Maladie Rare- Mucoviscidose, Paris, France.,Faculté de Médecine, Université de Paris, Paris, France
| | - Isabelle Sermet-Gaudelus
- Faculté de Médecine, Université de Paris, Paris, France.,Institut Necker Enfants Malades, INSERM U 1151, Paris, France.,AP-HP. Centre - Université Paris Cité; Hôpital Necker Enfants Malades, Centre de Référence Maladie Rare - Mucoviscidose, Paris, France
| |
Collapse
|
20
|
Ting AE, Baker EK, Champagne J, Desai TJ, Dos Santos CC, Heijink IH, Itescu S, Le Blanc K, Matthay MA, McAuley DF, McIntyre L, Mei SHJ, Parekkadan B, Rocco PRM, Sheridan J, Thébaud B, Weiss DJ. Proceedings of the ISCT scientific signature series symposium, "Advances in cell and gene therapies for lung diseases and critical illnesses": International Society for Cell & Gene Therapy, Burlington VT, US, July 16, 2021. Cytotherapy 2022; 24:774-788. [PMID: 35613962 DOI: 10.1016/j.jcyt.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022]
Abstract
The ISCT Scientific Signature Series Symposium "Advances in Cell and Gene Therapies for Lung Diseases and Critical Illnesses" was held as an independent symposium in conjunction with the biennial meeting, "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases," which took place July 12-15, 2021, at the University of Vermont. This is the third Respiratory System-based Signature Series event; the first 2, "Tracheal Bioengineering, the Next Steps" and "Cellular Therapies for Pulmonary Diseases and Critical Illnesses: State of the Art of European Science," took place in 2014 and 2015, respectively. Cell- and gene-based therapies for respiratory diseases and critical illnesses continue to be a source of great promise and opportunity. This reflects ongoing advancements in understanding of the mechanisms by which cell-based therapies, particularly those using mesenchymal stromal cells (MSCs), can mitigate different lung injuries and the increasing sophistication with which preclinical data is translated into clinical investigations. This also reflects continuing evolution in gene transfer vectors, including those designed for in situ gene editing in parallel with those targeting gene or cell replacement. Therefore, this symposium convened global thought leaders in a forum designed to catalyze communication and collaboration to bring the greatest possible innovation and value of cell- and gene-based therapies for patients with respiratory diseases and critical illnesses.
Collapse
Affiliation(s)
| | - Elizabeth K Baker
- Newborn Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia
| | | | - Tushar J Desai
- Stanford University School of Medicine, Stanford, California, USA
| | - Claudia C Dos Santos
- Interdepartmental Division of Critical Care, Department of Medicine and the Keenan Center for Biomedical Research, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Irene H Heijink
- Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
| | | | - Katarina Le Blanc
- Department of Laboratory Medicine, Karolinska Institutet, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Michael A Matthay
- University of San Francisco, San Francisco, California, United States
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, NI, UK
| | | | - Shirley H J Mei
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Biju Parekkadan
- Sentien Biotechnologies, Lexington, Massachusetts, USA; Rutgers University, Piscataway, New Jersey, USA
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Daniel J Weiss
- University of Vermont College of Medicine, Burlington, Vermont, USA.
| |
Collapse
|
21
|
Berical A, Lee RE, Lu J, Beermann ML, Le Suer JA, Mithal A, Thomas D, Ranallo N, Peasley M, Stuffer A, Bukis K, Seymour R, Harrington J, Coote K, Valley H, Hurley K, McNally P, Mostoslavsky G, Mahoney J, Randell SH, Hawkins FJ. A multimodal iPSC platform for cystic fibrosis drug testing. Nat Commun 2022; 13:4270. [PMID: 35906215 PMCID: PMC9338271 DOI: 10.1038/s41467-022-31854-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Cystic fibrosis is a monogenic lung disease caused by dysfunction of the cystic fibrosis transmembrane conductance regulator anion channel, resulting in significant morbidity and mortality. The progress in elucidating the role of CFTR using established animal and cell-based models led to the recent discovery of effective modulators for most individuals with CF. However, a subset of individuals with CF do not respond to these modulators and there is an urgent need to develop novel therapeutic strategies. In this study, we generate a panel of airway epithelial cells using induced pluripotent stem cells from individuals with common or rare CFTR variants representative of three distinct classes of CFTR dysfunction. To measure CFTR function we adapt two established in vitro assays for use in induced pluripotent stem cell-derived airway cells. In both a 3-D spheroid assay using forskolin-induced swelling as well as planar cultures composed of polarized mucociliary airway epithelial cells, we detect genotype-specific differences in CFTR baseline function and response to CFTR modulators. These results demonstrate the potential of the human induced pluripotent stem cell platform as a research tool to study CF and in particular accelerate therapeutic development for CF caused by rare variants.
Collapse
Affiliation(s)
- Andrew Berical
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Rhianna E Lee
- Marsico Lung Institute and Cystic Fibrosis Research Center, Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Junjie Lu
- Cystic Fibrosis Foundation, Lexington, MA, 02421, USA
| | - Mary Lou Beermann
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Jake A Le Suer
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Aditya Mithal
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Dylan Thomas
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Nicole Ranallo
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Megan Peasley
- Cystic Fibrosis Foundation, Lexington, MA, 02421, USA
| | - Alex Stuffer
- Cystic Fibrosis Foundation, Lexington, MA, 02421, USA
| | | | | | | | - Kevin Coote
- Cystic Fibrosis Foundation, Lexington, MA, 02421, USA
| | | | - Killian Hurley
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul McNally
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Children's Health Ireland, Dublin, Ireland
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - John Mahoney
- Cystic Fibrosis Foundation, Lexington, MA, 02421, USA
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Finn J Hawkins
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA.
- The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA.
| |
Collapse
|
22
|
Human Amniotic Mesenchymal Stem Cells and Fibroblasts Accelerate Wound Repair of Cystic Fibrosis Epithelium. Life (Basel) 2022; 12:life12050756. [PMID: 35629422 PMCID: PMC9144497 DOI: 10.3390/life12050756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) airways are affected by a deranged repair of the damaged epithelium resulting in altered regeneration and differentiation. Previously, we showed that human amniotic mesenchymal stem cells (hAMSCs) corrected base defects of CF airway epithelial cells via connexin (CX)43-intercellular gap junction formation. In this scenario, it is unknown whether hAMSCs, or fibroblasts sharing some common characteristics with MSCs, can operate a faster repair of a damaged airway epithelium. A tip-based scratch assay was employed to study wound repair in monolayers of CFBE14o- cells (CFBE, homozygous for the F508del mutation). hAMSCs were either co-cultured with CFBE cells before the wound or added to the wounded monolayers. NIH-3T3 fibroblasts (CX43+) were added to wounded cells. HeLa cells (CX43-) were used as controls. γ-irradiation was optimized to block CFBE cell proliferation. A specific siRNA was employed to downregulate CX43 expression in CFBE cells. CFBE cells showed a delayed repair as compared with wt-CFTR cells (16HBE41o-). hAMSCs enhanced the wound repair rate of wounded CFBE cell monolayers, especially when added post wounding. hAMSCs and NIH-3T3 fibroblasts, but not HeLa cells, increased wound closure of irradiated CFBE monolayers. CX43 downregulation accelerated CFBE wound repair rate without affecting cell proliferation. We conclude that hAMSCs and fibroblasts enhance the repair of a wounded CF airway epithelium, likely through a CX43-mediated mechanism mainly involving cell migration.
Collapse
|
23
|
Mir M, Chen J, Pinezich MR, O'Neill JD, Guenthart BA, Vunjak-Novakovic G, Kim J. Imaging-Guided Bioreactor for Generating Bioengineered Airway Tissue. J Vis Exp 2022:10.3791/63544. [PMID: 35467661 PMCID: PMC9204391 DOI: 10.3791/63544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Repeated injury to airway tissue can impair lung function and cause chronic lung disease, such as chronic obstructive pulmonary disease. Advances in regenerative medicine and bioreactor technologies offer opportunities to produce lab-grown functional tissue and organ constructs that can be used to screen drugs, model disease, and engineer tissue replacements. Here, a miniaturized bioreactor coupled with an imaging modality that allows in situ visualization of the inner lumen of explanted rat trachea during in vitro tissue manipulation and culture is described. Using this bioreactor, the protocol demonstrates imaging-guided selective removal of endogenous cellular components while preserving the intrinsic biochemical features and ultrastructure of the airway tissue matrix. Furthermore, the delivery, uniform distribution, and subsequent prolonged culture of exogenous cells on the decellularized airway lumen with optical monitoring in situ are shown. The results highlight that the imaging-guided bioreactor can potentially be used to facilitate the generation of functional in vitro airway tissues.
Collapse
Affiliation(s)
- Mohammad Mir
- Department of Biomedical Engineering, Stevens Institute of Technology
| | - Jiawen Chen
- Department of Biomedical Engineering, Stevens Institute of Technology
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Stevens Institute of Technology
| | - John D O'Neill
- Department of Cell Biology, State University of New York Downstate Medical Center
| | | | | | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology;
| |
Collapse
|
24
|
Vaidyanathan S, Baik R, Chen L, Bravo DT, Suarez CJ, Abazari SM, Salahudeen AA, Dudek AM, Teran CA, Davis TH, Lee CM, Bao G, Randell SH, Artandi SE, Wine JJ, Kuo CJ, Desai TJ, Nayak JV, Sellers ZM, Porteus MH. Targeted replacement of full-length CFTR in human airway stem cells by CRISPR-Cas9 for pan-mutation correction in the endogenous locus. Mol Ther 2022; 30:223-237. [PMID: 33794364 PMCID: PMC8753290 DOI: 10.1016/j.ymthe.2021.03.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/23/2021] [Accepted: 03/25/2021] [Indexed: 01/07/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease caused by impaired production and/or function of the CF transmembrane conductance regulator (CFTR) protein. Although we have previously shown correction of the most common pathogenic mutation, there are many other pathogenic mutations throughout the CF gene. An autologous airway stem cell therapy in which the CFTR cDNA is precisely inserted into the CFTR locus may enable the development of a durable cure for almost all CF patients, irrespective of the causal mutation. Here, we use CRISPR-Cas9 and two adeno-associated viruses (AAVs) carrying the two halves of the CFTR cDNA to sequentially insert the full CFTR cDNA along with a truncated CD19 (tCD19) enrichment tag in upper airway basal stem cells (UABCs) and human bronchial epithelial cells (HBECs). The modified cells were enriched to obtain 60%-80% tCD19+ UABCs and HBECs from 11 different CF donors with a variety of mutations. Differentiated epithelial monolayers cultured at air-liquid interface showed restored CFTR function that was >70% of the CFTR function in non-CF controls. Thus, our study enables the development of a therapy for almost all CF patients, including patients who cannot be treated using recently approved modulator therapies.
Collapse
Affiliation(s)
| | - Ron Baik
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Lu Chen
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dawn T Bravo
- Department of Otolaryngology-Head and Neck Surgery, Stanford, CA 94305, USA
| | - Carlos J Suarez
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Shayda M Abazari
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Ameen A Salahudeen
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Amanda M Dudek
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Timothy H Davis
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Ciaran M Lee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Steven E Artandi
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey J Wine
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Tushar J Desai
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford, CA 94305, USA
| | - Zachary M Sellers
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Moreira A, Müller M, Costa PF, Kohl Y. Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Adv Biol (Weinh) 2021; 6:e2101139. [PMID: 34962104 DOI: 10.1002/adbi.202101139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Indexed: 12/24/2022]
Abstract
The substantial socioeconomic burden of lung diseases, recently highlighted by the disastrous impact of the coronavirus disease 2019 (COVID-19) pandemic, accentuates the need for interventive treatments capable of decelerating disease progression, limiting organ damage, and contributing to a functional tissue recovery. However, this is hampered by the lack of accurate human lung research models, which currently fail to reproduce the human pulmonary architecture and biochemical environment. Induced pluripotent stem cells (iPSCs) and organ-on-chip (OOC) technologies possess suitable characteristics for the generation of physiologically relevant in vitro lung models, allowing for developmental studies, disease modeling, and toxicological screening. Importantly, these platforms represent potential alternatives for animal testing, according to the 3Rs (replace, reduce, refine) principle, and hold promise for the identification and approval of new chemicals under the European REACH (registration, evaluation, authorization and restriction of chemicals) framework. As such, this review aims to summarize recent progress made in human iPSC- and OOC-based in vitro lung models. A general overview of the present applications of in vitro lung models is presented, followed by a summary of currently used protocols to generate different lung cell types from iPSCs. Lastly, recently developed iPSC-based lung models are discussed.
Collapse
Affiliation(s)
| | - Michelle Müller
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, Porto, 4200-135, Portugal
| | - Yvonne Kohl
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany.,Postgraduate Course for Toxicology and Environmental Toxicology, Medical Faculty, University of Leipzig, Johannisallee 28, 04103, Leipzig, Germany
| |
Collapse
|
26
|
Therapeutic pipeline for individuals with cystic fibrosis with mutations nonresponsive to current cystic fibrosis transmembrane conductance regulator modulators. Curr Opin Pulm Med 2021; 27:567-574. [PMID: 34494979 DOI: 10.1097/mcp.0000000000000827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Cystic fibrosis is a severe autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) encoding the CFTR protein, a chloride channel expressed in many epithelial cells. New drugs called CFTR modulators aim at restoring the CFTR protein function and they will benefit most of the patients with cystic fibrosis in the near future. However, more than 10% of CFTR mutations do not produce any CFTR protein for CFTR modulators to act upon, and the purpose of this review is to provide an overview of different approaches pursued to treat patients bearing mutations nonresponsive to CFTR modulators. RECENT FINDINGS These different approaches constitute readthrough agents for nonsense mutations, nucleic acid-based therapies, RNA-based or DNA-based, and cell-based therapies. Some approaches using mRNA or cDNA combined with a delivery vehicle are mutation-agnostic therapies. Other approaches, such as the use of tRNA, antisense oligonucleotides, gene editing or cell-based therapies are mutation-specific therapies. SUMMARY Most of these approaches are in preclinical development or for some of them, early clinical phases. Many hurdles and challenges will have to be solved before they can be safely translated to patients.
Collapse
|
27
|
Liberti DC, Morrisey EE. Organoid models: assessing lung cell fate decisions and disease responses. Trends Mol Med 2021; 27:1159-1174. [PMID: 34674972 DOI: 10.1016/j.molmed.2021.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Organoids can be derived from various cell types in the lung, and they provide a reproducible and tractable model for understanding the complex signals driving cell fate decisions in a regenerative context. In this review, we provide a retrospective account of organoid methodologies and outline new opportunities for optimizing these methods to further explore emerging concepts in lung biology. Moreover, we examine the benefits of integrating organoid assays with in vivo modeling to explore how the various niches and compartments in the respiratory system respond to both acute and chronic lung disease. The strategic implementation and improvement of organoid techniques will provide exciting new opportunities to understand and identify new therapeutic approaches to ameliorate lung disease states.
Collapse
Affiliation(s)
- Derek C Liberti
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Therapeutic Approaches for Patients with Cystic Fibrosis Not Eligible for Current CFTR Modulators. Cells 2021; 10:cells10102793. [PMID: 34685773 PMCID: PMC8534516 DOI: 10.3390/cells10102793] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/26/2022] Open
Abstract
Cystic fibrosis is a severe autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding the CFTR protein, a chloride channel expressed in many epithelial cells. New drugs called CFTR modulators aim at restoring the CFTR protein function, and they will benefit many patients with cystic fibrosis in the near future. However, some patients bear rare mutations that are not yet eligible for CFTR modulators, although they might be amenable to these new disease-modifying drugs. Moreover, more than 10% of CFTR mutations do not produce any CFTR protein for CFTR modulators to act upon. The purpose of this review is to provide an overview of different approaches pursued to treat patients bearing mutations ineligible for CFTR modulators. One approach is to broaden the numbers of mutations eligible for CFTR modulators. This requires developing strategies to evaluate drugs in populations bearing very rare genotypes. Other approaches aiming at correcting the CFTR defect develop new mutation-specific or mutation-agnostic therapies for mutations that do not produce a CFTR protein: readthrough agents for nonsense mutations, nucleic acid-based therapies, RNA- or DNA-based, and cell-based therapies. Most of these approaches are in pre-clinical development or, for some of them, early clinical phases. Many hurdles and challenges will have to be solved before they can be safely translated to patients.
Collapse
|
29
|
Lee DDH, Cardinale D, Nigro E, Butler CR, Rutman A, Fassad MR, Hirst RA, Moulding D, Agrotis A, Forsythe E, Peckham D, Robson E, Smith CM, Somavarapu S, Beales PL, Hart SL, Janes SM, Mitchison HM, Ketteler R, Hynds RE, O'Callaghan C. Higher throughput drug screening for rare respiratory diseases: readthrough therapy in primary ciliary dyskinesia. Eur Respir J 2021; 58:13993003.00455-2020. [PMID: 33795320 PMCID: PMC8514977 DOI: 10.1183/13993003.00455-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/01/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Development of therapeutic approaches for rare respiratory diseases is hampered by the lack of systems that allow medium-to-high-throughput screening of fully differentiated respiratory epithelium from affected patients. This is a particular problem for primary ciliary dyskinesia (PCD), a rare genetic disease caused by mutations in genes that adversely affect ciliary movement and consequently mucociliary transport. Primary cell culture of basal epithelial cells from nasal brush biopsies followed by ciliated differentiation at the air-liquid interface (ALI) has proven to be a useful tool in PCD diagnostics but the technique's broader utility, including in pre-clinical PCD research, has been restricted by the limited number of basal cells that can be expanded from such biopsies. METHODS We describe an immunofluorescence screening method, enabled by extensive expansion of basal cells from PCD patients and the directed differentiation of these cells into ciliated epithelium in miniaturised 96-well transwell format ALI cultures. As proof-of-principle, we performed a personalised investigation in a patient with a rare and severe form of PCD (reduced generation of motile cilia), in this case caused by a homozygous nonsense mutation in the MCIDAS gene. RESULTS Initial analyses of ciliary ultrastructure, beat pattern and beat frequency in the 96-well transwell format ALI cultures indicate that a range of different PCD defects can be retained in these cultures. The screening system in our proof-of-principal investigation allowed drugs that induce translational readthrough to be evaluated alone or in combination with nonsense-mediated decay inhibitors. We observed restoration of basal body formation but not the generation of cilia in the patient's nasal epithelial cells in vitro. CONCLUSION: Our study provides a platform for higher throughput analyses of airway epithelia that is applicable in a range of settings and suggests novel avenues for drug evaluation and development in PCD caused by nonsense mutations.
Collapse
Affiliation(s)
- Dani Do Hyang Lee
- UCL Great Ormond Street Institute of Child Health, London, UK
- D.D.H. Lee and D. Cardinale contributed equally
| | - Daniela Cardinale
- UCL Great Ormond Street Institute of Child Health, London, UK
- D.D.H. Lee and D. Cardinale contributed equally
| | - Ersilia Nigro
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Colin R Butler
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Andrew Rutman
- Centre for PCD Diagnosis and Research, Dept of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Mahmoud R Fassad
- Ciliary Disease Section, Genetics and Genomic Medicine Research and Teaching Dept, UCL Great Ormond Street Institute of Child Health, London, UK
- Dept of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Robert A Hirst
- Centre for PCD Diagnosis and Research, Dept of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Dale Moulding
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alexander Agrotis
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Elisabeth Forsythe
- Ciliary Disease Section, Genetics and Genomic Medicine Research and Teaching Dept, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Daniel Peckham
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
| | - Evie Robson
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
| | - Claire M Smith
- UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Philip L Beales
- Ciliary Disease Section, Genetics and Genomic Medicine Research and Teaching Dept, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Stephen L Hart
- Ciliary Disease Section, Genetics and Genomic Medicine Research and Teaching Dept, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Hannah M Mitchison
- Ciliary Disease Section, Genetics and Genomic Medicine Research and Teaching Dept, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robert E Hynds
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
- UCL Cancer Institute, University College London, London, UK
- R.E. Hynds and C. O'Callaghan contributed equally to this article as lead authors and supervised the work
| | - Christopher O'Callaghan
- UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for PCD Diagnosis and Research, Dept of Respiratory Sciences, University of Leicester, Leicester, UK
- R.E. Hynds and C. O'Callaghan contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
30
|
Chakrabarty K, Shetty R, Argulwar S, Das D, Ghosh A. Induced pluripotent stem cell-based disease modeling and prospective immune therapy for coronavirus disease 2019. Cytotherapy 2021; 24:235-248. [PMID: 34656419 PMCID: PMC8437760 DOI: 10.1016/j.jcyt.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 11/30/2022]
Abstract
The emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses a never before seen challenge to human health and the economy. Considering its clinical impact, with no streamlined therapeutic strategies in sight, it is crucial to understand the infection process of SARS-CoV-2. Our limited knowledge of the mechanisms underlying SARS-CoV-2 infection impedes the development of alternative therapeutics to address the pandemic. This aspect can be addressed by modeling SARS-CoV-2 infection in the human context to facilitate drug screening and discovery. Human induced pluripotent stem cell (iPSC)-derived lung epithelial cells and organoids recapitulating the features and functionality of the alveolar cell types can serve as an in vitro human model and screening platform for SARS-CoV-2. Recent studies suggest an immune system asynchrony leading to compromised function and a decreased proportion of specific immune cell types in coronavirus disease 2019 (COVID-19) patients. Replenishing these specific immune cells may serve as useful treatment modality against SARS-CoV-2 infection. Here the authors review protocols for deriving lung epithelial cells, alveolar organoids and specific immune cell types, such as T lymphocytes and natural killer cells, from iPSCs with the aim to aid investigators in making relevant in vitro models of SARS-CoV-2 along with the possibility derive immune cell types to treat COVID-19.
Collapse
Affiliation(s)
| | - Rohit Shetty
- Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Shubham Argulwar
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Debashish Das
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| |
Collapse
|
31
|
Marquez Loza LI, Cooney AL, Dong Q, Randak CO, Rivella S, Sinn PL, McCray PB. Increased CFTR expression and function from an optimized lentiviral vector for cystic fibrosis gene therapy. Mol Ther Methods Clin Dev 2021; 21:94-106. [PMID: 33768133 PMCID: PMC7973238 DOI: 10.1016/j.omtm.2021.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/23/2021] [Indexed: 01/02/2023]
Abstract
Despite significant advances in cystic fibrosis (CF) treatments, a one-time treatment for this life-shortening disease remains elusive. Stable complementation of the disease-causing mutation with a normal copy of the CF transmembrane conductance regulator (CFTR) gene fulfills that goal. Integrating lentiviral vectors are well suited for this purpose, but widespread airway transduction in humans is limited by achievable titers and delivery barriers. Since airway epithelial cells are interconnected through gap junctions, small numbers of cells expressing supraphysiologic levels of CFTR could support sufficient channel function to rescue CF phenotypes. Here, we investigated promoter choice and CFTR codon optimization (coCFTR) as strategies to regulate CFTR expression. We evaluated two promoters-phosphoglycerate kinase (PGK) and elongation factor 1-α (EF1α)-that have been safely used in clinical trials. We also compared the wild-type human CFTR sequence to three alternative coCFTR sequences generated by different algorithms. With the use of the CFTR-mediated anion current in primary human CF airway epithelia to quantify channel expression and function, we determined that EF1α produced greater currents than PGK and identified a coCFTR sequence that conferred significantly increased functional CFTR expression. Optimized promoter and CFTR sequences advance lentiviral vectors toward CF gene therapy clinical trials.
Collapse
Affiliation(s)
- Laura I. Marquez Loza
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
| | - Ashley L. Cooney
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
| | - Qian Dong
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
| | - Christoph O. Randak
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
| | - Stefano Rivella
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Patrick L. Sinn
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
32
|
Orr JC, Hynds RE. Stem Cell-derived Respiratory Epithelial Cell Cultures as Human Disease Models. Am J Respir Cell Mol Biol 2021; 64:657-668. [PMID: 33428856 PMCID: PMC8456877 DOI: 10.1165/rcmb.2020-0440tr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Advances in stem cell biology and the understanding of factors that determine lung stem cell self-renewal have enabled long-term in vitro culture of human lung cells derived from airway basal and alveolar type II cells. Improved capability to expand and study primary cells long term, including in clonal cultures that are recently derived from a single cell, will allow experiments that address fundamental questions about lung homeostasis and repair, as well as translational questions in asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and lung cancer research. Here, we provide a brief history of postnatal lung epithelial cell culture and describe recent methodological advances. We further discuss the applications of primary cultures in defining "normal" epithelium, in modeling lung disease, and in future cell therapies.
Collapse
Affiliation(s)
- Jessica C Orr
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, and
| | - Robert E Hynds
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
33
|
Bukowy-Bieryłło Z. Long-term differentiating primary human airway epithelial cell cultures: how far are we? Cell Commun Signal 2021; 19:63. [PMID: 34044844 PMCID: PMC8159066 DOI: 10.1186/s12964-021-00740-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human airway epithelial (HAE) cellular models are widely used in applicative studies of the airway physiology and disease. In vitro expanded and differentiated primary HAE cells collected from patients seem to be an accurate model of human airway, offering a quicker and cheaper alternative to the induced pluripotent stem cell (iPSCs) models. However, the biggest drawback of primary HAE models is their limited proliferative lifespan in culture. Much work has been devoted to understand the factors, which govern the HAE cell proliferation and differentiation, both in vivo and in vitro. Here, I have summarized recent achievements in primary HAE culture, with the special emphasis on the models of conditionally reprogrammed cells (CRC), which allow longer in vitro proliferation and differentiation of HAE cells. The review compares the CRC HAE technique variants (feeder culture or HAE mono-culture), based on recently published studies exploiting this model. The advantages and limitations of each CRC HAE model variant are summarized, along with the description of other factors affecting the CRC HAE culture success (tissue type, sampling method, sample quality). CONCLUSIONS CRC HAE cultures are a useful technique in respiratory research, which in many cases exceeds the iPSCs and organoid culture methods. Until the current limitations of the iPSCs and organoid culture methods will be alleviated, the primary CRC HAE cultures might be a useful model in respiratory research. Airway epithelium (AE) is a type of tissue, which lines the whole length of human airways, from the nose to the bronchi. Improper functioning of AE causes several human airway disorders, such as asthma, chronic obstructive pulmonary disease (COPD) or cystic fibrosis (CF). Much work has been devoted to finding the best scientific model of human AE, in order to learn about its functioning in health and disease. Among the popular AE models are the primary in vitro cultured AE cells collected from human donors. Unfortunately, such human AE (HAE) cells do not easily divide (expand) in vitro; this poses a large logistic and ethical problem for the researchers. Here, I summarize recent achievements in the methods for in vitro culture of human AE cells, with special emphasis on the conditionally reprogrammed cell (CRC) models, which allow longer and more effective expansion of primary human AE cells in vitro. The review describes how the specific chemicals used in the CRC models work to allow the increased HAE divisions and compares the effects of the different so-far developed variants of the CRC HAE culture. The review also pinpoints the areas which need to be refined, in order to maximize the usefulness of the CRC AE cultures from human donors in research on human airway disorders. Video abstract.
Collapse
|
34
|
Ensinck M, Mottais A, Detry C, Leal T, Carlon MS. On the Corner of Models and Cure: Gene Editing in Cystic Fibrosis. Front Pharmacol 2021; 12:662110. [PMID: 33986686 PMCID: PMC8111007 DOI: 10.3389/fphar.2021.662110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a severe genetic disease for which curative treatment is still lacking. Next generation biotechnologies and more efficient cell-based and in vivo disease models are accelerating the development of novel therapies for CF. Gene editing tools, like CRISPR-based systems, can be used to make targeted modifications in the genome, allowing to correct mutations directly in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Alternatively, with these tools more relevant disease models can be generated, which in turn will be invaluable to evaluate novel gene editing-based therapies for CF. This critical review offers a comprehensive description of currently available tools for genome editing, and the cell and animal models which are available to evaluate them. Next, we will give an extensive overview of proof-of-concept applications of gene editing in the field of CF. Finally, we will touch upon the challenges that need to be addressed before these proof-of-concept studies can be translated towards a therapy for people with CF.
Collapse
Affiliation(s)
- Marjolein Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Angélique Mottais
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Claire Detry
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Teresinha Leal
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Girón Moreno RM, García-Clemente M, Diab-Cáceres L, Martínez-Vergara A, Martínez-García MÁ, Gómez-Punter RM. Treatment of Pulmonary Disease of Cystic Fibrosis: A Comprehensive Review. Antibiotics (Basel) 2021; 10:486. [PMID: 33922413 PMCID: PMC8144952 DOI: 10.3390/antibiotics10050486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease that causes absence or dysfunction of a protein named transmembrane conductance regulatory protein (CFTR) that works as an anion channel. As a result, the secretions of the organs where CFTR is expressed are very viscous, so their functionality is altered. The main cause of morbidity is due to the involvement of the respiratory system as a result of recurrent respiratory infections by different pathogens. In recent decades, survival has been increasing, rising by around age 50. This is due to the monitoring of patients in multidisciplinary units, early diagnosis with neonatal screening, and advances in treatments. In this chapter, we will approach the different therapies used in CF for the treatment of symptoms, obstruction, inflammation, and infection. Moreover, we will discuss specific and personalized treatments to correct the defective gene and repair the altered protein CFTR. The obstacle for personalized CF treatment is to predict the drug response of patients due to genetic complexity and heterogeneity of uncommon mutations.
Collapse
Affiliation(s)
- Rosa María Girón Moreno
- Servicio de Neumología, Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain; (R.M.G.M.); (R.M.G.-P.)
| | - Marta García-Clemente
- Servicio de Neumología, Hospital Universitario Central de Asturias, C/Avenida de Roma S/n, 33011 Oviedo, Spain
| | - Layla Diab-Cáceres
- Servicio de Neumología, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | | | | | - Rosa Mar Gómez-Punter
- Servicio de Neumología, Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain; (R.M.G.M.); (R.M.G.-P.)
| |
Collapse
|
36
|
Lopes-Pacheco M, Pedemonte N, Veit G. Discovery of CFTR modulators for the treatment of cystic fibrosis. Expert Opin Drug Discov 2021; 16:897-913. [PMID: 33823716 DOI: 10.1080/17460441.2021.1912732] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-threatening inherited disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel expressed at the apical membrane of secretory epithelia. CF leads to multiorgan dysfunction with progressive deterioration of lung function being the major cause of untimely death. Conventional CF therapies target only symptoms and consequences downstream of the primary genetic defect and the current life expectancy and quality of life of these individuals are still very limited. AREA COVERED CFTR modulator drugs are novel-specialized therapies that enhance or even restore functional expression of CFTR mutants and have been approved for clinical use for individuals with specific CF genotypes. This review summarizes classical approaches used for the pre-clinical development of CFTR correctors and potentiators as well as emerging strategies aiming to accelerate modulator development and expand theratyping efforts. EXPERT OPINION Highly effective CFTR modulator drugs are expected to deeply modify the disease course for the majority of individuals with CF. A multitude of experimental approaches have been established to accelerate the development of novel modulators. CF patient-derived specimens are valuable cell models to predict therapeutic effectiveness of existing (and novel) modulators in a precision medicine approach.
Collapse
Affiliation(s)
| | | | - Guido Veit
- Department of Physiology, McGill University, Montréal, Canada
| |
Collapse
|
37
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
38
|
Allan KM, Farrow N, Donnelley M, Jaffe A, Waters SA. Treatment of Cystic Fibrosis: From Gene- to Cell-Based Therapies. Front Pharmacol 2021; 12:639475. [PMID: 33796025 PMCID: PMC8007963 DOI: 10.3389/fphar.2021.639475] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Prognosis of patients with cystic fibrosis (CF) varies extensively despite recent advances in targeted therapies that improve CF transmembrane conductance regulator (CFTR) function. Despite being a multi-organ disease, extensive lung tissue destruction remains the major cause of morbidity and mortality. Progress towards a curative treatment strategy that implements a CFTR gene addition-technology to the patients’ lungs has been slow and not yet developed beyond clinical trials. Improved delivery vectors are needed to overcome the body’s defense system and ensure an efficient and consistent clinical response before gene therapy is suitable for clinical care. Cell-based therapy–which relies on functional modification of allogenic or autologous cells ex vivo, prior to transplantation into the patient–is now a therapeutic reality for various diseases. For CF, pioneering research has demonstrated proof-of-principle for allogenic transplantation of cultured human airway stem cells into mouse airways. However, applying a cell-based therapy to the human airways has distinct challenges. We review CF gene therapies using viral and non-viral delivery strategies and discuss current advances towards autologous cell-based therapies. Progress towards identification, correction, and expansion of a suitable regenerative cell, as well as refinement of pre-cell transplant lung conditioning protocols is discussed.
Collapse
Affiliation(s)
- Katelin M Allan
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, Australia
| | - Nigel Farrow
- Respiratory and Sleep Medicine, Women's and Children's Health Network, Adelaide, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Martin Donnelley
- Respiratory and Sleep Medicine, Women's and Children's Health Network, Adelaide, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Adam Jaffe
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, Australia.,Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, Australia
| | - Shafagh A Waters
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, Australia.,Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, Australia
| |
Collapse
|
39
|
Egan ME. Emerging technologies for cystic fibrosis transmembrane conductance regulator restoration in all people with CF. Pediatr Pulmonol 2021; 56 Suppl 1:S32-S39. [PMID: 32681713 PMCID: PMC8114183 DOI: 10.1002/ppul.24965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Although effective cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy has the potential to change the lives of many patients with cystic fibrosis (CF), it is unlikely that these drugs will be a game changing therapy for all. There are about 10% of patients with CF who don't produce a mutant protein tomodulate, potentiate, or optimize and for these patients such therapies are unlikely to be of significant benefit. There is a need to develop new therapeutic approaches that can work for this patient population and can advance CF therapies. These new therapies will be genetic-based therapies and each approach will result in functional CFTR protein inpreviously affected CF cells. In this review we will examine the potential of RNA therapies, gene transfer therapies, and gene editing therapies for the treatment of CF as well as the challenges that will need to be facedas we harness the power of these emerging therapies towards a one-time cure.
Collapse
Affiliation(s)
- Marie E Egan
- Division of Pulmonary Allergy Immunology Sleep Medicine, Department of Pediatrics, School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
40
|
Maule G, Ensinck M, Bulcaen M, Carlon MS. Rewriting CFTR to cure cystic fibrosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:185-224. [PMID: 34175042 DOI: 10.1016/bs.pmbts.2020.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive monogenic disease caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Although F508del is the most frequent mutation, there are in total 360 confirmed disease-causing CFTR mutations, impairing CFTR production, function and stability. Currently, the only causal treatments available are CFTR correctors and potentiators that directly target the mutant protein. While these pharmacological advances and better symptomatic care have improved life expectancy of people with CF, none of these treatments provides a cure. The discovery and development of programmable nucleases, in particular CRISPR nucleases and derived systems, rekindled the field of CF gene therapy, offering the possibility of a permanent correction of the CFTR gene. In this review we will discuss different strategies to restore CFTR function via gene editing correction of CFTR mutations or enhanced CFTR expression, and address how best to deliver these treatments to target cells.
Collapse
Affiliation(s)
- Giulia Maule
- Department CIBIO, University of Trento, Trento, Italy; Institute of Biophysics, National Research Council, Trento, Italy
| | - Marjolein Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| | - Mattijs Bulcaen
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| | - Marianne S Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium.
| |
Collapse
|
41
|
Hawkins FJ, Suzuki S, Beermann ML, Barillà C, Wang R, Villacorta-Martin C, Berical A, Jean JC, Le Suer J, Matte T, Simone-Roach C, Tang Y, Schlaeger TM, Crane AM, Matthias N, Huang SXL, Randell SH, Wu J, Spence JR, Carraro G, Stripp BR, Rab A, Sorsher EJ, Horani A, Brody SL, Davis BR, Kotton DN. Derivation of Airway Basal Stem Cells from Human Pluripotent Stem Cells. Cell Stem Cell 2021; 28:79-95.e8. [PMID: 33098807 PMCID: PMC7796997 DOI: 10.1016/j.stem.2020.09.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/03/2020] [Accepted: 09/26/2020] [Indexed: 12/26/2022]
Abstract
The derivation of tissue-specific stem cells from human induced pluripotent stem cells (iPSCs) would have broad reaching implications for regenerative medicine. Here, we report the directed differentiation of human iPSCs into airway basal cells ("iBCs"), a population resembling the stem cell of the airway epithelium. Using a dual fluorescent reporter system (NKX2-1GFP;TP63tdTomato), we track and purify these cells as they first emerge as developmentally immature NKX2-1GFP+ lung progenitors and subsequently augment a TP63 program during proximal airway epithelial patterning. In response to primary basal cell medium, NKX2-1GFP+/TP63tdTomato+ cells display the molecular and functional phenotype of airway basal cells, including the capacity to self-renew or undergo multi-lineage differentiation in vitro and in tracheal xenografts in vivo. iBCs and their differentiated progeny model perturbations that characterize acquired and genetic airway diseases, including the mucus metaplasia of asthma, chloride channel dysfunction of cystic fibrosis, and ciliary defects of primary ciliary dyskinesia.
Collapse
Affiliation(s)
- Finn J Hawkins
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Shingo Suzuki
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mary Lou Beermann
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Cristina Barillà
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Ruobing Wang
- Pulmonary and Respiratory Diseases, Boston Children's Hospital, Boston, MA 02115, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Andrew Berical
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - J C Jean
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Jake Le Suer
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Taylor Matte
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | | | - Yang Tang
- Boston Children's Hospital Stem Cell Program, Boston, MA 02115, USA
| | - Thorsten M Schlaeger
- Boston Children's Hospital Stem Cell Program, Boston, MA 02115, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ana M Crane
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Nadine Matthias
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Sarah X L Huang
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Gianni Carraro
- Department of Medicine, Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry R Stripp
- Department of Medicine, Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andras Rab
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric J Sorsher
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L Brody
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian R Davis
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
42
|
Lee RE, Miller SM, Mascenik TM, Lewis CA, Dang H, Boggs ZH, Tarran R, Randell SH. Assessing Human Airway Epithelial Progenitor Cells for Cystic Fibrosis Cell Therapy. Am J Respir Cell Mol Biol 2020; 63:374-385. [PMID: 32437238 DOI: 10.1165/rcmb.2019-0384oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cystic fibrosis (CF) is caused by loss-of-function mutations in the CFTR (CF transmembrane regulator) gene. Pharmacologic therapies directed at CFTR have been developed but are not effective for mutations that result in little or no mRNA or protein expression. Cell therapy is a potential mutation-agnostic approach to treatment. One strategy is to harvest human bronchial epithelial cells (HBECs) for gene addition or genetic correction, followed by expansion and engraftment. This approach will require cells to grow extensively while retaining their ability to reconstitute CFTR activity. We hypothesized that conditionally reprogrammed cell (CRC) technology, namely growth in the presence of irradiated feeder cells and a Rho kinase inhibitor, would enable expansion while maintaining cell capacity to express functional CFTR. Our goal was to compare expression of the basal cell marker NGFR (nerve growth factor receptor) and three-dimensional bronchosphere colony-forming efficiency (CFE) in early- and later-passage HBECs grown using nonproprietary bronchial epithelial growth medium or the CRC method. Cell number and CFTR activity were determined in a competitive repopulation assay employing chimeric air-liquid interface cultures. HBECs expanded using the CRC method expressed the highest NGFR levels, had the greatest 3D colony-forming efficiency at later passage, generated greater cell numbers in chimeric cultures, and most effectively reconstituted CFTR activity. In our study, the HBEC air-liquid interface model, an informative testing platform proven vital for the development of other CF therapies, illustrated that cells grown by CRC technology or equivalent methods may be useful for cell therapy of CF.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute/Cystic Fibrosis Center and.,Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Center and
| | | | - Robert Tarran
- Marsico Lung Institute/Cystic Fibrosis Center and.,Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott H Randell
- Marsico Lung Institute/Cystic Fibrosis Center and.,Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
43
|
Melo-Narváez MC, Stegmayr J, Wagner DE, Lehmann M. Lung regeneration: implications of the diseased niche and ageing. Eur Respir Rev 2020; 29:29/157/200222. [DOI: 10.1183/16000617.0222-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Most chronic and acute lung diseases have no cure, leaving lung transplantation as the only option. Recent work has improved our understanding of the endogenous regenerative capacity of the lung and has helped identification of different progenitor cell populations, as well as exploration into inducing endogenous regeneration through pharmaceutical or biological therapies. Additionally, alternative approaches that aim at replacing lung progenitor cells and their progeny through cell therapy, or whole lung tissue through bioengineering approaches, have gained increasing attention. Although impressive progress has been made, efforts at regenerating functional lung tissue are still ineffective. Chronic and acute lung diseases are most prevalent in the elderly and alterations in progenitor cells with ageing, along with an increased inflammatory milieu, present major roadblocks for regeneration. Multiple cellular mechanisms, such as cellular senescence and mitochondrial dysfunction, are aberrantly regulated in the aged and diseased lung, which impairs regeneration. Existing as well as new human in vitro models are being developed, improved and adapted in order to study potential mechanisms of lung regeneration in different contexts. This review summarises recent advances in understanding endogenous as well as exogenous regeneration and the development of in vitro models for studying regenerative mechanisms.
Collapse
|
44
|
King NE, Suzuki S, Barillà C, Hawkins FJ, Randell SH, Reynolds SD, Stripp BR, Davis BR. Correction of Airway Stem Cells: Genome Editing Approaches for the Treatment of Cystic Fibrosis. Hum Gene Ther 2020; 31:956-972. [PMID: 32741223 PMCID: PMC7495916 DOI: 10.1089/hum.2020.160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although CF affects multiple organs, the primary cause of mortality is respiratory failure resulting from poor clearance of hyperviscous secretions and subsequent airway infection. Recently developed CFTR modulators provide significant therapeutic benefit to the majority of CF individuals. However, treatments directed at the underlying cause are needed for the ∼7% of CF patients who are not expected to be responsive to these modulators. Genome editing can restore the native CFTR genetic sequence and function to mutant cells, representing an approach to establish durable physiologic CFTR correction. Although editing the CFTR gene in various airway cell types may transiently restore CFTR activity, effort is focused on editing airway basal stem/progenitor cells, since their correction would allow appropriate and durable expression of CFTR in stem cell-derived epithelial cell types. Substantial progress has been made to directly correct airway basal cells in vitro, theoretically enabling transplantation of autologous corrected cells to regenerate an airway with CFTR functional cells. Another approach to create autologous, gene-edited airway basal cells is derivation of CF donor-specific induced pluripotent stem cells, correction of the CFTR gene, and subsequent directed differentiation to airway basal cells. Further work is needed to translate these advances by developing effective transplantation methods. Alternatively, gene editing in vivo may enable CFTR correction. However, this approach will require robust delivery methods ensuring that basal cells are efficiently targeted and corrected. Recent advances in gene editing-based therapies provide hope that the genetic underpinning of CF can be durably corrected in airway epithelial stem cells, thereby preventing or treating lung disease in all people with CF.
Collapse
Affiliation(s)
- Nicholas E. King
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shingo Suzuki
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Cristina Barillà
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Finn J. Hawkins
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Scott H. Randell
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Susan D. Reynolds
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Barry R. Stripp
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Brian R. Davis
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
45
|
Giacalone VD, Dobosh BS, Gaggar A, Tirouvanziam R, Margaroli C. Immunomodulation in Cystic Fibrosis: Why and How? Int J Mol Sci 2020; 21:ijms21093331. [PMID: 32397175 PMCID: PMC7247557 DOI: 10.3390/ijms21093331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/09/2023] Open
Abstract
Cystic fibrosis (CF) lung disease is characterized by unconventional mechanisms of inflammation, implicating a chronic immune response dominated by innate immune cells. Historically, therapeutic development has focused on the mutated cystic fibrosis transmembrane conductance regulator (CFTR), leading to the discovery of small molecules aiming at modulating and potentiating the presence and activity of CFTR at the plasma membrane. However, treatment burden sustained by CF patients, side effects of current medications, and recent advances in other therapeutic areas have highlighted the need to develop novel disease targeting of the inflammatory component driving CF lung damage. Furthermore, current issues with standard treatment emphasize the need for directed lung therapies that could minimize systemic side effects. Here, we summarize current treatment used to target immune cells in the lungs, and highlight potential benefits and caveats of novel therapeutic strategies.
Collapse
Affiliation(s)
- Vincent D. Giacalone
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Brian S. Dobosh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.G.); (C.M.)
- Pulmonary Section, Birmingham VA Medical Center, Birmingham, AL 35233, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Correspondence:
| | - Camilla Margaroli
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.G.); (C.M.)
| |
Collapse
|
46
|
Wang R, McCauley KB, Kotton DN, Hawkins F. Differentiation of human airway-organoids from induced pluripotent stem cells (iPSCs). Methods Cell Biol 2020; 159:95-114. [PMID: 32586451 DOI: 10.1016/bs.mcb.2020.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There was significant progress over the last decade in the ability to generate induced pluripotent stem cell (iPSC)-derived airway organoids. We and others have developed step-wise, directed differentiation protocols to recapitulate the key milestones in human airway development, generating iPSC-derived airway organoids that possess the major human airway cell types. These organoids have already shown feasibility for genetic disease modeling. They have great future potential for modeling a wider spectrum of lung diseases, interrogating disease mechanisms, predicting personalized drug responses, studying developmental lung biology, and ultimately may serve as candidates for future cell-based therapies for lung regeneration and repair. Herein we detail a step-by-step laboratory protocol to generate human airway organoids.
Collapse
Affiliation(s)
- Ruobing Wang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, United States; Division of Respiratory Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Katie B McCauley
- Respiratory Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA, United States
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, United States; Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Finn Hawkins
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, United States; Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
47
|
Dorrello NV, Vunjak-Novakovic G. Bioengineering of Pulmonary Epithelium With Preservation of the Vascular Niche. Front Bioeng Biotechnol 2020; 8:269. [PMID: 32351946 PMCID: PMC7174601 DOI: 10.3389/fbioe.2020.00269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
The shortage of transplantable donor organs directly affects patients with end-stage lung disease, for which transplantation remains the only definitive treatment. With the current acceptance rate of donor lungs of only 20%, rescuing even one half of the rejected donor lungs would increase the number of transplantable lungs threefold, to 60%. We review recent advances in lung bioengineering that have potential to repair the epithelial and vascular compartments of the lung. Our focus is on the long-term support and recovery of the lung ex vivo, and the replacement of defective epithelium with healthy therapeutic cells. To this end, we first review the roles of the lung epithelium and vasculature, with focus on the alveolar-capillary membrane, and then discuss the available and emerging technologies for ex vivo bioengineering of the lung by decellularization and recellularization. While there have been many meritorious advances in these technologies for recovering marginal quality lungs to the levels needed to meet the standards for transplantation – many challenges remain, motivating further studies of the extended ex vivo support and interventions in the lung. We propose that the repair of injured epithelium with preservation of quiescent vasculature will be critical for the immediate blood supply to the lung and the lung survival and function following transplantation.
Collapse
Affiliation(s)
- N Valerio Dorrello
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, United States.,Department of Medicine, Columbia University, New York, NY, United States
| |
Collapse
|
48
|
Lopes-Pacheco M. CFTR Modulators: The Changing Face of Cystic Fibrosis in the Era of Precision Medicine. Front Pharmacol 2020; 10:1662. [PMID: 32153386 PMCID: PMC7046560 DOI: 10.3389/fphar.2019.01662] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal inherited disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which result in impairment of CFTR mRNA and protein expression, function, stability or a combination of these. Although CF leads to multifaceted clinical manifestations, the respiratory disorder represents the major cause of morbidity and mortality of these patients. The life expectancy of CF patients has substantially lengthened due to early diagnosis and improvements in symptomatic therapeutic regimens. Quality of life remains nevertheless limited, as these individuals are subjected to considerable clinical, psychosocial and economic burdens. Since the discovery of the CFTR gene in 1989, tremendous efforts have been made to develop therapies acting more upstream on the pathogenesis cascade, thereby overcoming the underlying dysfunctions caused by CFTR mutations. In this line, the advances in cell-based high-throughput screenings have been facilitating the fast-tracking of CFTR modulators. These modulator drugs have the ability to enhance or even restore the functional expression of specific CF-causing mutations, and they have been classified into five main groups depending on their effects on CFTR mutations: potentiators, correctors, stabilizers, read-through agents, and amplifiers. To date, four CFTR modulators have reached the market, and these pharmaceutical therapies are transforming patients' lives with short- and long-term improvements in clinical outcomes. Such breakthroughs have paved the way for the development of novel CFTR modulators, which are currently under experimental and clinical investigations. Furthermore, recent insights into the CFTR structure will be useful for the rational design of next-generation modulator drugs. This review aims to provide a summary of recent developments in CFTR-directed therapeutics. Barriers and future directions are also discussed in order to optimize treatment adherence, identify feasible and sustainable solutions for equitable access to these therapies, and continue to expand the pipeline of novel modulators that may result in effective precision medicine for all individuals with CF.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
49
|
Mention K, Santos L, Harrison PT. Gene and Base Editing as a Therapeutic Option for Cystic Fibrosis-Learning from Other Diseases. Genes (Basel) 2019; 10:E387. [PMID: 31117296 PMCID: PMC6562706 DOI: 10.3390/genes10050387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is a monogenic autosomal recessive disorder caused by mutations in the CFTR gene. There are at least 346 disease-causing variants in the CFTR gene, but effective small-molecule therapies exist for only ~10% of them. One option to treat all mutations is CFTR cDNA-based therapy, but clinical trials to date have only been able to stabilise rather than improve lung function disease in patients. While cDNA-based therapy is already a clinical reality for a number of diseases, some animal studies have clearly established that precision genome editing can be significantly more effective than cDNA addition. These observations have led to a number of gene-editing clinical trials for a small number of such genetic disorders. To date, gene-editing strategies to correct CFTR mutations have been conducted exclusively in cell models, with no in vivo gene-editing studies yet described. Here, we highlight some of the key breakthroughs in in vivo and ex vivo gene and base editing in animal models for other diseases and discuss what might be learned from these studies in the development of editing strategies that may be applied to cystic fibrosis as a potential therapeutic approach. There are many hurdles that need to be overcome, including the in vivo delivery of editing machinery or successful engraftment of ex vivo-edited cells, as well as minimising potential off-target effects. However, a successful proof-of-concept study for gene or base editing in one or more of the available CF animal models could pave the way towards a long-term therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Karen Mention
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland.
| | - Lúcia Santos
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland.
- University of Lisboa Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal.
| | - Patrick T Harrison
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland.
| |
Collapse
|