1
|
Deng C, Liu Q, Yang M, Cui HJ, Ge Y, Li Q, Zhu SJ, Yang GW, Zhang ZG, Gao Y, Lou YN, Jia LQ. Efficacy and safety of Shengjiang Xiexin decoction on irinotecan-induced diarrhea in small cell lung cancer patients: a multicenter, randomized, double-blind, placebo-controlled trial. Chin Med 2024; 19:153. [PMID: 39497116 PMCID: PMC11536713 DOI: 10.1186/s13020-024-01025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Irinotecan is a standard chemotherapeutic agent in small cell lung cancer (SCLC), however, as a common adverse reaction, diarrhea limits the use of irinotecan. Shengjiang Xiexin decoction (SXD) has been used in various gastrointestinal diseases in China two thousand years ago. We designed this clinical trial to supply more evidences on the use of SXD as prophylaxis for irinotecan-induced diarrhea, especially for high-risk population predicted by gene testing of uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1). METHODS In this clinical trial, 120 patients with SCLC were recruited from six hospitals in China. They received two cycles of chemotherapy, meanwhile they were randomized to receive SXD or placebo for 14 days of oral administration in each cycle of chemotherapy. The primary outcome is the incidence of diarrhea. And secondary outcomes include the the degree of diarrhea and neutropenia, the number of chemotherapy cycles with diarrhea, first occurrence time and duration of diarrhea. To evaluate the effect of SXD on the intestine, a rat model with delayed-onset diarrhea induced by irinotecan was established, and the expression of inflammatory factors including IL-1β, IL-6 and TNF-α, anti-inflammatory factors including IL-10, TGF- β in jejunal tissue was detected by ELISA. RESULTS 101 patients (53 in SXD group, 48 in placebo group) completed the trial. The incidence of diarrhea in SXD group and placebo group were 26.42% (14/53) and 52.08% (25/48), respectively (P < 0.05), and the degree of diarrhea also had significant differences (P < 0.05). In UGT1A1 high-risk population, the incidence of diarrhea in two groups were 9.09% and 66.67% (P < 0.05), but there was no significant differences in UGT1A1 low-risk population. The incidence of neutropenia with degree 1-3 between two groups was 20.75% vs 20.83%, 13.21% vs 18.57%, 9.43% vs 20.83% (P < 0.05). No severe adverse events were reported in any group. And animal studies had shown SXD reduced content of IL-1β, IL-6, TNF-α, increased content of IL-10, TGF-β in jejunum tissue. CONCLUSIONS SXD had a prophylactic effect in the diarrhea induced by irinotecan, especially for UGT1A1 high-risk population, and this effect from SXD appeared to be maintained the completion of chemotherapy schedule. The mechanism of action of SXD was related to the regulation of inflammatory factors. Trial registration Chinese Clinical Trial Register: ChiCTR1800018490. Registered on 20 September 2018. https://www.chictr.org.cn/showproj.html?proj=25250 . The preliminary protocol of this clinical study has been published in the journal "Trials" in the form of protocol before this paper (Deng et al. in Trials 21:370, 2020).
Collapse
Affiliation(s)
- Chao Deng
- Department of Medical Oncology, Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, No.2, East Street, Ying Hua Yuan, Chao Yang District, Beijing, China
| | - Qing Liu
- Department of Medical Oncology, Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, No.2, East Street, Ying Hua Yuan, Chao Yang District, Beijing, China
| | - Meng Yang
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Hui-Juan Cui
- Department of Medical Oncology, Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, No.2, East Street, Ying Hua Yuan, Chao Yang District, Beijing, China
| | - Yang Ge
- Department of Medical Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qin Li
- Department of Medical Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shi-Jie Zhu
- Department of Medical Oncology, Wangjing Hospital of China Academy of Traditional Chinese Medicine, Beijing, China
| | - Guo-Wang Yang
- Department of Medical Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhi-Guo Zhang
- Department of Medical Oncology, Beijing Daxing District People's Hospital, Beijing, China
| | - Yu Gao
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yan-Ni Lou
- Department of Medical Oncology, Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, No.2, East Street, Ying Hua Yuan, Chao Yang District, Beijing, China
| | - Li-Qun Jia
- Department of Medical Oncology, Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, No.2, East Street, Ying Hua Yuan, Chao Yang District, Beijing, China.
| |
Collapse
|
2
|
Oršolić N, Jazvinšćak Jembrek M. Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy. Nutrients 2024; 16:3741. [PMID: 39519572 PMCID: PMC11547968 DOI: 10.3390/nu16213741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer treatments include surgical resection, chemotherapy, hyperthermia, immunotherapy, hormone therapy, and locally targeted therapies such as radiation therapy. Standard cancer therapies often require the use of multiple agents, which can activate nuclear factor kappa B (NF-κB) in tumor cells, leading to reduced cell death and increased drug resistance. Moreover, the use of multiple agents also contributes to added toxicity, resulting in poor treatment outcomes. Cancer cells gradually develop resistance to almost all chemotherapeutics through various mechanisms, such as drug efflux, alterations in drug metabolism and transport, changes in signal transduction pathways, enhanced DNA repair capacity, evasion of apoptosis, increased mutations, reactivation of drug targets, interaction with the cancer microenvironment, cancer cell-stroma interactions, epithelial-mesenchymal transition (EMT)-mediated chemoresistance, epigenetic modifications, metabolic alterations, and the effect of cancer stem cells (CSCs). Developing new strategies to improve chemotherapy sensitivity while minimizing side effects is essential for achieving better therapeutic outcomes and enhancing patients' quality of life. One promising approach involves combining conventional cancer treatments with propolis and its flavonoids. These natural compounds may enhance tumor response to treatment while reducing toxicity. Propolis and its components can sensitize cancer cells to chemotherapeutic agents, likely by inhibiting NF-κB activation, reprogramming tumor-associated macrophages (TAMs; an M2-like phenotype), and thereby reducing the release of matrix metalloproteinase (MMP)-9, cytokines, chemokines, and the vascular endothelial growth factor (VEGF). By reducing TAMs, propolis and its components may also overcome EMT-mediated chemoresistance, disrupt the crosstalk between macrophages and CSCs, inhibit the maintenance of stemness, and reverse acquired immunosuppression, thus promoting an antitumor response mediated by cytotoxic T-cells. This review highlights the potential of flavonoids to modulate the responsiveness of cancer to conventional treatment modalities. The evidence suggests that novel therapeutic strategies incorporating flavonoids could be developed to improve treatment outcomes. The positive effects of combining propolis with chemotherapeutics include reduced cytotoxicity to peripheral blood leukocytes, liver, and kidney cells. Therefore, polyphenolic/flavonoid components may hold potential for use in combination with chemotherapeutic agents in the clinical treatment of various types of cancers.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 244, HR-10000 Zagreb, Croatia
| |
Collapse
|
3
|
Wang Y, Qin Y, Kang Q, Wang H, Zhou S, Wu Y, Liu Y, Su Y, Guo Y, Xiu M, He J. Therapeutic potential of Astragalus membranaceus-Pueraria lobata decoction for the treatment of chemotherapy bowel injury. FASEB J 2024; 38:e70102. [PMID: 39382026 DOI: 10.1096/fj.202401677r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Intestinal mucositis (IM) is one of the most serious side effects of the chemotherapeutic agent irinotecan (CPT-11). Astragalus membranaceus-Pueraria lobata decoction is from the ancient medical book Zhengzhihuibu, has been reported to be used for the treatment of diabetes and hypertension. However, the beneficial effect and mechanism of AP on chemotherapy intestinal mucositis (CIM) remain largely unknown. This study aimed to investigate the efficacy and mechanism of Astragalus membranaceus-Pueraria lobata decoction (AP) in treating CIM. The beneficial effect and mechanism of AP on chemotherapy intestinal mucositis (CIM) were detected using Drosophila model, and combination with RT qPCR, transcriptomics. AP supplementation could significantly alleviate the CPT-11-induced body injury in Drosophila, such as increasing the survival rate, recovering the impaired digestion, improving the movement, and repairing the reproduction and developmental processes. Administration of AP remarkably alleviated the IM caused by CPT-11, including inhibiting the excretion, repairing the intestinal atrophy, improving the acid-base homeostasis imbalance, and inhibiting the disruption of intestinal structure. Mechanistic studies revealed that the protective role of AP against CPT-11 induced intestinal injury was regulated mainly by inhibiting immune-related Toll and Imd pathways, and enhancing the antioxidant capacity. Taken together, these results suggest that AP may be a novel agent to relieve CIM.
Collapse
Affiliation(s)
- Yixuan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yujie Qin
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qian Kang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Huinan Wang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shihong Zhou
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yifan Wu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Yun Su
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yaqiong Guo
- Second Provincial People's Hospital of Gansu, Lanzhou, China
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Jianzheng He
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
- Second Provincial People's Hospital of Gansu, Lanzhou, China
- Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
4
|
Li S, Zhu S, Yu J. The role of gut microbiota and metabolites in cancer chemotherapy. J Adv Res 2024; 64:223-235. [PMID: 38013112 PMCID: PMC11464465 DOI: 10.1016/j.jare.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The microbiota inhabits the epithelial surfaces of hosts, which influences physiological functions from helping digest food and acquiring nutrition to regulate metabolism and shaping host immunity. With the deep insight into the microbiota, an increasing amount of research reveals that it is also involved in the initiation and progression of cancer. Intriguingly, gut microbiota can mediate the biotransformation of drugs, thereby altering their bioavailability, bioactivity, or toxicity. AIM OF REVIEW The review aims to elaborate on the role of gut microbiota and microbial metabolites in the efficacy and adverse effects of chemotherapeutics. Furthermore, we discuss the clinical potential of various ways to harness gut microbiota for cancer chemotherapy. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent evidence shows that gut microbiota modulates the efficacy and toxicity of chemotherapy agents, leading to diverse host responses to chemotherapy. Thereinto, targeting the microbiota to improve efficacy and diminish the toxicity of chemotherapeutic drugs may be a promising strategy in tumor treatment.
Collapse
Affiliation(s)
- Shiyu Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Xu S, Lan H, Huang C, Ge X, Zhu J. Mechanisms and emerging strategies for irinotecan-induced diarrhea. Eur J Pharmacol 2024; 974:176614. [PMID: 38677535 DOI: 10.1016/j.ejphar.2024.176614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Irinotecan (also known as CPT-11) is a topoisomerase I inhibitor first approved for clinical use as an anticancer agent in 1996. Over the past more than two decades, it has been widely used for combination regimens to treat various malignancies, especially in gastrointestinal and lung cancers. However, severe dose-limiting toxicities, especially gastrointestinal toxicity such as late-onset diarrhea, were frequently observed in irinotecan-based therapy, thus largely limiting the clinical application of this agent. Current knowledge regarding the pathogenesis of irinotecan-induced diarrhea is characterized by the complicated metabolism of irinotecan to its active metabolite SN-38 and inactive metabolite SN-38G. A series of enzymes and transporters were involved in these metabolic processes, including UGT1A1 and CYP3A4. Genetic polymorphisms of these metabolizing enzymes were significantly associated with the occurrence of irinotecan-induced diarrhea. Recent discoveries and progress made on the detailed mechanisms enable the identification of potential biomarkers for predicting diarrhea and as such guiding the proper patient selection with a better range of tolerant dosages. In this review, we introduce the metabolic process of irinotecan and describe the pathogenic mechanisms underlying irinotecan-induced diarrhea. Based on the mechanisms, we further outline the potential biomarkers for predicting the severity of diarrhea. Finally, based on the current experimental evidence in preclinical and clinical studies, we discuss and prospect the current and emerging strategies for the prevention of irinotecan-induced diarrhea.
Collapse
Affiliation(s)
- Shengkun Xu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Huiyin Lan
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Chengyi Huang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Xingnan Ge
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
6
|
Zhou H, Hu D, Zhao X, Qin S, Nong Q, Tian Y, Zhang Z, Dong H, Zhang P, Xu F. An optimal combination of four active components in Huangqin decoction for the synergistic sensitization of irinotecan against colorectal cancer. Chin Med 2024; 19:94. [PMID: 38956673 PMCID: PMC11218176 DOI: 10.1186/s13020-024-00967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Irinotecan (CPT-11) is a first-line treatment for advanced colorectal cancer (CRC). Four components (baicalin, baicalein, wogonin, and glycyrrhizic acid) derived from Huangqin Decoction (HQD) have been proven to enhance the anticancer activity of CPT-11 in our previous study. OBJECTIVE This study aimed to determine the optimal combination of the four components for sensitizing CPT-11 as well as to explore the underlying mechanism. METHODS The orthogonal design method was applied to obtain candidate combinations (Cmb1-9) of the four components. The influence of different combinations on the anticancer effect of CPT-11 was first evaluated in vitro by cell viability, wound healing ability, cloning formation, apoptosis, and cell cycle arrest. Then, a CRC xenograft mice model was constructed to evaluate the anticancer effect of the optimal combination in vivo. Potential mechanisms of the optimal combination exerting a sensitization effect combined with CPT-11 against CRC were analyzed by targeted metabolomics. RESULTS In vitro experiments determined that Cmb8 comprised of baicalin, baicalein, wogonin, and glycyrrhizic acid at the concentrations of 17 μM, 47 μM, 46.5 μM and 9.8 μM respectively was the most effective combination. Importantly, the cell viability assay showed that Cmb8 exhibited synergistic anticancer activity in combination with CPT-11. In in vivo experiments, this combination (15 mg/kg of baicalin, 24 mg/kg of baicalein, 24 mg/kg of wogonin, and 15 mg/kg of glycyrrhizic acid) also showed a synergistic anticancer effect. Meanwhile, inflammatory factors and pathological examination of the colon showed that Cmb8 could alleviate the gastrointestinal damage induced by CPT-11. Metabolic profiling of the tumors suggested that the synergistic anticancer effect of Cmb8 might be related to the regulation of fatty acid metabolism. CONCLUSION The optimal combination of four components derived from HQD for the synergistic sensitization of CPT-11 against CRC was identified.
Collapse
Affiliation(s)
- Hongyan Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Dingxin Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xian Zhao
- Department of Pharmacy, China Pharmaceutical University, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Siyuan Qin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Qiyao Nong
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
7
|
Zou Y, Wang Y, Zhou W, Pei J. Banxia Xiexin decoction combined with 5-ASA protects against CPT-11-induced intestinal dysfunction in rats via inhibiting TLR4/NF-κB signaling pathway. Immun Inflamm Dis 2024; 12:e1208. [PMID: 38860759 PMCID: PMC11165681 DOI: 10.1002/iid3.1208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/24/2023] [Accepted: 02/17/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Banxia Xiexin decoction (BXD) can control irinotecan (CPT-11)-caused delayed diarrhea, but the corresponding mechanism remains undefined. AIMS This paper aimed to uncover the mechanism of BXD in regulating CPT-11-caused delayed diarrhea. MATERIALS & METHODS Sprague-Dawley (SD) rats were assigned into the control, model, BXD low-dose (BXD-L, 5 g/kg), BXD medium-dose (BXD-M, 10 g/kg), BXD high-dose (BXD-H, 15 g/kg), 5-aminosalicylic acid (5-ASA, 10 mL/kg), and BXD-M + 5-ASA groups. Rats were injected intraperitoneally with 150 mg/kg CPT-11 at Day 4 and Day 5 to induce delayed diarrhea, and later treated with various doses (low, medium, and high) of BXD and 5-ASA for 9 days, except for rats in control group. The body weight of rats was measured. The rat colon tissue injury, inflammatory cytokine levels, and the activation of toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) signaling pathway were detected. RESULTS BXD (5, 10, or 15 g/kg) or 5-ASA (10 mL/kg) alleviated body weight loss and colon tissue injury, decreased levels of inflammatory cytokines, and inactivated TLR4/NF-κB signaling pathway in CPT-11-induced model rats. BXD at 10 g/kg (the optimal concentration) could better treat CPT-11-induced intestinal dysfunction, as evidenced by the resulting approximately 50% reduction on injury score of model rats. Moreover, BXD-M (10 g/kg) synergistic with 5-ASA (10 mL/kg) further strengthened the inhibition on rat body weight loss, colon tissue injury, inflammatory cytokine levels, and TLR4/NF-κB signaling pathway. CONCLUSION To sum up, BXD has a protective effect against CPT-11-induced intestinal dysfunction by inhibiting inflammation through inactivation TLR4/NF-κB signaling pathway. In particular, the combined use of BXD and 5-ASA holds great promise for treating CPT-11-induced delayed diarrhea.
Collapse
Affiliation(s)
- Yuanyuan Zou
- Department of GastroenterologyXiaoshan Hospital of Traditional Chinese MedicineHangzhouChina
| | - Yakun Wang
- Department of Critical Care MedicineHangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityHangzhouChina
| | - Wenying Zhou
- Department of GastroenterologyXiaoshan Hospital of Traditional Chinese MedicineHangzhouChina
| | - Jingbo Pei
- Department of GastroenterologyXiaoshan Hospital of Traditional Chinese MedicineHangzhouChina
| |
Collapse
|
8
|
Yu XH, Lv Z, Zhang CE, Gao Y, Li H, Ma XJ, Ma ZJ, Su JR, Huang LQ. Shengjiang Xiexin decoction mitigates murine Clostridium difficile infection through modulation of the gut microbiota and bile acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117384. [PMID: 37925000 DOI: 10.1016/j.jep.2023.117384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The overuse of antibiotics has resulted in Clostridium difficile infection (CDI) as a significant global public health concern. Studies have shown that imbalances in gut microbiota and metabolism play a vital role in the onset of CDI. Shengjiang Xiexin decoction (SJT), a traditional Chinese medicinal formula widely employed in the treatment of gastrointestinal ailments, demonstrates effectiveness in addressing murine CDI. However, the precise mechanistic role of SJT in CDI treatment remains uncertain, particularly regarding its impact on gut microbiota and intestinal metabolism. Thus, further investigation is imperative to shed light on these mechanisms. AIM OF THE STUDY This study aims to thoroughly investigate the therapeutic potential of SJT in the treatment of CDI, while also examining its impact on the intricate interplay between gut microbiota and bile acid metabolism. By employing a mouse model, we aspire to uncover novel insights that could pave the way for the development of more effective strategies in combating CDI. MATERIALS AND METHODS We developed a mouse model for CDI and assessed SJT's potential as a therapeutic agent through pharmacological analyses. Our study employed high-throughput sequencing of 16S rRNA to identify changes in gut microbiota composition and untargeted metabolomics analysis to evaluate SJT's intervention on intestinal metabolism. We also conducted targeted analysis of bile acid metabolism to examine the specific effects of SJT. Finally, the growth-inhibitory effect of SJT on C. difficile was confirmed through ex vivo cultivation of the pathogen using cecal contents, supporting its potential role in treating CDI by modulating gut microbiota and bile acid metabolism. RESULTS In pharmacological studies, SJT was found to effectively reduce the levels of A&B toxins and alleviate colonic inflammation in CDI mice. Mechanistically, SJT demonstrated a mild increase in the abundance and diversity of the gut microbiota. However, its most significant impact was observed in the substantial improvement of the structural composition of the gut microbiota. Specifically, SJT decreased the abundance of gut Polymorphs and Firmicutes while restoring the proportions of family Trichophyton and Bacteroides_S24-7 spp (P < 0.001). Moreover, SJT not only decreased the levels of primary bile acids but also elevated the levels of secondary bile acids. Notably, it enhanced the conversion of taurocholic acid (TCA) to deoxycholic acid (DCA), leading to a balanced bile acid metabolism. Finally, cecal contents of SJT-treated mice showed a significant reduction in the growth of C. difficile, underscoring the therapeutic potential of SJT via modulation of gut microbiota and bile acid metabolism. CONCLUSION SJT demonstrates remarkable efficacy in treating CDI in mice by not only effectively combating the infection but also restoring the intricate balance of gut microbiota and bile acid metabolism. Furthermore, promising indications suggest that SJT may have the potential to prevent CDI recurrence. These findings underscore the comprehensive therapeutic value of SJT in managing CDI. Moving forward, we plan to transition from the laboratory to clinical settings to conduct further studies, validating our conclusions on SJT's efficacy.
Collapse
Affiliation(s)
- Xiao-Hong Yu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Zhi Lv
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Cong-En Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Yan Gao
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiao-Jing Ma
- Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhi-Jie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China.
| | - Jian-Rong Su
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China.
| | - Lu-Qi Huang
- Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
9
|
Wenzel C, Lapczuk-Romanska J, Malinowski D, Ostrowski M, Drozdzik M, Oswald S. Comparative Intra-Subject Analysis of Gene Expression and Protein Abundance of Major and Minor Drug Metabolizing Enzymes in Healthy Human Jejunum and Liver. Clin Pharmacol Ther 2024; 115:221-230. [PMID: 37739780 DOI: 10.1002/cpt.3055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023]
Abstract
First pass metabolism by phase I and phase II enzymes in the intestines and liver is a major determinant of the oral bioavailability of many drugs. Several studies analyzed expressions of major drug-metabolizing enzymes (DMEs), such as CYP3A4 and UGT1A1 in the human gut and liver. However, there is still a lack of knowledge regarding other DMEs (i.e., "minor" DMEs), although several clinically relevant drugs are affected by those enzymes. Moreover, there is very limited intra-subject data on hepatic and intestinal expression levels of minor DMEs. To fill this gap of knowledge, we analyzed gene expression (quantitative real-time polymerase chain reaction) and protein abundance (targeted proteomics) of 24 clinically relevant DMEs, that is, carboxylesterases (CES), UDP-glucuronosyltransferases (UGT), and cytochrome P450 (CYP)-enzymes. We performed our analysis using jejunum and liver tissue specimens from the same 11 healthy organ donors (8 men and 3 women, aged 19-60 years). Protein amounts of all investigated DMEs, with the exception of CYP4A11, were detected in human liver samples. CES2, CYP2C18, CYP3A4, and UGT2B17 protein abundance was similar or even higher in the jejunum, and all other DMEs were found in higher amounts in the liver. Significant correlations between gene expression and protein levels were observed only for 2 of 15 jejunal, but 13 of 23 hepatic DMEs. Intestinal and hepatic protein amounts only significantly correlated for CYP3A4 and UGT1A3. Our results demonstrated a notable variability between the individuals, which was even higher in the intestines than in the liver. Our intrasubject analysis of DMEs in the jejunum and liver from healthy donors, may be useful for physiologically-based pharmacokinetic-based modeling and prediction in order to improve efficacy and safety of oral drug therapy.
Collapse
Affiliation(s)
- Christoph Wenzel
- Department of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Joanna Lapczuk-Romanska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Damian Malinowski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Szczecin, Poland
| | - Marek Ostrowski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Szczecin, Poland
- Department of General and Transplantation Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
10
|
He Y, Wu L, Qi X, Wang X, He B, Zhang W, Zhao W, Deng M, Xiong X, Wang Y, Liang S. Efficiency of Protective Interventions on Irinotecan-Induced Diarrhea: A Systematic Review and Meta-Analysis. Integr Cancer Ther 2024; 23:15347354241242110. [PMID: 38567795 PMCID: PMC10993684 DOI: 10.1177/15347354241242110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Irinotecan is widely used in the treatment of various solid tumors, but the adverse effects from it, especially diarrhea, limit its use. Several clinical trials of prophylactic treatment of irinotecan-induced diarrhea (IID) have been ongoing, and some of the data are controversial. This encouraged us to conduct a meta-analysis of the effects of interventions on preventing IID. METHOD This systematic review was conducted based on the PRISMA statement. We performed literature searches from PubMed, Web of Science, Embase, and Cochrane Library. The number registered in PROSPERO is CRD42022368633. After searching 1034 articles in the database and references, 8 studies were included in this meta-analysis. RESULT The RR of high-grade diarrhea and all-grade diarrhea were 0.31 (I2 = 51%, 95% CI: 0.14-0.69; P = .004) and .76 (I2 = 65%, 95% CI: 0.62-0.93; P < .008) respectively, thus the use of intervention measures for preventing IID is effective, and the risk reduction of high-grade diarrhea was more significant. Subgroup analysis revealed that the monotherapy group (RR: 0.48, 95% CI: 0.21-1.13, I2 = 0%) and combination therapy group (RR: 0.14, 95% CI: 0.06-0.32, I2 = 0%) in the risk of high-grade diarrhea had no significant heterogeneity within the groups, and traditional herbal medicines (Kampo medicine Hangeshashin-to, PHY906 and hot ironing with Moxa Salt Packet on Tianshu and Shangjuxu) were effective preventive measures (RR:0.20, 95% CI: 0.07-0.60, I2 = 0%). The Jadad scores for traditional herbal medicines studies were 3, and the follow-up duration was only 2 to 6 weeks. CONCLUSION This systematic review and meta-analysis suggest that preventive treatments significantly reduced the risk of high-grade and all-grade diarrhea, confirming the efficacy in the incidence and severity of IID, among which traditional herbal medicines (baicalin-containing) provided a protective effect in reducing the severity of IID. However, the traditional herbal medicines studies were of low quality. Combined irinotecan therapy can obtain better preventive effects than monotherapy of IID. These would be helpful for the prevention of IID in clinical practice.
Collapse
Affiliation(s)
- Yanxi He
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lili Wu
- Zunyi Medical University, Zunyi, China
| | - Xiaoyi Qi
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xuan Wang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bing He
- Southwest Medical University, Luzhou, China
| | - Wei Zhang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenjing Zhao
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
| | - Mingming Deng
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Xiong
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yu Wang
- Gulin County People’s Hospital, Luzhou, China
| | - Sicheng Liang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
- Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
| |
Collapse
|
11
|
Cao Z, Liu Y, Chen S, Wang W, Yang Z, Chen Y, Jiao S, Huang W, Chen L, Sun L, Li Z, Zhang L. Discovery of novel carboxylesterase 2 inhibitors for the treatment of delayed diarrhea and ulcerative colitis. Biochem Pharmacol 2023; 215:115742. [PMID: 37567318 DOI: 10.1016/j.bcp.2023.115742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Human carboxylesterase 2 (hCES2) is an enzyme that metabolizes irinotecan to SN-38, a toxic metabolite considered a significant source of side effects (lethal delayed diarrhea). The hCES2 inhibitors could block the hydrolysis of irinotecan in the intestine and thus reduce the exposure of intestinal SN-38, which may alleviate irinotecan-associated diarrhea. However, existing hCES2 inhibitors (except loperamide) are not used in clinical applications due to lack of validity or acceptable safety. Therefore, developing more effective and safer drugs for treating delayed diarrhea is urgently needed. This study identified a lead compound 1 with a novel scaffold by high-throughput screening in our in-house library. After a comprehensive structure-activity relationship study, the optimal compound 24 was discovered as an efficient and highly selective hCES2 inhibitor (hCES2: IC50 = 6.72 μM; hCES1: IC50 > 100 μM). Further enzyme kinetics study indicated that compound 24 is a reversible inhibitor of hCES2 with competitive inhibition mode (Ki = 6.28 μM). The cell experiments showed that compound 24 could reduce the level of hCES2 in living cells (IC50 = 6.54 μM). The modeling study suggested that compound 24 fitted very well with the binding pocket of hCES2 by forming multiple interactions. Notably, compound 24 can effectively treat irinotecan-induced delayed diarrhea and DSS-induced ulcerative colitis, and its safety has also been verified in subtoxic studies. Based on the overall pharmacological and preliminary safety profiles, compound 24 is worthy of further evaluation as a novel agent for irinotecan-induced delayed diarrhea.
Collapse
Affiliation(s)
- Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuxia Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Siliang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ya Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shixuan Jiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wanqiu Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lianru Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lidan Sun
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510006, PR China.
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
12
|
Li JP, Chu CL, Chao WR, Yeh CS, Lee YJ, Chen DC, Yang SF, Chao YH. Ling Zhi-8, a fungal immunomodulatory protein in Ganoderma lucidum, alleviates CPT-11-induced intestinal injury via restoring claudin-1 expression. Aging (Albany NY) 2023; 15:3621-3634. [PMID: 37155145 PMCID: PMC10449289 DOI: 10.18632/aging.204695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
CPT-11 (Irinotecan) remains an important chemotherapeutic agent against various solid tumors nowadays. Potential adverse effects, especially gastrointestinal toxicities, are the main limiting factor for its clinical utility. Ling Zhi-8 (LZ-8), a fungal immunomodulatory protein in Ganoderma lucidum mycelia, has potential for drug development due to its multiple bioactivities and functions. This study aimed to explore the influence of LZ-8 on CPT-11-treated IEC-6 cells in vitro and on mice with CPT-11-induced intestinal injury in vivo. The mechanism through which LZ-8 exerted its protective effects was also investigated. In the in vitro study, the viability and claudin-1 expression of IEC-6 cells decreased gradually with increasing concentrations of CPT-11, but LZ-8 treatment had no obvious influence on their viability, morphology, and claudin-1 expression. Pretreatment of LZ-8 significantly improved CPT-11-decreased cell viability and claudin-1 expression in IEC-6 cells. In mice with CPT-11-induced intestinal injury, LZ-8 treatment could ameliorate symptoms and mitigate intestinal damage. Meanwhile, LZ-8 restored claudin-1 expression in the intestinal membranes in CPT-11-treated mice. Collectively, our results demonstrated the protective effects of LZ-8 against CPT-11 damage in both IEC-6 cells and mice. LZ-8 can restore claudin-1 expression in intestinal cells following CPT-11 treatment, suggesting the role of claudin-1 in the scenario.
Collapse
Affiliation(s)
- Ju-Pi Li
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Ru Chao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Siang Yeh
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Ju Lee
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Dz-Chi Chen
- Yeastern Biotech Co., Ltd., New Taipei City, Taiwan
| | - Shun-Fa Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Clinical Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
13
|
Mahdy MS, Azmy AF, Dishisha T, Mohamed WR, Ahmed KA, Hassan A, Aidy SE, El-Gendy AO. Irinotecan-gut microbiota interactions and the capability of probiotics to mitigate Irinotecan-associated toxicity. BMC Microbiol 2023; 23:53. [PMID: 36864380 PMCID: PMC9979425 DOI: 10.1186/s12866-023-02791-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Irinotecan is a chemotherapeutic agent used to treat a variety of tumors, including colorectal cancer (CRC). In the intestine, it is transformed into SN-38 by gut microbial enzymes, which is responsible for its toxicity during excretion. OBJECTIVE Our study highlights the impact of Irinotecan on gut microbiota composition and the role of probiotics in limiting Irinotecan-associated diarrhea and suppressing gut bacterial β-glucuronidase enzymes. MATERIAL AND METHODS To investigate the effect of Irinotecan on the gut microbiota composition, we applied 16S rRNA gene sequencing in three groups of stool samples from healthy individuals, colon cancer, and Irinotecan treated patients (n = 5/group). Furthermore, three Lactobacillus spp.; Lactiplantibacillus plantarum (L. plantarum), Lactobacillus acidophilus (L. acidophilus), Lacticaseibacillus rhamnosus (L. rhamnosus) were used in a single and mixed form to in-vitro explore the effect of probiotics on the expression of β-glucuronidase gene from E. coli. Also, probiotics were introduced in single and mixed forms in groups of mice before the administration of Irinotecan, and their protective effects were explored by assessing the level of reactive oxidative species (ROS) as well as studying the concomitant intestinal inflammation and apoptosis. RESULTS The gut microbiota was disturbed in individuals with colon cancer and after Irinotecan treatment. In the healthy group, Firmicutes were more abundant than Bacteriodetes, which was the opposite in the case of colon-cancer or Irinotecan treated groups. Actinobacteria and Verrucomicrobia were markedly present within the healthy group, while Cyanobacteria were noted in colon-cancer and the Irinotecan-treated groups. Enterobacteriaceae and genus Dialister were more abundant in the colon-cancer group than in other groups. The abundance of Veillonella, Clostridium, Butryicicoccus, and Prevotella were increased in Irinotecan-treated groups compared to other groups. Using Lactobacillus spp. mixture in mice models significantly relieved Irinotecan-induced diarrhea through the reduction of both β-glucuronidase expression and ROS, in addition to guarding gut epithelium against microbial dysbiosis and proliferative crypt injury. CONCLUSIONS Irinotecan-based chemotherapy altered intestinal microbiota. The gut microbiota participates greatly in determining both the efficacy and toxicity of chemotherapies, of which the toxicity of Irinotecan is caused by the bacterial ß-glucuronidase enzymes. The gut microbiota can now be aimed and modulated to promote efficacy and decrease the toxicity of chemotherapeutics. The used probiotic regimen in this study lowered mucositis, oxidative stress, cellular inflammation, and apoptotic cascade induction of Irinotecan.
Collapse
Affiliation(s)
- Marwa S Mahdy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Salah Salem Street, Beni-Suef, 62511, Egypt
| | - Ahmed F Azmy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Salah Salem Street, Beni-Suef, 62511, Egypt
| | - Tarek Dishisha
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Salah Salem Street, Beni-Suef, 62511, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed Hassan
- Department of Clinical Oncology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Ahmed O El-Gendy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Salah Salem Street, Beni-Suef, 62511, Egypt.
| |
Collapse
|
14
|
Wu J, Li Y, He Q, Yang X. Exploration of the Use of Natural Compounds in Combination with Chemotherapy Drugs for Tumor Treatment. Molecules 2023; 28:molecules28031022. [PMID: 36770689 PMCID: PMC9920618 DOI: 10.3390/molecules28031022] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Currently, chemotherapy is the main treatment for tumors, but there are still problems such as unsatisfactory chemotherapy results, susceptibility to drug resistance, and serious adverse effects. Natural compounds have numerous pharmacological activities which are important sources of drug discovery for tumor treatment. The combination of chemotherapeutic drugs and natural compounds is gradually becoming an important strategy and development direction for tumor treatment. In this paper, we described the role of natural compounds in combination with chemotherapeutic drugs in synergizing, reducing drug resistance, mitigating adverse effects and related mechanisms, and providing new insights for future oncology research.
Collapse
Affiliation(s)
- Jianping Wu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunheng Li
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Correspondence: ; Tel.: +86-571-8820-8076
| |
Collapse
|
15
|
Lai X, Wang A. Clinical Study on Prevention of Irinotecan-Induced Delayed-Onset Diarrhea by Hot Ironing with Moxa Salt Packet on Tianshu and Shangjuxu. Emerg Med Int 2022; 2022:6587884. [PMID: 35912389 PMCID: PMC9334062 DOI: 10.1155/2022/6587884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Objective To study the clinical efficacy of hot ironing of the Tianshu and Shangjuxu with moxa salt packet to prevent irinotecan (CPT-11)-induced delayed-onset diarrhea (IIDD). Methods A randomized controlled study was conducted on a sample of 120 patients with advanced colorectal cancer who were hospitalized in our oncology department and treated with FOLFIRI chemotherapy regimen from February 2018 to July 2021. They were equally divided into study group (n = 60) and control group (n = 60) according to whether they were treated with hot ironing with moxa salt packs or not. The general conditions, occurrence of IIDD, occurrence of delayed chemotherapy due to IIDD, time of occurrence and duration of IIDD, Karnofsky performance score (KPS) score, occurrence of leukopenia, and myelosuppression were compared between the two groups. Result The incidence of grade 1, 2, 3, and 4 diarrhea in the study group was 11.67% (7/60), 5.00% (3/60), 3.33% (2/60), and 0.00% (0/60), respectively, while the incidence of grade 1, 2, 3, and 4 diarrhea in the control group was 21.67% (13/60), 8.33% (5/60), 10.00% (6/60), and 3.33% (2/60). The incidence of severe diarrhea and total diarrhea in the study group was (3.33% and 20.00%) lower than that in the control group (13.33% and 43.33%) (P < 0.05). The incidence of delayed chemotherapy was lower in the study group (8.33%) (1/12) than in the control group (23.08%) (6/26) but the difference between the groups was not statistically significant (P > 0.05). The time to onset of IIDD in the study group (6.45 ± 1.53) days was comparable to that in the control group (6.40 ± 1.77 days) (P > 0.05), but the duration of IIDD in the study group (3.25 ± 1.05 days) was shorter than that in the control group (5.70 ± 1.72 days) (P < 0.05). After treatment, the incidence of KPS improvement, stabilization, and reduction in the study group was 38.33% (23/60), 51.67% (31/60), and 10.00% (6/60), respectively, the incidence of KPS improvement, stabilization, and reduction in the control group was 23.33% (14/60), 50.00% (30/60), and 26.67% (16/60), respectively, and the percentage of KPS reduction in the study group was less than that in the control group (P < 0.05). During the observation period after treatment, the total incidence of leucopenia in the study group was 11.67% (7/60) which is lower than 31.67% (19/60) in the control group (P < 0.05). During the observation period after treatment, the incidence of III°+°IV myelosuppression in the study group was 5.00% (3/60) which is lower than 25.00% (15/60) in the control group (P < 0.05). Conclusion The hot ironing with moxa salt packet on Tianshu and Shangjuxu was more effective in preventing IIDD, which could reduce the incidence and severity of IIDD, shorten the duration of diarrhea and significantly increase the quality of life of patients with no significant adverse effects.
Collapse
Affiliation(s)
- Xianghong Lai
- Department of Integrated Chinese and Western Medicine Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China
| | - Anmei Wang
- Department of Integrated Chinese and Western Medicine Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China
| |
Collapse
|
16
|
Guan H, Li P, Wang Q, Zeng F, Wu J, Zhang F, Liao S, Shi Y. Deciphering the chemical constituents of Shengjiang Xiexin decoction by ultra-high-performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry and the impact of 20 characteristic components on multidrug resistance-associated protein 2 in the vesicular transport assay. J Sep Sci 2022; 45:3459-3479. [PMID: 35838583 DOI: 10.1002/jssc.202200370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022]
Abstract
Shengjiang Xiexin decoction, a traditional Chinese medical formula, has been utilized to alleviate the delayed-onset diarrhea induced by irinotecan. However, the chemical constituents of this formula and the activities of its constituents remain unclear. In this study, an ultra-high-performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry was employed to comprehensively analyze the chemical constituents of Shengjiang Xiexin decoction. A total of 270 components including flavonoids, coumarins, triterpenoids, alkaloids, diarylheptanoids and others were identified or characterized. The multidrug resistance-associated protein 2 is an efflux transporter responsible for regulating drug absorption. A total of 20 characteristic components from the formula were selected to evaluate their effects on the function of multidrug resistance-associated protein 2 using the vesicular transport assay. Glycyrrhizic acid and glycyrrhetinic acid were identified as potential multidrug resistance-associated protein 2 inhibitors, while 9 flavonoid aglycones increased the uptake of the substrate [3 H]-estradiol 17-β-glucuronide in the vesicles. This was the first systematical investigation on the chemical constituents from Shengjiang Xiexin decoction and the effect of its characteristic components on the transporter. The results offered a basis for further exploring the detoxification mechanisms of this formula and its interactions with other drugs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huanyu Guan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.,State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guizhou, 550025, China
| | - Pengfei Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.,National Institute of Drug Clinical Trial, Guizhou Provincial People's Hospital, Guizhou, 550002, China
| | - Qian Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guizhou, 550025, China
| | - Fanli Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guizhou, 550025, China
| | - Jiashuo Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Fangqing Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Shanggao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guizhou, 550025, China
| | - Yue Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
17
|
Gao Q, Feng J, Liu W, Wen C, Wu Y, Liao Q, Zou L, Sui X, Xie T, Zhang J, Hu Y. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv Drug Deliv Rev 2022; 188:114445. [PMID: 35820601 DOI: 10.1016/j.addr.2022.114445] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023]
Abstract
The therapeutic limitations such as insufficient efficacy, drug resistance, metastasis, and undesirable side effects are frequently caused by the long duration monotherapy based on chemotherapeutic drugs. multiple combinational anticancer strategies such as nucleic acids combined with chemotherapeutic agents, chemotherapeutic combinations, chemotherapy and tumor immunotherapy combinations have been embraced, holding great promise to counter these limitations, while still taking including some potential risks. Nowadays, an increasing number of research has manifested the anticancer effects of phytochemicals mediated by modulating cancer cellular events directly as well as the tumor microenvironment. Specifically, these natural compounds exhibited suppression of cancer cell proliferation, apoptosis, migration and invasion of cancer cells, P-glycoprotein inhibition, decreasing vascularization and activation of tumor immunosuppression. Due to the low toxicity and multiple modulation pathways of these phytochemicals, the combination of chemotherapeutic agents with natural compounds acts as a novel approach to cancer therapy to increase the efficiency of cancer treatments as well as reduce the adverse consequences. In order to achieve the maximized combination advantages of small-molecule chemotherapeutic drugs and natural compounds, a variety of functional nano-scaled drug delivery systems, such as liposomes, host-guest supramolecules, supramolecules, dendrimers, micelles and inorganic systems have been developed for dual/multiple drug co-delivery. These co-delivery nanomedicines can improve pharmacokinetic behavior, tumor accumulation capacity, and achieve tumor site-targeting delivery. In that way, the improved antitumor effects through multiple-target therapy and reduced side effects by decreasing dose can be implemented. Here, we present the synergistic anticancer outcomes and the related mechanisms of the combination of phytochemicals with small-molecule anticancer drugs. We also focus on illustrating the design concept, and action mechanisms of nanosystems with co-delivery of drugs to synergistically improve anticancer efficacy. In addition, the challenges and prospects of how these insights can be translated into clinical benefits are discussed.
Collapse
Affiliation(s)
- Quan Gao
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jiao Feng
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wencheng Liu
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chengyong Wen
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Xinbing Sui
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Tian Xie
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China.
| |
Collapse
|
18
|
Inoue N, Terabayashi T, Takiguchi-Kawashima Y, Fujinami D, Matsuoka S, Kawano M, Tanaka K, Tsumura H, Ishizaki T, Narahara H, Kohda D, Nishida Y, Hanada K. The benzylisoquinoline alkaloids, berberine and coptisine, act against camptothecin-resistant topoisomerase I mutants. Sci Rep 2021; 11:7718. [PMID: 33833336 PMCID: PMC8032691 DOI: 10.1038/s41598-021-87344-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/24/2021] [Indexed: 01/24/2023] Open
Abstract
DNA replication inhibitors are utilized extensively in studies of molecular biology and as chemotherapy agents in clinical settings. The inhibition of DNA replication often triggers double-stranded DNA breaks (DSBs) at stalled DNA replication sites, resulting in cytotoxicity. In East Asia, some traditional medicines are administered as anticancer drugs, although the mechanisms underlying their pharmacological effects are not entirely understood. In this study, we screened Japanese herbal medicines and identified two benzylisoquinoline alkaloids (BIAs), berberine and coptisine. These alkaloids mildly induced DSBs, and this effect was dependent on the function of topoisomerase I (Topo I) and MUS81-EME1 structure-specific endonuclease. Biochemical analysis revealed that the action of BIAs involves inhibiting the catalytic activity of Topo I rather than inducing the accumulation of the Topo I-DNA complex, which is different from the action of camptothecin (CPT). Furthermore, the results showed that BIAs can act as inhibitors of Topo I, even against CPT-resistant mutants, and that the action of these BIAs was independent of CPT. These results suggest that using a combination of BIAs and CPT might increase their efficiency in eliminating cancer cells.
Collapse
Affiliation(s)
- Naomi Inoue
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Takeshi Terabayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yuri Takiguchi-Kawashima
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Daisuke Fujinami
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shigeru Matsuoka
- Department of Clinical Biology Ant Therapeutics, Faculty of Medicine, Oita University, Yufu, Japan
| | - Masanori Kawano
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazuhiro Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hiroshi Tsumura
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Yufu, Japan
| | - Toshimasa Ishizaki
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hisashi Narahara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Nishida
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan.
| | - Katsuhiro Hanada
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan.
| |
Collapse
|
19
|
Amentoflavone from Selaginella tamariscina as a potent inhibitor of gut bacterial β-glucuronidase: Inhibition kinetics and molecular dynamics stimulation. Chem Biol Interact 2021; 340:109453. [PMID: 33785314 DOI: 10.1016/j.cbi.2021.109453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Gut bacterial β-glucuronidase (GUS) plays a pivotal role in the metabolism and reactivation of a vast of glucuronide conjugates of both endogenous and xenobiotic compounds in the gastrointestinal tract of human, which has been implicated in certain drug-induced gastrointestinal tract (GI) toxicity in clinic. Inhibitors of gut microbial GUS exhibited great potentials in relieving the drug-induced GI toxicity. In this study, Selaginella tamariscina and its major biflavonoid amentoflavone (AMF) were evaluated for their inhibitory activity against Escherichia coli GUS. Two selective probe substrates for GUS (a specific fluorescent probe substrate for GUS, DDAOG and a classical drug substrate for GUS, SN38G) were used in parallel for charactering the inhibition behaviors. Both the extract of S. tamariscina and its major biflavonoid AMF displayed evident inhibitory effects on GUS, and the IC50 values of AMF against GUS mediated DDAOG and SN-38G hydrolysis were 0.62 and 0.49 μM, respectively. Inhibition kinetics studies indicated that AMF showed mixed type inhibition for GUS-mediated DDAOG hydrolysis, while displayed competitive type inhibition against GUS-mediated SN-38G hydrolysis, with the Ki values of 0.24 and 1.25 μM, respectively. Molecular docking studies and molecular dynamics stimulation results clarified the role of amino acid residues Leu361, Ile363, and Glu413 in the inhibition of AMF on GUS. These results provided some foundations for the potential clinical utility of S. tamariscina and its major biflavonoid AMF for treating drug-induced enteropathy.
Collapse
|
20
|
Li XN, Hua LX, Zhou TS, Wang KB, Wu YY, Emam M, Bao XZ, Chen J, Wei B. Cinnamic acid derivatives: inhibitory activity against Escherichia coli β-glucuronidase and structure-activity relationships. J Enzyme Inhib Med Chem 2020; 35:1372-1378. [PMID: 32571102 PMCID: PMC7717682 DOI: 10.1080/14756366.2020.1780225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/24/2020] [Accepted: 05/26/2020] [Indexed: 01/27/2023] Open
Abstract
Gut microbial β-glucuronidase (GUS) is a potential therapeutic target to reduce gastrointestinal toxicity caused by irinotecan. In this study, the inhibitory effects of 17 natural cinnamic acid derivatives on Escherichia coli GUS (EcGUS) were characterised. Seven compounds, including caffeic acid ethyl ester (CAEE), had a stronger inhibitory effect (IC50 = 3.2-22.2 µM) on EcGUS than the positive control, D-glucaric acid-1,4-lactone. Inhibition kinetic analysis revealed that CAEE acted as a competitive inhibitor. The results of molecular docking analysis suggested that CAEE bound to the active site of EcGUS through interactions with Asp163, Tyr468, and Glu504. In addition, structure-activity relationship analysis revealed that the presence of a hydrogen atom at R1 and bulky groups at R9 in cinnamic acid derivatives was essential for EcGUS inhibition. These data are useful to design more potent cinnamic acid-type inhibitors of EcGUS.
Collapse
Affiliation(s)
- Xing-Nuo Li
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Lu-Xia Hua
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Tao-Shun Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ke-Bo Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yuan-Yuan Wu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Mahmoud Emam
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China
- Shanghai Hadal Biomedical Engineering Co., Ltd, Shanghai, P. R. China
- Department of Phytochemistry and Plant Systematics, National Research Centre, Giza, Egypt
| | - Xiao-Ze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jun Chen
- Shanghai Hadal Biomedical Engineering Co., Ltd, Shanghai, P. R. China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
21
|
Lv X, Bai R, Yan JK, Huang HL, Huo XK, Tian XG, Zhao XY, Zhang BJ, Zhao WY, Sun CP. Investigation of the inhibitory effect of protostanes on human carboxylesterase 2 and their interaction: Inhibition kinetics and molecular stimulations. Int J Biol Macromol 2020; 167:1262-1272. [PMID: 33189757 DOI: 10.1016/j.ijbiomac.2020.11.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/31/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022]
Abstract
Carboxylesterase 2 (CES 2), plays a pivotal role in endobiotic homeostasis and xenobiotic metabolism. Protostanes, the major constituents of the genus Alisma, display a series of pharmacological activities. Despite the extensive studies of pharmacological activities, the investigation on inhibitory effects of protostanes against CES 2 is rarely reported. In this study, the inhibitory activities of a library of protostanes (1-25) against human CES 2 were investigated for the first time, using 6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl benzoate (DDAB) as the specific fluorescent probe for human CES 2. Compounds 1, 2, 7, 8, 12, 13, 18, 19, and 25 showed strong inhibitory effects towards CES 2. For the most potent compounds 1, 7, 13, and 25, the inhibition kinetics were further investigated, and these four protostanes were all uncompetitive inhibitors against human CES 2 with the inhibition constant (Ki) values ranging from 0.89 μM to 2.83 μM. In addition, molecular docking and molecular dynamics stimulation were employed to analyze the potential interactions between these protostanes and CES 2, and amino acid residue Gln422 was identified to play a crucial role in the strong inhibition of protostanes towards CES 2.
Collapse
Affiliation(s)
- Xia Lv
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Rong Bai
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Jian-Kun Yan
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Cangzhou, China
| | - Hui-Lian Huang
- Laboratory of Modern Preparation of Traditional Chinese Medicine, Nanchang Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiao-Kui Huo
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xiang-Ge Tian
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xin-Yu Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Bao-Jing Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Wen-Yu Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Cheng-Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China.
| |
Collapse
|
22
|
The Alpha-Lipoic Acid Improves Survival and Prevents Irinotecan-Induced Inflammation and Intestinal Dysmotility in Mice. Pharmaceuticals (Basel) 2020; 13:ph13110361. [PMID: 33152996 PMCID: PMC7692584 DOI: 10.3390/ph13110361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/07/2023] Open
Abstract
Irinotecan, an anticancer drug, induces diarrhea and intestinal inflammation, resulting in an increase in the cost of care and in treatment delays. In this study, we investigated whether alpha-lipoic acid (α-LA) could improve irinotecan-mediated intestinal inflammation, diarrhea and dysmotility. Intestinal mucositis was induced by irinotecan injection (75 mg/kg, i.p., for 4 days) in Swiss mice. α-LA (50, 100 or 200 mg/kg, gavage) was administered daily 1 h before the injection of irinotecan. Duodenum tissues were obtained for inflammation and proliferation analysis. The outcomes: diarrhea, intestinal dysmotility, weight body loss and survival were evaluated. Compared with the control condition, irinotecan diminished (p < 0.05) intestinal villus height, caused a loss of crypt integrity and intense inflammatory cell infiltration, increased myeloperoxidase (MPO), IL-6 and IL-1β levels and decreased reduced glutathione (GSH) levels in duodenum segments and increased gastric retention and decreased liquid retention in the medial intestinal segment, resulting in increased intestinal transit, severe diarrhea and reduced survival (approximately 72%). Furthermore, α-LA (200 mg/kg) pretreatment ameliorated (p < 0.05) these irinotecan-induced effects. Our findings show that α-LA reduced irinotecan-induced inflammation, intestinal dysmotility and diarrhea, resulting in improved survival. α-LA may be a useful therapeutic agent for the treatment of gut dysmotility in patients with intestinal mucositis associated with irinotecan treatment.
Collapse
|
23
|
Sun ZH, Chen J, Song YQ, Dou TY, Zou LW, Hao DC, Liu HB, Ge GB, Yang L. Inhibition of human carboxylesterases by ginsenosides: structure-activity relationships and inhibitory mechanism. Chin Med 2019; 14:56. [PMID: 31889992 PMCID: PMC6915887 DOI: 10.1186/s13020-019-0279-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human carboxylesterases (hCES) are key serine hydrolases responsible for the hydrolysis of a wide range of endogenous and xenobiotic esters. Although it has been reported that some ginsenosides can modulate the activities of various enzymes, the inhibitory effects of ginsenosides on hCES have not been well-investigated. METHODS In this study, more than 20 ginsenosides were collected and their inhibitory effects on hCES1A and hCES2A were assayed using the highly specific fluorescent probe substrates for each isoenzyme. Molecular docking simulations were also performed to investigate the interactions between ginsenosides and hCES. RESULTS Among all tested ginsenosides, Dammarenediol II (DM) and 20S-O-β-(d-glucosyl)-dammarenediol II (DMG) displayed potent inhibition against both hCES1A and hCES2A, while protopanaxadiol (PPD) and protopanaxatriol (PPT) exhibited strong inhibition on hCES2A and high selectivity over hCES1A. Introduction of O-glycosyl groups at the core skeleton decreased hCES inhibition activity, while the hydroxyl groups at different sites might also effect hCES inhibition. Inhibition kinetic analyses demonstrated that DM and DMG functioned as competitive inhibitors against hCES1A-mediated d-luciferin methyl ester (DME) hydrolysis. In contrast, DM, DMG, PPD and PPT inhibit hCES2A-mediated fluorescein diacetate (FD) hydrolysis via a mixed manner. CONCLUSION The structure-inhibition relationships of ginsenosides as hCES inhibitors was investigated for the first time. Our results revealed that DM and DMG were potent inhibitors against both hCES1A and hCES2A, while PPD and PPT were selective and strong inhibitors against hCES2A.
Collapse
Affiliation(s)
- Zhao-Hui Sun
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Jing Chen
- School of Life Science and Medicine, Dalian University of Technology, Panjin, 124221 China
| | - Yun-Qing Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Tong-Yi Dou
- School of Life Science and Medicine, Dalian University of Technology, Panjin, 124221 China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Da-Cheng Hao
- School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028 China
| | - Hai-Bin Liu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liaocheng, 252201 China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
24
|
Abstract
Twenty-five years ago, the cytotoxic drug irinotecan (IRT) was first approved in Japan for the treatment of cancer. For more than two decades, the IRT prodrug has largely contributed to the treatment of solid tumors worldwide. Nowadays, this camptothecin derivative targeting topoisomerase 1 remains largely used in combination regimen, like FOLFIRI and FOLFIRINOX, to treat metastatic or advanced solid tumors, such as colon, gastric and pancreatic cancers and others. This review highlights recent discoveries in the field of IRT and its derivatives, including analogues of the active metabolite SN38 (such as FL118), the recently approved liposomal form Nal-IRI and SN38-based immuno-conjugates currently in development (such as sacituzumab govitecan). New information about the IRT mechanism of action are presented, including the discovery of a new protein target, the single-stranded DNA-binding protein FUBP1. Significant progress has been made also to better understand and manage the main limiting toxicities of IRT, chiefly neutropenia and diarrhea. The role of drug-induced inflammation and dysbiosis is underlined and strategies to limit the intestinal toxicity of IRT are discussed (use of β-glucuronidase inhibitors, plant extracts, probiotics). The detailed knowledge of the metabolism of IRT has enabled the identification of potential biomarkers to guide patient selection and to limit drug-induced toxicities, but no robust IRT-specific therapeutic biomarker has been approved yet. IRT is a versatile chemotherapeutic agent which combines well with a variety of anticancer drugs. It offers a large range of drug combinations with cytotoxic agents, targeted products and immuno-active biotherapeutics, to treat a variety of advanced solid carcinoma, sarcoma and cancers with progressive central nervous system diseases. A quarter of century after its first launch, IRT remains an essential anticancer drug, largely prescribed, useful to many patients and scientifically inspiring.
Collapse
|