1
|
Bergwik J, Liu J, Padra M, Bhongir RKV, Tanner L, Xiang Y, Lundblad M, Egesten A, Adner M. A novel quinoline with airway relaxant effects and anti-inflammatory properties. Respir Res 2024; 25:146. [PMID: 38555460 PMCID: PMC10981829 DOI: 10.1186/s12931-024-02780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/17/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND In chronic pulmonary diseases characterized by inflammation and airway obstruction, such as asthma and COPD, there are unmet needs for improved treatment. Quinolines is a group of small heterocyclic compounds that have a broad range of pharmacological properties. Here, we investigated the airway relaxant and anti-inflammatory properties of a novel quinoline (RCD405). METHODS The airway relaxant effect of RCD405 was examined in isolated airways from humans, dogs, rats and mice. Murine models of ovalbumin (OVA)-induced allergic asthma and LPS-induced airway inflammation were used to study the effects in vivo. RCD405 (10 mg/kg) or, for comparisons in selected studies, budesonide (3 mg/kg), were administered intratracheally 1 h prior to each challenge. Airway responsiveness was determined using methacholine provocation. Immune cell recruitment to bronchi was measured using flow cytometry and histological analyses were applied to investigate cell influx and goblet cell hyperplasia of the airways. Furthermore, production of cytokines and chemokines was measured using a multiplex immunoassay. The expression levels of asthma-related genes in murine lung tissue were determined by PCR. The involvement of NF-κB and metabolic activity was measured in the human monocytic cell line THP-1. RESULTS RCD405 demonstrated a relaxant effect on carbachol precontracted airways in all four species investigated (potency ranking: human = rat > dog = mouse). The OVA-specific IgE and airway hyperresponsiveness (AHR) were significantly reduced by intratracheal treatment with RCD405, while no significant changes were observed for budesonide. In addition, administration of RCD405 to mice significantly decreased the expression of proinflammatory cytokines and chemokines as well as recruitment of immune cells to the lungs in both OVA- and LPS-induced airway inflammation, with a similar effect as for budesonide (in the OVA-model). However, the effect on gene expression of Il-4, IL-5 and Il-13 was more pronounced for RCD405 as compared to budesonide. Finally, in vitro, RCD405 reduced the LPS-induced NF-κB activation and by itself reduced cellular metabolism. CONCLUSIONS RCD405 has airway relaxant effects, and it reduces AHR as well as airway inflammation in the models used, suggesting that it could be a clinically relevant compound to treat inflammatory airway diseases. Possible targets of this compound are complexes of mitochondrial oxidative phosphorylation, resulting in decreased metabolic activity of targeted cells as well as through pathways associated to NF-κB. However, further studies are needed to elucidate the mode of action.
Collapse
Affiliation(s)
- Jesper Bergwik
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Jielu Liu
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Médea Padra
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ravi K V Bhongir
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Lloyd Tanner
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Yujiao Xiang
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Stockholm, Sweden
| | | | - Arne Egesten
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Mikael Adner
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Stockholm, Sweden.
| |
Collapse
|
2
|
Meng M, Zhang WW, Chen SF, Wang DR, Zhou CH. Therapeutic utility of human umbilical cord-derived mesenchymal stem cells-based approaches in pulmonary diseases: Recent advancements and prospects. World J Stem Cells 2024; 16:70-88. [PMID: 38455096 PMCID: PMC10915951 DOI: 10.4252/wjsc.v16.i2.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide. For diverse disease conditions, the currently available approaches are focused on alleviating clinical symptoms and delaying disease progression but have not shown significant therapeutic effects in patients with lung diseases. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) isolated from the human UC have the capacity for self-renewal and multilineage differentiation. Moreover, in recent years, these cells have been demonstrated to have unique advantages in the treatment of lung diseases. We searched the Public Clinical Trial Database and found 55 clinical trials involving UC-MSC therapy for pulmonary diseases, including coronavirus disease 2019, acute respiratory distress syndrome, bronchopulmonary dysplasia, chronic obstructive pulmonary disease, and pulmonary fibrosis. In this review, we summarize the characteristics of these registered clinical trials and relevant published results and explore in depth the challenges and opportunitiesfaced in clinical application. Moreover, the underlying molecular mechanisms involved in UC-MSC-based therapy for pulmonary diseases are also analyzed in depth. In brief, this comprehensive review and detailed analysis of these clinical trials can be expected to provide a scientific reference for future large-scale clinical application.
Collapse
Affiliation(s)
- Min Meng
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Wei-Wei Zhang
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Shuang-Feng Chen
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Da-Rui Wang
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Chang-Hui Zhou
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China.
| |
Collapse
|
3
|
Liang L, Lin Y, Feng L, Shao S, Cao S, Rong H, Chu S, Xie W, Cai S, Wang J, Tong Z. Multicentre double-blind randomised controlled trial of systematic corticosteroid therapy in patients with acute exacerbations of chronic obstructive pulmonary disease admitted to hospital with higher eosinophil levels: the ECHO protocol. BMJ Open 2023; 13:e066354. [PMID: 37247957 PMCID: PMC10230870 DOI: 10.1136/bmjopen-2022-066354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
INTRODUCTION Corticosteroid is one of the most commonly used medications in patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD). The increasing understanding of these side-effects of systematic corticosteroids and their better response to treatment among patients with COPD with higher blood eosinophil counts has led to an interest in a more targeted approach to systematic corticosteroid treatment. However, there is a lack of evidence from high-quality randomised controlled trial (RCT) studies about whether initial systematic corticosteroids should be given to patients with AECOPD with elevated eosinophilia. The aim of the present research was to test this hypothesis. METHODS AND ANALYSIS This is a multicentre, double-blind, superiority RCT in the respiratory departments of 12 general hospitals in China. It is anticipated that 456 patients with AECOPD with a blood eosinophil count >2% or >300 cells/µL at admission will be recruited. Eligible patients will be randomised (1:1) to the intervention group receiving 40 mg oral prednisone daily or identical-appearing placebo (control group) for five consecutive days. Follow-up visits are performed during hospitalisation, followed by clinic interviews on days 30, 60 and 90 after discharge. The primary outcome is treatment failure rates comprising requiring or receiving invasive or non-invasive mechanical ventilation, requiring or transferring to intensive care unit during the index hospitalisation, length of index hospitalisation longer than 14 days, death during the index hospitalisation or within 30 days after discharge and readmission with acute exacerbations of COPD within 30 days after discharge. The results of this trial will provide insight into the value of using blood eosinophil counts as a biomarker of eosinophilic exacerbation and initiating systematic corticosteroid treatment for patients with AECOPD with higher eosinophil levels. ETHICS AND DISSEMINATION This study was approved by Beijing Chaoyang Hospital Institutional Review Board (approval number: 2020-KE-544) and the main results and secondary results will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT05059873.
Collapse
Affiliation(s)
- Lirong Liang
- Department of Clinical Epidemiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yingxiang Lin
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lin Feng
- Department of Clinical Epidemiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuai Shao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Siyu Cao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hengmo Rong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuilian Chu
- Department of Clinical Epidemiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wuxiang Xie
- Peking University Clinical Research Institute, Peking University First Hospital, Peking University, Beijing, China
| | - Samuel Cai
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Jiawen Wang
- Department of Biostatistics & Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Airway Smooth Muscle Regulated by Oxidative Stress in COPD. Antioxidants (Basel) 2023; 12:antiox12010142. [PMID: 36671004 PMCID: PMC9854973 DOI: 10.3390/antiox12010142] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Since COPD is a heterogeneous disease, a specific anti-inflammatory therapy for this disease has not been established yet. Oxidative stress is recognized as a major predisposing factor to COPD related inflammatory responses, resulting in pathological features of small airway fibrosis and emphysema. However, little is known about effects of oxidative stress on airway smooth muscle. Cigarette smoke increases intracellular Ca2+ concentration and enhances response to muscarinic agonists in human airway smooth muscle. Cigarette smoke also enhances proliferation of these cells with altered mitochondrial protein. Hydrogen peroxide and 8-isoprostans are increased in the exhaled breath condensate in COPD. These endogenous oxidants cause contraction of tracheal smooth muscle with Ca2+ dynamics through Ca2+ channels and with Ca2+ sensitization through Rho-kinase. TNF-α and growth factors potentiate proliferation of these cells by synthesis of ROS. Oxidative stress can alter the function of airway smooth muscle through Ca2+ signaling. These phenotype changes are associated with manifestations (dyspnea, wheezing) and pathophysiology (airflow limitation, airway remodeling, airway hyperresponsiveness). Therefore, airway smooth muscle is a therapeutic target against COPD; oxidative stress should be included in treatable traits for COPD to advance precision medicine. Research into Ca2+ signaling related to ROS may contribute to the development of a novel agent for COPD.
Collapse
|
5
|
Wenshen Yiqi Keli Mitigates the Proliferation and Migration of Cigarette Smoke Extract-Induced Human Airway Smooth Muscle Cells through miR-155/FoxO3a Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4427637. [DOI: 10.1155/2022/4427637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022]
Abstract
Some domestic scholars revealed the effectiveness of Wenshen Yiqi Keli (WSYQKL) on chronic obstructive pulmonary disease (COPD). However, the exact mechanism of WSYQKL on COPD is fuzzy and needs further research. We adopted UPLC-Q/TOF-MS to analyze the chemical components of WSYQKL. In in vitro experiments, human airway smooth muscle cells (hASMCs) were intervened with 2.5% cigarette smoke extract (CSE), medicine serum of WSYQKL, miR-155 mimic, and FoxO3a silencing. Cell viability, proliferation, migration, and the expressions of miR-155, PCNA, Ki67, p21, p27, and FoxO3a were examined by cell counting kit-8, EdU staining, Transwell assay, scarification assay, qRT-PCR, immunol cytochemistry, and western blot, respectively. The association between miR-155 and FoxO3a was assessed by database and luciferase reporter gene analysis. We identified 47 kinds of chemical compositions of WSYQKL in ESI+ mode and 42 kinds of components of WSYQKL in ESI− mode. The medicine serum of WSYQKL strongly alleviated the proliferation and migration of hASMCs induced by CSE in a concentration-dependent manner. The medicine serum of WSYQKL enhanced the levels of p21, p27, and FoxO3a and weakened PCNA and Ki67 levels in hASMCs induced by CSE with the increase of concentration. MiR-155 mimic or FoxO3a silencing notably advanced CSE-treated HASMC viability, proliferation, migration, and the levels of PCNA and Ki67 and downregulated the levels of p21, p27, and FoxO3a in CSE-triggered hASMCs, which was reversed by WSYQKL-containing serum. Our results described that WSYQKL alleviated the proliferation and migration of hASMCs induced by CSE by modulating the miR-155/FoxO3a axis.
Collapse
|
6
|
Guo P, Li R, Piao TH, Wang CL, Wu XL, Cai HY. Pathological Mechanism and Targeted Drugs of COPD. Int J Chron Obstruct Pulmon Dis 2022; 17:1565-1575. [PMID: 35855746 PMCID: PMC9288175 DOI: 10.2147/copd.s366126] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/04/2022] [Indexed: 01/17/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) includes chronic bronchitis, emphysema, and small airway obstruction. Incompletely reversible airflow limitation, inflammation, excessive mucus secretion and bronchial mucosal epithelial lesions are the main pathological basis of the disease. The prevalence of COPD is increasingly worldwide, which has caused the burden on individuals and society. This paper summarizes the pathogenesis of COPD and clarifies the effect and mechanism of the latest targeted drugs for COPD. Besides, we focus on NOD-like receptor thermal protein domain associated protein 3 inflammasome (NLRP3 inflammasome). NLRP3 can promote production of interleukin-1β (IL-1β) and interleukin-18 (IL-18). NLRP3 is an important factor in the migratory aggregation of macrophages and neutrophils and the generation of oxidative stress. Inhibition of NLRP3 inflammasome indirectly blocks the inflammatory effects of IL-1β and IL-18, which may be regarded as an ideal target for COPD treatment.
Collapse
Affiliation(s)
- Peng Guo
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Changchun, 130000, People's Republic of China
| | - Rui Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100000, People's Republic of China
| | - Tie Hua Piao
- Pulmonology Department, The First Clinical Hospital of Jilin Academy of Traditional Chinese Medicine, Changchun, 130000, People's Republic of China
| | - Chun Lan Wang
- Pulmonology Department, The First Clinical Hospital of Jilin Academy of Traditional Chinese Medicine, Changchun, 130000, People's Republic of China
| | - Xiao Lu Wu
- Pulmonology Department, The First Clinical Hospital of Jilin Academy of Traditional Chinese Medicine, Changchun, 130000, People's Republic of China
| | - Hong Yan Cai
- Pulmonology Department, The First Clinical Hospital of Jilin Academy of Traditional Chinese Medicine, Changchun, 130000, People's Republic of China
| |
Collapse
|
7
|
Kumar S, Singh B, Kumari P, Kumar PV, Agnihotri G, Khan S, Kant Beuria T, Syed GH, Dixit A. Identification of multipotent drugs for COVID-19 therapeutics with the evaluation of their SARS-CoV2 inhibitory activity. Comput Struct Biotechnol J 2021; 19:1998-2017. [PMID: 33841751 PMCID: PMC8025584 DOI: 10.1016/j.csbj.2021.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022] Open
Abstract
The SARS-CoV2 is a highly contagious pathogen that causes COVID-19 disease. It has affected millions of people globally with an average lethality of ~3%. There is an urgent need of drugs for the treatment of COVID-19. In the current studies, we have used bioinformatics techniques to screen the FDA approved drugs against nine SARS-CoV2 proteins to identify drugs for repurposing. Additionally, we analyzed if the identified molecules can also affect the human proteins whose expression in lung changed during SARS-CoV2 infection. Targeting such genes may also be a beneficial strategy to curb disease manifestation. We have identified 74 molecules that can bind to various SARS-CoV2 and human host proteins. We experimentally validated our in-silico predictions using vero E6 cells infected with SARS-CoV2 virus. Interestingly, many of our predicted molecules viz. capreomycin, celecoxib, mefloquine, montelukast, and nebivolol showed good activity (IC50) against SARS-CoV2. We hope that these studies may help in the development of new therapeutic options for the treatment of COVID-19.
Collapse
Affiliation(s)
- Sugandh Kumar
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Bharati Singh
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Pratima Kumari
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana 121001, India
| | - Preethy V. Kumar
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Geetanjali Agnihotri
- School of Chemical Technology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Shaheerah Khan
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana 121001, India
| | - Tushar Kant Beuria
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Gulam Hussain Syed
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Anshuman Dixit
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
| |
Collapse
|
8
|
Role of Airway Smooth Muscle in Inflammation Related to Asthma and COPD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:139-172. [PMID: 33788192 DOI: 10.1007/978-3-030-63046-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Airway smooth muscle contributes to both contractility and inflammation in the pathophysiology of asthma and COPD. Airway smooth muscle cells can change the degree of a variety of functions, including contraction, proliferation, migration, and the secretion of inflammatory mediators (phenotype plasticity). Airflow limitation, airway hyperresponsiveness, β2-adrenergic desensitization, and airway remodeling, which are fundamental characteristic features of these diseases, are caused by phenotype changes in airway smooth muscle cells. Alterations between contractile and hyper-contractile, synthetic/proliferative phenotypes result from Ca2+ dynamics and Ca2+ sensitization. Modulation of Ca2+ dynamics through the large-conductance Ca2+-activated K+ channel/L-type voltage-dependent Ca2+ channel linkage and of Ca2+ sensitization through the RhoA/Rho-kinase pathway contributes not only to alterations in the contractile phenotype involved in airflow limitation, airway hyperresponsiveness, and β2-adrenergic desensitization but also to alteration of the synthetic/proliferative phenotype involved in airway remodeling. These Ca2+ signal pathways are also associated with synergistic effects due to allosteric modulation between β2-adrenergic agonists and muscarinic antagonists. Therefore, airway smooth muscle may be a target tissue in the therapy for these diseases. Moreover, the phenotype changing in airway smooth muscle cells with focuses on Ca2+ signaling may provide novel strategies for research and development of effective remedies against both bronchoconstriction and inflammation.
Collapse
|
9
|
Lee LY, Hew GSY, Mehta M, Shukla SD, Satija S, Khurana N, Anand K, Dureja H, Singh SK, Mishra V, Singh PK, Gulati M, Prasher P, Aljabali AAA, Tambuwala MM, Thangavelu L, Panneerselvam J, Gupta G, Zacconi FC, Shastri M, Jha NK, Xenaki D, MacLoughlin R, Oliver BG, Chellappan DK, Dua K. Targeting eosinophils in respiratory diseases: Biological axis, emerging therapeutics and treatment modalities. Life Sci 2021; 267:118973. [PMID: 33400932 DOI: 10.1016/j.lfs.2020.118973] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
Eosinophils are bi-lobed, multi-functional innate immune cells with diverse cell surface receptors that regulate local immune and inflammatory responses. Several inflammatory and infectious diseases are triggered with their build up in the blood and tissues. The mobilization of eosinophils into the lungs is regulated by a cascade of processes guided by Th2 cytokine generating T-cells. Recruitment of eosinophils essentially leads to a characteristic immune response followed by airway hyperresponsiveness and remodeling, which are hallmarks of chronic respiratory diseases. By analysing the dynamic interactions of eosinophils with their extracellular environment, which also involve signaling molecules and tissues, various therapies have been invented and developed to target respiratory diseases. Having entered clinical testing, several eosinophil targeting therapeutic agents have shown much promise and have further bridged the gap between theory and practice. Moreover, researchers now have a clearer understanding of the roles and mechanisms of eosinophils. These factors have successfully assisted molecular biologists to block specific pathways in the growth, migration and activation of eosinophils. The primary purpose of this review is to provide an overview of the eosinophil biology with a special emphasis on potential pharmacotherapeutic targets. The review also summarizes promising eosinophil-targeting agents, along with their mechanisms and rationale for use, including those in developmental pipeline, in clinical trials, or approved for other respiratory disorders.
Collapse
Affiliation(s)
- Li-Yen Lee
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Geena Suet Yin Hew
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Flavia C Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Madhur Shastri
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Dikaia Xenaki
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, H91 HE94 Galway, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW 2305, Australia; School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India.
| |
Collapse
|
10
|
Fan Y, Xu W, Wang Y, Wang Y, Yu S, Ye Q. Association of occupational dust exposure with combined chronic obstructive pulmonary disease and pneumoconiosis: a cross-sectional study in China. BMJ Open 2020; 10:e038874. [PMID: 32907907 PMCID: PMC7482476 DOI: 10.1136/bmjopen-2020-038874] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Occupational dust exposure may induce various lung diseases, including pneumoconiosis and chronic obstructive pulmonary disease (COPD). The features of combined COPD and pneumoconiosis have not been well described, and this may hamper the management. This study aimed to describe the prevalence and characteristics as well as the risk factors of the combined diseases. DESIGN A cross-sectional study. SETTING AND PARTICIPANTS 758 patients with pneumoconiosis were recruited at a single-medical centre. Of these, 675 patients with pneumoconiosis, including asbestosis, silicosis, coal workers' pneumoconiosis and other pneumoconiosis, was eligible for analysis. PRIMARY OUTCOME MEASURES COPD was diagnosed based on clinical features and/or history of exposure to risk factors and post bronchodilator forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio <0.7. Clinical data were collected from predesigned medical reports. The patients underwent both chest radiograph and high-resolution CT scans. Risk factors for combined COPD and pneumoconiosis were analysed using regression analysis. RESULTS COPD prevalence overall was 32.7% (221/675) and was the highest in silicosis (84/221) and coal workers' pneumoconiosis (100/221). COPD prevalence increased with smoking pack-years, dust exposure duration and pneumoconiosis stage. Patients with combined diseases had lower body mass index, higher smoking index and worse pulmonary function. Risk factors for combined diseases included heavy smoking, silica or coal exposure and advanced pneumoconiosis. The interaction between dust exposure and smoking in COPD was also identified. The risk of combined COPD significantly increased with heavy smoking and silica or coal exposure (OR 5.49, 95% CI 3.04 to 9.93, p<0.001). CONCLUSIONS COPD is highly prevalent in patients with pneumoconiosis, especially patients with silicosis and coal workers' pneumoconiosis. Occupational dust exposure as well as heavy smoking is associated with an increased risk of combined COPD and pneumoconiosis, which demands an effective preventive intervention.
Collapse
Affiliation(s)
- Yali Fan
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wenjing Xu
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yuanying Wang
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yiran Wang
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shiwen Yu
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qiao Ye
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Corlateanu A, Mendez Y, Wang Y, Garnica RDJA, Botnaru V, Siafakas N. "Chronic obstructive pulmonary disease and phenotypes: a state-of-the-art.". Pulmonology 2020; 26:95-100. [PMID: 31740261 DOI: 10.1016/j.pulmoe.2019.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous and multisystemic disease with progressive increasing morbidity and mortality. COPD is now widely accepted as a heterogeneous condition with multiple phenotypes and endotypes. This review will discuss the old and new concepts for the different types of COPD phenotypes, as well as the inclusion of them in current guidelines. Phenotypical approach to COPD is having huge impact on everyday practice and changed nonpharmacological and pharmacological management of COPD in last decade. However, phenotypical approach is small step to precision medicine in COPD management in the absence of big, specific and well-designed COPD trials with exact identification of phenotypes for more personalization of the treatment of COPD.
Collapse
Affiliation(s)
- Alexandru Corlateanu
- Department of Respiratory Medicine, State University of Medicine and Pharmacy "Nicolae Testemitanu", Chisinau, Moldova.
| | - Yamely Mendez
- Research Physician at Faculty of Medicine "Dr. Alberto Romo Caballero", Universidad Autonoma de Tamaulipas. Research Assistant II at Baylor College of Medicine, Houston, Texas. USA
| | - Yafeng Wang
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan 430071, China.
| | | | - Victor Botnaru
- Department of Respiratory Medicine, State University of Medicine and Pharmacy "Nicolae Testemitanu", Chisinau, Moldova
| | - Nikolaos Siafakas
- Professor of Thoracic Medicine, Department of Thoracic Medicine, University General Hospital, Heraklion, Greece
| |
Collapse
|