1
|
Wróbel-Biedrawa D, Kubacka M, Kotańska M, Bednarski M, Grabowska K, Podolak I. Comparative Evaluation of Vasorelaxant and Antiplatelet Activity of Two Plant-Derived Benzoquinones: Rapanone and Embelin. Molecules 2025; 30:845. [PMID: 40005155 PMCID: PMC11858406 DOI: 10.3390/molecules30040845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Vasorelaxant and antiplatelet agents play an important role in preventing and combating endothelial dysfunction, atherosclerosis and a plethora of associated cardiovascular diseases (CVDs). CVDs are the leading cause of death worldwide and nowadays occur not only in developed but also in developing societies. They include, among others, coronary heart disease, cerebrovascular disease and peripheral artery disease. Due to their high prevalence, it is important to seek efficient preventive measures, such as lifestyle changes and the implementation of appropriate herbal dietary supplementation and treatment alternatives. Plant-derived quinones have recently drawn researchers' attention due to their interesting biological potential. Embelin and rapanone are two plant-derived benzoquinones with anti-inflammatory and antioxidant properties. Embelin has already been shown to have vasorelaxant and antiplatelet activity, but little is known about rapanone in the context of CVDs. Therefore, we decided to comparatively evaluate their activity in a specially designed experimental protocol. Following the isolation of both benzoquinones from plant sources (rapanone from Ardisia crenata leaves; embelin from Lysimachia punctata roots), their effects were comparatively assessed in a biofunctional study on isolated rat aorta (precontracted with phenylephrine) and in vitro on platelet aggregation. Both benzoquinones showed 50% vasorelaxation in an NO-dependent manner. Interestingly, rapanone was slightly more effective as an antiplatelet agent than embelin. The antiplatelet effect of both benzoquinones was specific, as no cytotoxicity towards platelets was observed at the concentrations tested. This is the first report on the vasorelaxant and antiplatelet activity of rapanone.
Collapse
Affiliation(s)
- Dagmara Wróbel-Biedrawa
- Department of Pharmacognosy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland; (D.W.-B.); (K.G.)
| | - Monika Kubacka
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland;
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland; (M.K.); (M.B.)
| | - Marek Bednarski
- Department of Pharmacological Screening, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland; (M.K.); (M.B.)
| | - Karolina Grabowska
- Department of Pharmacognosy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland; (D.W.-B.); (K.G.)
| | - Irma Podolak
- Department of Pharmacognosy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland; (D.W.-B.); (K.G.)
| |
Collapse
|
2
|
Shahrokhi H, Asili J, Tayarani-Najaran Z, Boozari M. Signaling pathways behind the biological effects of tanshinone IIA for the prevention of cancer and cardiovascular diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03857-x. [PMID: 39937254 DOI: 10.1007/s00210-025-03857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
Tanshinone IIA (Tan IIA) is a well-known fat-soluble diterpenoid found in Salvia miltiorrhiza, recognized for its various biological effects. The molecular signaling pathways of Tan IIA have been investigated in different diseases, including the anti-inflammatory, hepatoprotective, renoprotective, neuroprotective effects, and fibrosis prevention. This article provides a brief overview of the signaling pathways related to anti-cancer and cardioprotective effects of Tan IIA. It shows that Tan IIAs anti-cancer ability has good expectation through multiplicity mechanisms affecting various aspects' tumor biology. The major pathways involved in its anti-cancer effects include inhibition of PI3/Akt, MAPK, and p53/p21 signaling which leads to enhancement of immune responses and increased radiation sensitivity. Some essential pathways responsible for cardioprotective effects induced by Tan IIA are PI3/AKT activation, MAPK, and SIRT1 promoting protection against ischemia/reperfusion injury in myocardial cells as well as inhibiting pathological remodeling processes. Finally, the article underscores the complex and specific signaling pathways influenced by Tan IIA. The PI3/Akt and MAPK pathways play critical roles in the anti-cancer and cardioprotective effects of Tan IIA. Particularly, Tan IIA suppresses the proliferation of malignancies in cancerous cells but stimulates protective mechanisms in normal cardiovascular cells. These findings highlight the importance of investigating molecular signaling pathways in evaluating the therapeutic potential of natural products. Studying about signaling pathways is vital in understanding the therapeutic aspects of Tan IIA and its derivatives as anti-cancer and cardio-protective agents. Further research is necessary to understand these complex mechanisms.
Collapse
Affiliation(s)
- Homa Shahrokhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Dabbaghi MM, Soleimani Roudi H, Safaei R, Baradaran Rahimi V, Fadaei MR, Askari VR. Unveiling the Mechanism of Protective Effects of Tanshinone as a New Fighter Against Cardiovascular Diseases: A Systematic Review. Cardiovasc Toxicol 2024; 24:1467-1509. [PMID: 39306819 DOI: 10.1007/s12012-024-09921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/08/2024] [Indexed: 11/15/2024]
Abstract
Tanshinone, a natural compound found in the roots of Salvia miltiorrhiza, has been shown to possess various pharmacological properties, including anti-inflammatory, antioxidant, and cardiovascular protective effects. This article aims to review the literature on the cardiovascular protective effects of tanshinone and its underlying mechanisms. Tanshinone has been demonstrated to improve cardiac function, reduce oxidative stress, and inhibit inflammation in various animal models of cardiovascular diseases. Additionally, it has been shown to regulate multiple signaling pathways involved in the pathogenesis of cardiovascular diseases, such as the PI3K/AKT, MAPK, and NF-κB pathways. Clinical studies have also suggested that tanshinone may have therapeutic potential for treating cardiovascular diseases. In conclusion, tanshinone has emerged as a promising natural compound with significant cardiovascular protective effects, and further research is warranted to explore its potential clinical applications.
Collapse
Affiliation(s)
- Mohammad Mahdi Dabbaghi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Hesan Soleimani Roudi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Rozhan Safaei
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran.
| |
Collapse
|
4
|
Li CC, Liu SL, Lien TS, Sun DS, Cheng CF, Hamid H, Chen HP, Ho TJ, Lin IH, Wu WS, Hu CT, Tsai KW, Chang HH. Therapeutic Potential of Salvia miltiorrhiza Root Extract in Alleviating Cold-Induced Immunosuppression. Int J Mol Sci 2024; 25:9432. [PMID: 39273376 PMCID: PMC11395648 DOI: 10.3390/ijms25179432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The interaction between environmental stressors, such as cold exposure, and immune function significantly impacts human health. Research on effective therapeutic strategies to combat cold-induced immunosuppression is limited, despite its importance. In this study, we aim to investigate whether traditional herbal medicine can counteract cold-induced immunosuppression. We previously demonstrated that cold exposure elevated immunoglobulin G (IgG) levels in mice, similar to the effects of intravenous immunoglobulin (IVIg) treatments. This cold-induced rise in circulating IgG was mediated by the renin-angiotensin-aldosterone system and linked to vascular constriction. In our mouse model, the cold-exposed groups (4 °C) showed significantly elevated plasma IgG levels and reduced bacterial clearance compared with the control groups maintained at room temperature (25 °C), both indicative of immunosuppression. Using this model, with 234 mice divided into groups of 6, we investigated the potential of tanshinone IIA, an active compound in Salvia miltiorrhiza ethanolic root extract (SMERE), in alleviating cold-induced immunosuppression. Tanshinone IIA and SMERE treatments effectively normalized elevated plasma IgG levels and significantly improved bacterial clearance impaired by cold exposure compared with control groups injected with a vehicle control, dimethyl sulfoxide. Notably, bacterial clearance, which was impaired by cold exposure, showed an approximately 50% improvement following treatment, restoring immune function to levels comparable to those observed under normal temperature conditions (25 °C, p < 0.05). These findings highlight the therapeutic potential of traditional herbal medicine in counteracting cold-induced immune dysregulation, offering valuable insights for future strategies aimed at modulating immune function in cold environments. Further research could focus on isolating tanshinone IIA and compounds present in SMERE to evaluate their specific roles in mitigating cold-induced immunosuppression.
Collapse
Grants
- 104-2320-B-320 -009 -MY3, 107-2311-B-320-002-MY3, 111-2320-B320-006-MY3, 112-2320-B-320-007 National Science and Technology Council, Taiwan
- TCMMP104-06, TCMMP108-04, TCMMP 111-01, TCAS111-02, TCAS-112-02, TCAS113-04, TCRD112-033, TCRD113-041 Tzu-Chi Medical Foundation
Collapse
Affiliation(s)
- Chi-Cheng Li
- Department of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Song-Lin Liu
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Hussana Hamid
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Hao-Ping Chen
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - I-Hsin Lin
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation Hualien, Hualien 970, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University Hualien, Hualien 970, Taiwan
| | - Chi-Tan Hu
- Research Center for Hepatology, Department of Gastroenterology, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| |
Collapse
|
5
|
Wang LH, Yang B, Wang Z, Jia L, Chen HY, Bi XQ. Effects of tanshinone IIA on endothelial cell dysfunction in uremic condition. J Biochem Mol Toxicol 2024; 38:e23785. [PMID: 39051181 DOI: 10.1002/jbt.23785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/27/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
An arteriovenous fistula (AVF) is the preferred vascular access for hemodialysis in uremic patients, yet its dysfunction poses a significant clinical challenge. Venous stenosis, primarily caused by venous neointimal hyperplasia, is a key factor in the failure of vascular access. During vascular access dysfunction, endothelial cells (ECs) transform mechanical stimuli into intracellular signals and interact with vascular smooth muscle cells. Tanshinone IIA, an important compound derived from Salvia miltiorrhiza, has been widely used to treat cardiovascular diseases. However, its role in modulating ECs under uremic conditions remains incompletely understood. In this research, ECs were exposed to sodium tanshinone IIA sulfonate (STS) and subjected to shear stress and uremic conditions. The results indicate that STS can reduce the suppressive effects on the expression of NF-κB p65, JNK and Collagen I in uremia-induced ECs. Moreover, the downregulation of NF-κB p65, JNK and Collagen I can be enhanced through the inhibition of ERK1/2 and the upregulation of Caveolin-1. These findings suggest that tanshinone IIA may improve EC function under uremic conditions by targeting the Caveolin-1/ERK1/2 pathway, presenting tanshinone IIA as a potential therapeutic agent against AVF immaturity caused by EC dysfunction.
Collapse
Affiliation(s)
- Li-Hua Wang
- Department of Kidney Disease and Blood Purification Center, 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Bo Yang
- Department of Nephrology, The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhe Wang
- Department of Kidney Disease and Blood Purification Center, 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Lan Jia
- Department of Kidney Disease and Blood Purification Center, 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Hai-Yan Chen
- Department of Kidney Disease and Blood Purification Center, 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Xue-Qing Bi
- Department of Kidney Disease and Blood Purification Center, 2nd Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Singh J, Bisht P, Srivastav S, Kumar Y, Sharma V, Kumar A, Akhtar MS, Khan MF, Aldosari SA, Yadav S, Yadav NK, Mukherjee M, Sharma AK. Amelioration of endothelial integrity by 3,5,4'-trihydroxy-trans-stilbene against high-fat-diet-induced obesity and -associated vasculopathy and myocardial infarction in rats, targeting TLR4/MyD88/NF-κB/iNOS signaling cascade. Biochem Biophys Res Commun 2024; 705:149756. [PMID: 38460440 DOI: 10.1016/j.bbrc.2024.149756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Exacerbated expression of TLR4 protein (foremost pattern recognition receptor) during obesity could trigger NF-κB/iNOS signaling through linker protein (MyD88), predisposed to an indispensable inflammatory response. The induction of this detrimental cascade leads to myocardial and vascular abnormalities. Molecular docking was studied for protein-ligand interaction between these potential targets and resveratrol. The pre-treatment of resveratrol (20 mg/kg/p.o/per day for ten weeks) was given to investigate the therapeutic effect against HFD-induced obesity and associated vascular endothelial dysfunction (VED) and myocardial infarction (MI) in Wistar rats. In addition to accessing the levels of serum biomarkers for VED and MI, oxidative stress, inflammatory cytokines, and histopathology of these tissues were investigated. Lipopolysaccharide (for receptor activation) and protein expression analysis were introduced to explore the mechanistic involvement of TLR4/MyD88/NF-κB/iNOS signaling. Assessment of in-silico analysis showed significant interaction between protein and ligand. The involvement of this proposed signaling (TLR4/MyD88/NF-κB/iNOS) was further endorsed by the impact of lipopolysaccharide and protein expression analysis in obese and treated rats. Moreover, resveratrol pre-treated rats showed significantly lowered cardio and vascular damage measured by the distinct down expression of the TLR4/MyD88/NF-κB/iNOS pathway by resveratrol treatment endorses its ameliorative effect against VED and MI.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Priyanka Bisht
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Srishti Srivastav
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Yash Kumar
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Vikash Sharma
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Ashish Kumar
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Alfara, Abha, 62223, Saudi Arabia
| | - Mohd Faiyaz Khan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 11942, Saudi Arabia
| | - Saad A Aldosari
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 11942, Saudi Arabia
| | - Snehlata Yadav
- Department of Pharmaceutical Sciences, Indra Gandhi University, Meerpur, Rewari, 122502, Haryana, India
| | - Nirmala K Yadav
- Department of Pharmaceutical Sciences, Indra Gandhi University, Meerpur, Rewari, 122502, Haryana, India
| | - Monalisa Mukherjee
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Arun K Sharma
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India.
| |
Collapse
|
7
|
Han S, Nie C, Wang C, Song M, Li J, Cui X, Yang Q, Li Y, Chen Y, Li Q, Cai W, Weng X, Wang Y, Zhu X. Shenlian extract improves atherosclerosis by relieving adventitial inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117339. [PMID: 37866468 DOI: 10.1016/j.jep.2023.117339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenlian (SL) extract, a Chinese medicinal compound mainly pointing at inflammation response of atherosclerosis, is composed of Salvia miltiorrhizae Bunge and Andrographis paniculata (Burm.f.) Nees. Salvia miltiorrhizae Bunge has been reported to activate blood to remove stasis, while another herb, Andrographis paniculata (Burm.f.) Nees, has been revealed to clear endogenous heat toxins. The anti-atherosclerotic effects of these two herbs have been reported closely relating to inflammation. However, from the point of view of adventitial inflammation, the in-depth study of SL extract in anti-atherosclerotic effects by relieving adventitial inflammation is still unknown. AIM OF THE STUDY To explore the effects of adventitial inflammation in atherosclerosis progression and if SL extract could reverse the process. MATERIALS AND METHODS A novel atherosclerosis model based on adventitial inflammation was established. High-fat diet-fed ApoE-/- mice were implanted a cotton thread soaked with LPS on the right common carotid artery (RCCA). Meanwhile, three time points were set (week 2, 4, and 12) to accurately evaluate the effect of SL extract on the whole process of atherosclerosis with adventitial inflammation. The pathological changes of phenotype transformation of VAFs, vascular cell proliferation and collagen synthesis were observed dynamically by immunohistochemistry (IHC), BrdU method and sirius red staining. Then primary VAFs were stimulated by LPS to mirror the process of adventitial inflammation in vitro. The VAFS phenotype conversion and its function alterations including proliferation, migration, inflammatory secretion was assessed. Finally, we established a co-culture model of activated VAFs and vascular smooth muscle cells (VSMCs) to observe the impacts of activated VAFs on phenotype transformation and migration of VSMCs. RESULTS SL extract improved atherosclerosis progression by reducing lipid content, adventitial inflammation and plaque formation. HE results showed sham-operated group (Sham) appeared light infiltrated inflammation only in adventitia at week 2, and the degree of inflammation infiltrated in model was more severe than that in Sham at week 2, 4, and 12. At week 12, the sham and model group showed evidently thickened media and intima. The phenotypic transformation, proliferation and migration of vascular adventitial fibroblasts (VAFs) as well as inflammatory secretion enhanced remarkably in vivo and vitro, but SL extract reversed these changes. Moreover, SL extract downregulated JAK2-STAT3-MMP2 signal pathway. The VSMCs transformed from contractile phenotype into synthetic phenotype and the migration of VSMCs increased after co-culture with activated VAFs. In contrast, SL extract could suppress theses effects. CONCLUSIONS Taken together, atherosclerotic inflammation could be a "outside-in" signaling. Adventitial inflammation not only accelerated intimal plaque formation in atherosclerosis, but also worsened the degree of vascular lesion. And SL extract improved atherosclerosis by relieving adventitial inflammation, and the underlying mechanisms could be associated with curbing phenotypic transformation, proliferation and migration of VAFs and VSMCs.
Collapse
Affiliation(s)
- Shuxian Han
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chunxia Nie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chunmiao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Min Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingjing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xihe Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
8
|
Fu L, Li M, Wang P, Chen L, Huang J, Zhang H. Tanshinone IIA, a component of the self-made Xiao-Yin decoction, ameliorates psoriasis by inhibiting IL-17/IL-23 and PTGS2/NF-κB/AP-1 pathways. Skin Res Technol 2024; 30:e13577. [PMID: 38284293 PMCID: PMC10823401 DOI: 10.1111/srt.13577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Psoriasis is a persistent inflammatory dermatological disorder. Tanshinone IIA (tan-IIA) is a biologically active compound in the self-made Xiao-Yin decoction (SMXYD) and exhibits diverse biological properties, such as anti-proliferative and anti-inflammatory effects. The objective of this investigation was to assess the potential of tan-IIA as a therapeutic agent against psoriasis. METHODS Network pharmacology was employed to ascertain the active constituents and potential pathways associated with SMXYD and psoriasis. We conducted CCK-8, qRT-PCR, and western blotting to assess the proliferation of HaCaT keratinocytes and the expression of IL-17/IL-23 and PTGS2/NF-κB/AP-1 pathways. Additionally, we used H&E staining, western blotting, and ELISA to evaluate the therapeutic effects and signaling pathways of tan-IIA in psoriasis-like mice induced by imiquimod (IMQ). RESULTS Network pharmacology analysis identified eight hub compounds. The Th17/IL-17 signaling was found to be a potential therapeutic pathway of SMXYD against psoriasis, with JUN (AP-1) as the core molecule. Next, PTGS2 was selected as the target of tan-IIA against psoriasis using network pharmacology analysis. Molecular docking showed a high affinity between PTGS2 and tan-IIA. Tan-IIA treatment attenuated M-5-induced hyperproliferation and inflammation in HaCaT keratinocytes. Additionally, Tan-IIA downregulated the PTGS2/NF-κB/AP-1 pathway in HaCaT keratinocytes. In the IMQ-induced psoriasis-like mouse, tan-IIA significantly reduced the severity of skin lesions and downregulated the PTGS2/NF-κB/AP-1 pathway. Moreover, the combination of methotrexate (MTX) and tan-IIA further inhibited the IL-17/IL-23 and PTGS2/NF-κB/AP-1 pathways. CONCLUSION The administration of tan-IIA has shown a positive effect on psoriasis by inhibiting the IL-17/IL-23 and PTGS2/NF-κB/AP-1 pathways. The findings suggest that it has promising qualities that make it a potential candidate for the development of future anti-psoriatic agents.
Collapse
Affiliation(s)
- Lei Fu
- Department of Dermatology, Hainan Hospital of Traditional Chinese Medicine, Haikou, China
| | - Meijiao Li
- Department of Dermatology, Hainan Hospital of Traditional Chinese Medicine, Haikou, China
| | - Peng Wang
- Department of Dermatology, Hainan Hospital of Traditional Chinese Medicine, Haikou, China
| | - Lang Chen
- Department of Dermatology, Hainan Hospital of Traditional Chinese Medicine, Haikou, China
| | - Jianqiu Huang
- Department of Dermatology, Hainan Hospital of Traditional Chinese Medicine, Haikou, China
| | - Hui Zhang
- Department of Oncology, Hainan Hospital of Traditional Chinese Medicine, Haikou, China
| |
Collapse
|
9
|
CHANG F, ZHOU P, LI G, ZHANG W, ZHANG Y, PENG D, CHEN G. Taohong Siwu decoction ameliorates atherosclerosis in rats possibly through toll-like receptor 4/myeloid differentiation primary response protein 88/nuclear factor-κB signal pathway. J TRADIT CHIN MED 2024; 44:103-112. [PMID: 38213245 PMCID: PMC10774721 DOI: 10.19852/j.cnki.jtcm.20231215.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/17/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To investigate the effect of Taohong Siwu decoction (, TSD) on atherosclerosis in rats as well as investigate the underlying mechanism based on molecular docking. METHODS Sixty healthy male Sprague-Dawley rats were randomly divided into 6 groups with 10 rats in each group: control group, model group, atorvastatin group (AT, 2.0 mg/kg), and TSD groups (20, 10, 5 g/kg) after 7 d of acclimation. The model of atherosclerosis was successfully established except the control group by high fat diet (HFD) and vitamin D2. Biochemical analyzers were used to detect the levels of triglyceride (TG), total cholestero (TC), low density lipoprotein-cholesterol (LDL-C) and high density lipid-cholesterol (HDL-C) in blood lipid. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) were determined by enzyme-linked immunosorbent assay. Sudan IV staining and Hematoxylin and eosin staining (HE staining) were performed to observe the pathological changes in aortic tissue. Molecular docking technology was used to predict the best matching between the main components of TSD and the target proteins. The expression of target proteins was further detected by quantitative real time polymerase chain reaction (qRT-PCR) and Western blot analysis. RESULTS The results showed that TSD restricted atherosclerosis development and decreased the inflammatory cytokines in plasma. Molecular docking results predicted that the main components of TSD showed a strong binding ability with toll-like receptor (TLR4), myeloid differentiation primary response protein 88 (MyD88), and nuclear factor kappa-B (NF-κB). The results of qRT-PCR and Western blot analysis showed that the mRNA and protein expressions of TLR4, MyD88 and NF-κB p65 in the aorta were reduced in atorvastatin group and TSD group. CONCLUSIONS TSD can ameliorate atherosclerosis in rats, and the underlying mechanism is supposed be related to the suppression of inflammatory response by regulating TLR4/MyD88/NF-κB signal pathway.
Collapse
Affiliation(s)
- Fengjin CHANG
- 1 Department of Pharmacy, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Peng ZHOU
- 2 School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guoying LI
- 2 School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Weizhi ZHANG
- 2 School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yanyan ZHANG
- 1 Department of Pharmacy, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Daiyin PENG
- 3 Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guangliang CHEN
- 3 Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
10
|
Yang C, Mu Y, Li S, Zhang Y, Liu X, Li J. Tanshinone IIA: a Chinese herbal ingredient for the treatment of atherosclerosis. Front Pharmacol 2023; 14:1321880. [PMID: 38108067 PMCID: PMC10722201 DOI: 10.3389/fphar.2023.1321880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Tanshinone IIA (Tan IIA) is a fat-soluble compound extracted from Salvia miltiorrhiza, which has a protective effect against atherosclerosis (AS). Tan IIA can inhibit oxidative stress and inflammatory damage of vascular endothelial cells (VECs) and improve endothelial cell dysfunction. Tan IIA also has a good protective effect on vascular smooth muscle cells (VSMCs). It can reduce vascular stenosis by inhibiting the proliferation and migration of vascular smooth muscle cells (VSMCs), and improve the stability of the fibrous cap of atherosclerotic plaque by inhibiting apoptosis and inflammation of VSMCs. In addition, Tan IIA inhibits the inflammatory response of macrophages and the formation of foam cells in atherosclerotic plaques. In summary, Tan IIA improves AS through a complex pathway. We propose to further study the specific molecular targets of Tan IIA using systems biology methods, so as to fundamentally elucidate the mechanism of Tan IIA. It is worth mentioning that there is a lack of high-quality evidence-based medical data on Tan IIA treatment of AS. We recommend that a randomized controlled clinical trial be conducted to evaluate the exact efficacy of Tan IIA in improving AS. Finally, sodium tanshinone IIA sulfonate (STS) can cause adverse drug reactions in some patients, which needs our attention.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Shuanghong Li
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yang Zhang
- Weifang People’s Hospital, Weifang, China
| | - Xiaoyuan Liu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jun Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Ma X, Zhang L, Gao F, Jia W, Li C. Salvia miltiorrhiza and Tanshinone IIA reduce endothelial inflammation and atherosclerotic plaque formation through inhibiting COX-2. Biomed Pharmacother 2023; 167:115501. [PMID: 37713995 DOI: 10.1016/j.biopha.2023.115501] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
The mechanisms of Salvia miltiorrhiza (SM) and Tanshinone IIA (Tan IIA) in the treatment of atherosclerosis was examined by combining network pharmacology and molecular biology experiments. The TCMSP and BATMAN-TCM databases provided 104 SM candidate ingredients and 813 target genes, while GEO and GeneCards databases identified 35 overlapping targets between SM and coronary artery disease (CAD). From these data, we constructed a CAD-target-active ingredient network, and using Gene Ontology (GO) and KEGG pathway analysis, 211 GO terms and 43 pathways were identified, which facilitated the construction of a key active ingredient-target-pathway network. We then constructed a protein-protein interaction (PPI) network and performed molecular docking simulations between Tan IIA and 10 key target proteins to analyze the interactions between the molecule and the protein. SM was found to alleviate CAD by reducing the expression of key pro-inflammatory factors, such as COX-2 (PTGS2), MMP9, ICAM1, TNF-α, and NF-κB. Tan IIA was identified as the primary effective component of SM in treating CAD, with TNF and PTGS2 being its main targets. We further validated these findings using in vitro/in vivo experiments. The results showed that both SM and Tan IIA attenuated the buildup of plaque and the accumulation of lipids in ApoE-/- mice. In addition, SM and Tan IIA reduced vascular inflammatory factors expression in ApoE-/- mice and ox-LDL-cultured HUVECs. Furthermore, our findings showed that Tan IIA reduced vascular endothelial inflammation and prevented plaque formation via COX-2/TNF-a/NF-κB signaling pathway. We have demonstrated for the first time that Tan IIA plays a vital role in attenuating atherosclerosis by downregulating COX-2 expression.
Collapse
Affiliation(s)
- Xiangke Ma
- Beijing Shijingshan Hospital, Capital Medical University, Beijing 100040, China.
| | - Lei Zhang
- Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Fujun Gao
- Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Weihua Jia
- Beijing Shijingshan Hospital, Capital Medical University, Beijing 100040, China
| | - Chao Li
- Shandong University of Traditional Chinese Medicine, Jinan 250000, China.
| |
Collapse
|
12
|
Sun S, Liu F, Fan F, Chen N, Pan X, Wei Z, Zhang Y. Exploring the mechanism of atherosclerosis and the intervention of traditional Chinese medicine combined with mesenchymal stem cells based on inflammatory targets. Heliyon 2023; 9:e22005. [PMID: 38045166 PMCID: PMC10692769 DOI: 10.1016/j.heliyon.2023.e22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease, which is the common pathological basis of cardiovascular and cerebrovascular diseases. The immune inflammatory response throughout the course of AS has been evidenced by studies, in which a large number of immune cells and inflammatory factors play a crucial role in the pathogenesis of AS. The inflammation related to AS is mainly mediated by inflammatory cytokines (IL-1β, IL-6, IL-18, TNF-α, hs-CRP, SAA), inflammatory enzymes (Lp-PLA2, sPLA2-IIA, MMPs), and inflammatory signaling pathways (P38 MAPK signaling pathway, NF-κB signaling pathway, TLR2/4 signaling pathway). It is involved in the pathophysiological process of AS, and the degree of inflammation measured by it can be used to evaluate the risk of progression of AS plaque instability. In recent years, traditional Chinese medicine (TCM) has shown the advantage of minimal side effects in immune regulation and has made some progress in the prevention and treatment of AS. Mesenchymal stem cells (MSCs), as self-renewal, highly differentiated, and pluripotent stem cells with anti-inflammatory properties and immune regulation, have been widely used for AS treatment. They also play an important inflammation-immune regulatory function in AS. Notably, in terms of regulating immune cells and inflammatory factors, compared with TCM and its compound, the combination therapy has obvious anti-inflammatory advantages over the use of MSCs alone. It is an important means to further improve the efficacy of AS and provides a new way for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Shibiao Sun
- Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Feixiang Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Feiyan Fan
- Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Na Chen
- Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xiaolong Pan
- Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Zhihui Wei
- Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Yunke Zhang
- Henan University of Chinese Medicine, Zhengzhou 450000, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| |
Collapse
|
13
|
Chai R, Ye Z, Xue W, Shi S, Wei Y, Hu Y, Wu H. Tanshinone IIA inhibits cardiomyocyte pyroptosis through TLR4/NF-κB p65 pathway after acute myocardial infarction. Front Cell Dev Biol 2023; 11:1252942. [PMID: 37766966 PMCID: PMC10520722 DOI: 10.3389/fcell.2023.1252942] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Tanshinone IIA, derived from Radix Salviae Miltiorrhizae (Salvia miltiorrhiza Bunge), constitutes a significant component of this traditional Chinese medicine. Numerous studies have reported positive outcomes regarding its influence on cardiac function. However, a comprehensive comprehension of the intricate mechanisms responsible for its cardioprotective effects is still lacking. Methods: A rat model of heart failure (HF) induced by acute myocardial infarction (AMI) was established via ligation of the left anterior descending coronary artery. Rats received oral administration of tanshinone IIA (1.5 mg/kg) and captopril (10 mg/kg) for 8 weeks. Cardiac function was assessed through various evaluations. Histological changes in myocardial tissue were observed using staining techniques, including Hematoxylin and Eosin (HE), Masson, and transmission electron microscopy. Tunel staining was used to detect cell apoptosis. Serum levels of NT-pro-BNP, IL-1β, and IL-18 were quantified using enzyme-linked immunosorbent assay (ELISA). Expression levels of TLR4, NF-κB p65, and pyroptosis-related proteins were determined via western blotting (WB). H9C2 cardiomyocytes underwent hypoxia-reoxygenation (H/R) to simulate ischemia-reperfusion (I/R) injury, and cell viability and apoptosis were assessed post treatment with different tanshinone IIA concentrations (0.05 μg/ml, 0.1 μg/ml). ELISA measured IL-1β, IL-18, and LDH expression in the cell supernatant, while WB analysis evaluated TLR4, NF-κB p65, and pyroptosis-related protein levels. NF-κB p65 protein nuclear translocation was observed using laser confocal microscopy. Results: Tanshinone IIA treatment exhibited enhanced cardiac function, mitigated histological cardiac tissue damage, lowered serum levels of NT-pro-BNP, IL-1β, and IL-18, and suppressed myocardial cell apoptosis. Moreover, tanshinone IIA downregulated the expression of TLR4, NF-κB p65, IL-1β, pro-IL-1β, NLRP3, Caspase-1, and GSDMD-N pyroptosis-related proteins in myocardial tissue. Additionally, it bolstered H/R H9C2 cardiomyocyte viability, curbed cardiomyocyte apoptosis, and reduced the levels of TLR4, NF-κB p65, IL-1β, pro-IL-1β, NLRP3, Caspase-1, and GSDMD-N pyroptosis-related proteins in H/R H9C2 cells. Furthermore, it hindered NF-κB p65 protein nuclear translocation. Conclusion: These findings indicate that tanshinone IIA enhances cardiac function and alleviates myocardial injury in HF rats following AMI. Moreover, tanshinone IIA demonstrates potential suppression of cardiomyocyte pyroptosis. These effects likely arise from the inhibition of the TLR4/NF-κB p65 signaling pathway, presenting a promising therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Yi Wei
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huaqin Wu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Carpi S, Quarta S, Doccini S, Saviano A, Marigliano N, Polini B, Massaro M, Carluccio MA, Calabriso N, Wabitsch M, Santorelli FM, Cecchini M, Maione F, Nieri P, Scoditti E. Tanshinone IIA and Cryptotanshinone Counteract Inflammation by Regulating Gene and miRNA Expression in Human SGBS Adipocytes. Biomolecules 2023; 13:1029. [PMID: 37509065 PMCID: PMC10377153 DOI: 10.3390/biom13071029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammation of the adipose tissue contributes to the onset and progression of several chronic obesity-related diseases. The two most important lipophilic diterpenoid compounds found in the root of Salvia milthorrhiza Bunge (also called Danshen), tanshinone IIA (TIIA) and cryptotanshinone (CRY), have many favorable pharmacological effects. However, their roles in obesity-associated adipocyte inflammation and related sub-networks have not been fully elucidated. In the present study, we investigated the gene, miRNAs and protein expression profile of prototypical obesity-associated dysfunction markers in inflamed human adipocytes treated with TIIA and CRY. The results showed that TIIA and CRY prevented tumor necrosis factor (TNF)-α induced inflammatory response in adipocytes, by counter-regulating the pattern of secreted cytokines/chemokines associated with adipocyte inflammation (CCL2/MCP-1, CXCL10/IP-10, CCL5/RANTES, CXCL1/GRO-α, IL-6, IL-8, MIF and PAI-1/Serpin E1) via the modulation of gene expression (as demonstrated for CCL2/MCP-1, CXCL10/IP-10, CCL5/RANTES, CXCL1/GRO-α, and IL-8), as well as related miRNA expression (miR-126-3p, miR-223-3p, miR-124-3p, miR-155-5p, and miR-132-3p), and by attenuating monocyte recruitment. This is the first demonstration of a beneficial effect by TIIA and CRY on adipocyte dysfunction associated with obesity development and complications, offering a new outlook for the prevention and/or treatment of metabolic diseases.
Collapse
Affiliation(s)
- Sara Carpi
- Science of Health Department, Magna Græcia University, 88100 Catanzaro, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, 56100 Pisa, Italy
- Department of Pharmacy, University of Pisa, 56100 Pisa, Italy
| | - Stefano Quarta
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy
| | - Stefano Doccini
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy
| | - Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Noemi Marigliano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, 56100 Pisa, Italy
- Department of Pathology, University of Pisa, 56100 Pisa, Italy
| | - Marika Massaro
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | | | - Nadia Calabriso
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Martin Wabitsch
- Division of Pediatric Endocrinology, Diabetes and Obesity, Department of Pediatrics and Adolescent Medicine, University of Ulm, 89075 Ulm, Germany
| | | | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, 56100 Pisa, Italy
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, 56100 Pisa, Italy
| | - Egeria Scoditti
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| |
Collapse
|
15
|
Xuan X, Zhang J, Fan J, Zhang S. Research progress of Traditional Chinese Medicine (TCM) in targeting inflammation and lipid metabolism disorder for arteriosclerosis intervention: A review. Medicine (Baltimore) 2023; 102:e33748. [PMID: 37144986 PMCID: PMC10158879 DOI: 10.1097/md.0000000000033748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Atherosclerosis (AS) is a chronic disease caused by inflammation and lipid deposition. Immune cells are extensively activated in the lesions, producing excessive pro-inflammatory cytokines, which accompany the entire pathological process of AS. In addition, the accumulation of lipid-mediated lipoproteins under the arterial intima is a crucial event in the development of AS, leading to vascular inflammation. Improving lipid metabolism disorders and inhibiting inflammatory reactions are the primary treatment methods currently used in medical practice to delay AS progression. With the development of traditional Chinese medicine (TCM), more mechanisms of action of the monomer of TCM, Chinese patent medicine, and compound prescription have been studied and explored. Research has shown that some Chinese medicines can participate in treating AS by targeting and improving lipid metabolism disorders and inhibiting inflammatory reactions. This review explores the research on Chinese herbal monomers, compound Chinese medicines, and formulae that improve lipid metabolism disorders and inhibit inflammatory reactions to provide new supplements for treating AS.
Collapse
Affiliation(s)
- Xiaoyu Xuan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingyi Zhang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jilin Fan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiliang Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
Gan J, Guo L, Zhang X, Yu Q, Yang Q, Zhang Y, Zeng W, Jiang X, Guo M. Anti-inflammatory therapy of atherosclerosis: focusing on IKKβ. J Inflamm (Lond) 2023; 20:8. [PMID: 36823573 PMCID: PMC9951513 DOI: 10.1186/s12950-023-00330-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Chronic low-grade inflammation has been identified as a major contributor in the development of atherosclerosis. Nuclear Factor-κappa B (NF-κB) is a critical transcription factors family of the inflammatory pathway. As a major catalytic subunit of the IKK complex, IκB kinase β (IKKβ) drives canonical activation of NF-κB and is implicated in the link between inflammation and atherosclerosis, making it a promising therapeutic target. Various natural product derivatives, extracts, and synthetic, show anti-atherogenic potential by inhibiting IKKβ-mediated inflammation. This review focuses on the latest knowledge and current research landscape surrounding anti-atherosclerotic drugs that inhibit IKKβ. There will be more opportunities to fully understand the complex functions of IKKβ in atherogenesis and develop new effective therapies in the future.
Collapse
Affiliation(s)
- Jiali Gan
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Guo
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qun Yu
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiuyue Yang
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yilin Zhang
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- grid.459559.10000 0004 9344 2915Oncology department, Ganzhou People’s Hospital, Ganzhou, Jiangxi China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
17
|
Zhang J, Wang X, Guan B, Wang X, An X, Wang T, Chen X, Zhao L, Jia J, Song L, Ma D, Li Q, Zhang H, Ju J, Xu H. Qing-Xin-Jie-Yu Granule inhibits ferroptosis and stabilizes atherosclerotic plaques by regulating the GPX4/xCT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115852. [PMID: 36272494 DOI: 10.1016/j.jep.2022.115852] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qing-Xin-Jie-Yu Granule (QXJYG) is an integrated traditional Chinese medicine formula used to treat atherosclerotic (AS) cardiovascular diseases. A randomized controlled trial found that QXJYG reduced cardiovascular events and experiments also verified that QXJYG attenuated AS by remodeling the intestinal flora. AIM OF THE STUDY To determine whether QXJYG would attenuate AS and plaque vulnerability by regulating ferroptosis in high-fat diet-induced atherosclerotic ApoE-/- mice and to investigate the effects of QXJYG on macrophage ferroptosis in RAS-selective lethal 3 (RSL3)-induced J744A.1 cells. METHODS AS models in ApoE-/- mice and RSL3-induced ferroptosis in J744A.1 cells were established to measure the protective and anti-ferroptotic effects of QXJYG in vivo and in vitro. The glutathione peroxidase 4 (GPX4)/cystine glutamate reverse transporter (xCT) signal pathway was examined by immunohistochemistry and western blotting. RESULTS QXJYG attenuated AS progression and plaque vulnerability. Characteristic morphological changes of ferroptosis in the QXJYG-treated animals were rare. Total iron was significantly lower in the QXJYG group than in the model group (P < 0.05); QXJYG suppressed the lipid peroxidation (LPO) levels (malondialdehyde), enhanced the antioxidant capacity (superoxide dismutase and glutathione), and reduced inflammatory factors (interleukin [IL]-6, IL-1β, tumor necrosis factor-α) associated with ferroptosis. Expression of GPX4/xCT in aorta tissues was remarkably increased in the QXJYG group. QXJYG inhibited ferroptosis in J744A.1 macrophages disturbed using RSL3. The Fe2+, LPO, and reactive oxygen species levels were lower in the QXJYG group than in the RSL3 group (P < 0.05). The QXJYG group showed higher expression of the GPX4/xCT signal pathway. CONCLUSION QXJYG inhibits ferroptosis in vulnerable AS plaques partially via the GPX4/xCT signaling pathway.
Collapse
Affiliation(s)
- Jie Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xinyi Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - Baoyi Guan
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - Xue Wang
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - Xiaojing An
- Pathology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tong Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuanye Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lin Zhao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jundi Jia
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Luxia Song
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dan Ma
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - Qiuyi Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - He Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
18
|
Zhang Z, Leng Y, Chen Z, Fu X, Liang Q, Peng X, Xie H, Gao H, Xie C. The efficacy and safety of Chinese herbal medicine as an add-on therapy for type 2 diabetes mellitus patients with carotid atherosclerosis: An updated meta-analysis of 27 randomized controlled trials. Front Pharmacol 2023; 14:1091718. [PMID: 37033624 PMCID: PMC10076753 DOI: 10.3389/fphar.2023.1091718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a clinical metabolic syndrome characterized by persistent hyperglycemia. Patients with T2DM are more likely to have carotid atherosclerosis (CAS), which can lead to dizziness, amaurosis or even stroke. Chinese herbal medicine (CHM) has shown possible efficacy and safety in treating T2DM patients with CAS. However, the existing evidence was not robust enough and the results were out of date. Objective: This meta-analysis aimed to summarize the current evidence and systematically evaluate the effects of CHM on carotid plaque, glucose and lipid metabolism and vascular endothelial parameters in T2DM patients with CAS, providing a reference for subsequent research and clinical practice. Methods: This study was registered in PROSPERO as CRD42022346274. Both Chinese and English databases were searched from their inceptions to 16 July 2022. All retrieved studies were screened according to inclusion and exclusion criteria. Randomized controlled trials (RCTs) using oral CHM to treat T2DM patients with CAS were included. The literature quality was assessed using the risk of bias assessment tool in the Cochrane Handbook. Data extraction was conducted on the selected studies. Review Manager 5.4 and Stata 16.0 were used for meta-analysis. Sources of heterogeneity were explored by meta-regression or subgroup analysis. Funnel plot and Egger's test were used to assess publication bias and the evidence quality was assessed by Grading of Recommendations Assessment, Development and Evaluation (GRADE). Results: 27 eligible studies, involving 2638 patients, were included in this study. Compared with western medicine (WM) alone, the addition of CHM was significantly better in improving carotid intima-media thickness (CIMT) [mean difference (MD) = -0.11mm, 95% confidence interval (CI): -0.15 to -0.07, p < 0.01], carotid plaque Crouse score [MD = -1.21, 95%CI: -1.35 to -1.07, p < 0.01], total cholesterol (TC) [MD = -0.34 mmol/L, 95%CI: -0.54 to -0.14, p < 0.01], triglyceride (TG) [MD = -0.26 mmol/L, 95%CI: -0.37 to -0.15, p < 0.01], low-density lipoprotein cholesterol (LDL-C) [MD = -0.36 mmol/L, 95%CI: -0.47 to -0.25, p < 0.01], high-density lipoprotein cholesterol (HDL-C) [MD = 0.22 mmol/L, 95%CI: 0.13 to 0.30, p < 0.01], glycated hemoglobin (HbA1c) [MD = -0.36%, 95%CI: -0.51 to -0.21, p < 0.01], fasting blood glucose (FBG) [MD = -0.33 mmol/L, 95%CI: -0.50 to -0.16, p < 0.01], 2-h postprandial glucose (2hPG) [MD = -0.52 mmol/L, 95%CI: -0.95 to -0.09, p < 0.01], homeostasis model assessment of insulin resistance (HOMA-IR) [standardized mean difference (SMD) = -0.88, 95%CI: -1.36 to -0.41, p < 0.01] and homeostasis model assessment of beta-cell function (HOMA-β) [MD = 0.80, 95%CI: 0.51 to 1.09, p < 0.01]. Due to the small number of included studies, it is unclear whether CHM has an improving effect on nitric oxide (NO), endothelin-1 (ET-1), peak systolic velocity (PSV) and resistance index (RI). No serious adverse events were observed. Conclusion: Based on this meta-analysis, we found that in the treatment of T2DM patients with CAS, combined with CHM may have more advantages than WM alone, which can further reduce CIMT and carotid plaque Crouse score, regulate glucose and lipid metabolism, improve insulin resistance and enhance islet β-cell function. Meanwhile, CHM is relatively safe. However, limited by the quality and heterogeneity of included studies, the efficacy and safety of CHM remain uncertain. More high-quality studies are still needed to provide more reliable evidence for the clinical application of CHM. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022346274.
Collapse
Affiliation(s)
- Zehua Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulin Leng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhengtao Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoxu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingzhi Liang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Yuan P, Qin HY, Wei JY, Chen G, Li X. Proteomics reveals the potential mechanism of Tanshinone IIA in promoting the Ex Vivo expansion of human bone marrow mesenchymal stem cells. Regen Ther 2022; 21:560-573. [DOI: 10.1016/j.reth.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
|
20
|
Meng T, Li X, Li C, Liu J, Chang H, Jiang N, Li J, Zhou Y, Liu Z. Natural products of traditional Chinese medicine treat atherosclerosis by regulating inflammatory and oxidative stress pathways. Front Pharmacol 2022; 13:997598. [PMID: 36249778 PMCID: PMC9563010 DOI: 10.3389/fphar.2022.997598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis (AS) is a prevalent arteriosclerotic vascular disease that forms a pathological basis for coronary heart disease, stroke, and other diseases. Inflammatory and oxidative stress responses occur throughout the development of AS. Treatment for AS over the past few decades has focused on administering high-intensity statins to reduce blood lipid levels, but these inevitably damage liver and kidney function over the long term. Natural medicines are widely used to prevent and treat AS in China because of their wide range of beneficial effects, low toxicity, and minimal side effects. We searched for relevant literature over the past 5 years in databases such as PubMed using the keywords, “atherosclerosis,” “traditional Chinese medicine,” “natural medicines,” “inflammation,” and “oxidative stress.” We found that the PI3K/AKT, TLR4, JAK/STAT, Nrf2, MAPK, and NF-κB are the most relevant inflammatory and oxidative stress pathways in AS. This review summarizes studies of the natural alkaloid, flavonoid, polyphenol, saponin, and quinone pathways through which natural medicines used to treat AS. This study aimed to update and summarize progress in understanding how natural medicines treat AS via inflammatory and oxidative stress-related signaling pathways. We also planned to create an information base for the development of novel drugs for future AS treatment.
Collapse
Affiliation(s)
- Tianwei Meng
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xinghua Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chengjia Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiawen Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Nan Jiang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiarui Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yabin Zhou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- *Correspondence: Yabin Zhou, ; Zhiping Liu,
| | - Zhiping Liu
- Respiratoy Disease Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- *Correspondence: Yabin Zhou, ; Zhiping Liu,
| |
Collapse
|
21
|
Gao J, Li Z, Li J, Song P, Yang J, Xiao W, Li N, Xu R. Peptide-Based HDL as an Effective Delivery System for Lipophilic Drugs to Restrain Atherosclerosis Development. Int J Nanomedicine 2022; 17:3877-3892. [PMID: 36097444 PMCID: PMC9464027 DOI: 10.2147/ijn.s374736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Peptide-based high-density lipoprotein (pHDL) structurally and functionally resembles the natural HDL as anti-atherosclerosis (AS) therapies. Since pHDL contains a large hydrophobic core, this study aims to evaluate the potentials of pHDL as a hydrophobic drug carrier and the efficiency of drug-loaded pHDL in the control of AS. Methods The pHDL encapsulation of hydrophobic components from natural plants, including curcumin (Cur) and tanshinone IIA (TanIIA), was achieved using one-step microfluidics. Then, morphological features and loading efficiencies of pHDL-Cur and pHDL-TanIIA were determined by TEM and high-performance liquid chromatography (HPLC), respectively. Taking the fluorescence advantage of Cur, localizations of loaded Cur in pHDL were investigated by fluorescence quenchers, and recruitments of Cur to AS plaques were assessed with ex vivo imaging. Based on anti-inflammatory properties of TanIIA, pHDL-TanIIA was accordingly developed to evaluate the anti-AS effects through examinations of plasma lipid parameters and pathological alterations of plaque-associated regions. Results Both lipophilic Cur and TanIIA can be efficiently loaded into pHDL carriers. The resultant pHDL-Cur and pHDL-TanIIA inherit the homogeneous nano-disk structure of pHDL. By using pHDL-Cur, the encapsulated hydrophobics are tracked in the core of pHDL, and incorporations of Cur with pHDL vehicles greatly improve the bioavailability and association of Cur with AS plaques. Moreover, when loaded with TanIIA, which has established its role in anti-AS as an anti-inflammatory candidate, synergistic effects in reducing AS lesions and improving pathological alterations of main organs related to AS were achieved. Conclusion The pHDL system could potentially be applied for both imaging and therapy in animal models of AS. Benefits of pHDL-based drug delivery will potentially extend the application scenarios of bioactive chemicals from natural plants which are underutilized due to features like low bioavailability and facilitate the clinical translation of synthetic HDL therapies in HDL-associated disorders, including but not limited to AS.
Collapse
Affiliation(s)
- Junwei Gao
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ziyun Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jing Li
- Department of Nephropathy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ping Song
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jinsheng Yang
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Wei Xiao
- Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, People's Republic of China
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
22
|
Yang M, Jiao H, Li Y, Zhang L, Zhang J, Zhong X, Xue Y. Guanmaitong Granule Attenuates Atherosclerosis by Inhibiting Inflammatory Immune Response in ApoE−/− Mice Fed High-Fat Diet. Drug Des Devel Ther 2022; 16:3145-3168. [PMID: 36148321 PMCID: PMC9489104 DOI: 10.2147/dddt.s372143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background Atherosclerosis (AS) is the leading cause of cardiovascular diseases, such as myocardial infarction and stroke. Guanmaitong granule (GMTG) is a TCM (Traditional Chinese medicine) prescribed to treat AS. However, its mechanism remains unclear. Methods We obtained reliable ingredients and targets of GMTG using the HERB database. AS-related targets were obtained from HERB and GeneCards databases. The target database was constructed by intersecting the ingredients of GMTG with the AS-related targets. STRING and Cytoscape were used to create protein-protein interaction (PPI) network and screen core targets. GO enrichment analysis and KEGG pathway analyses were performed using R. Finally, the ApoE−/− mice AS model was induced by a high-fat diet (HFD) for in vivo validation of core pathways and targets. Results A total of 124 ingredients and 418 potential targets of GMTG for treating AS were obtained. Numerous ingredients and targets were related to Panax notoginseng, Salvia miltiorrhiza, and Astragalus. Most core targets and pathways were involved in the inflammatory immune response. GMTG could decrease serum triglycerides, total cholesterol, low-density lipoprotein-cholesterol, and oxidized low-density lipoprotein level and increase the serum high-density lipoprotein-cholesterol level. Furthermore, GMTG reduced the plaque burden and promoted plaque remodeling by reducing plaque area, lipid deposition, foam cell content, and collagen fiber content in the plaque in the aortic root of ApoE−/− mice. GMTG inhibited systemic and plaque inflammatory immune response and increased plaque stability by inhibiting the excessive release of the TLR4/MyD88/NF-κB pathway-induced inflammatory cytokines, tumor necrosis factor, interleukin-6, and interleukin-1 beta. Conclusion Radix notoginseng, Radix salviae liguliobae, and Radix astragali are the main ingredients of GMTG for treating AS. Further, GMTG could regulate the level of serum lipids and inhibit inflammatory immune response, which resulted in anti-AS effects such as plaque stabilization, reduction of plaque burden, and plaque remodeling. GMTG is a promising multi-target treatment for AS.
Collapse
Affiliation(s)
- Mengqi Yang
- First College for Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Huachen Jiao
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Yan Li
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Lei Zhang
- First College for Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Juan Zhang
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Xia Zhong
- First College for Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Yitao Xue
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
- Correspondence: Yitao Xue, Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jing Shi Road, Lixia District, Jinan, 250014, People’s Republic of China, Tel +8613505313455, Email
| |
Collapse
|
23
|
Liu H, Zhu L, Chen L, Li L. Therapeutic potential of traditional Chinese medicine in atherosclerosis: A review. Phytother Res 2022; 36:4080-4100. [PMID: 36029188 DOI: 10.1002/ptr.7590] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022]
Abstract
Atherosclerosis is the onset of endothelial cell damage and is characterized by abnormal accumulation of fibrinogen and lipid in large and middle arteries. Recent researches indicate that traditional Chinese medicine including Notoginseng Radix et Rhizoma, Astragali Radix, Salviae Miltiorrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Fructus Crataegi, Glycyrrhizae Radix et Rhizoma, Polygoni Multiflori Radix, Fructus Lycii, and Coptidis Rhizoma have therapeutic effects on atherosclerosis. Furthermore, the pharmacological roles of these kinds of traditional Chinese medicine in atherosclerosis refer to endothelial function influences, cell proliferation and migration, platelet aggregation, thrombus formation, oxidative stress, inflammation, angiogenesis, apoptosis, autophagy, lipid metabolism, and the gut microbiome. Traditional Chinese medicine may serve as potential and effective anti-atherosclerosis drugs. However, a critical study has shown that Notoginseng Radix et Rhizoma may also have toxic effects including pustules, fever, and elevate circulating neutrophil count. Further high-quality studies are still required to determine the clinical safety and efficacy of traditional Chinese medicine and its active ingredients.
Collapse
Affiliation(s)
- Huimei Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Zhu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
24
|
Synergistic Effect of Polydatin and Polygonatum sibiricum Polysaccharides in Combating Atherosclerosis via Suppressing TLR4-Mediated NF- κB Activation in ApoE-Deficient Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3885153. [PMID: 35845572 PMCID: PMC9283052 DOI: 10.1155/2022/3885153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
Objective Atherosclerosis is a chronic inflammatory disease, which is closely related to hyperlipidemia, inflammatory responses, and oxidative stress. As natural products, polydatin (PD) and Polygonatum sibiricum polysaccharides (PSP) have remarkable pharmacological effects in anti-inflammatory, antioxidant stress, and lipid regulation. In this study, we sought to investigate whether the combination of polydatin and P. sibiricum polysaccharides play an anti-atherosclerotic role in alleviating inflammatory responses by inhibiting the toll-like receptor4 (TLR4)/myeloid differentiation factor88(MyD88)/nuclear factor-kappa B(NF-κB) signaling pathway. Methods Thirty-two ApoE-/- mice were fed with a high-fat diet (HFD) starting at the age of 8 weeks. Mice were randomly divided into four groups; (1) model group, (2) PD (100 mg/kg) + PSP (50 mg/kg) group, (3) TAK-242 (3 mg/kg) (TLR4 inhibitor) group, (4) PD (100 mg/kg) + PSP (50 mg/kg) + TAK-242 (3 mg/kg) group. Eight age-matched wild-type C57BL/6J mice fed an ordinary diet were used as a control group. Blood lipid levels were measured with an automatic biochemical analyzer. The lipid accumulation and histopathological changes in the aorta and liver were observed by Oil Red O and hematoxylin and eosin (H&E) staining, respectively. ELISA was performed to measure the serum levels of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Western blot analysis was performed to analyze the expression of key proteins in the TLR4/MyD88/NF-κB signaling pathway. Results Compared with the model group, the combination of PD and PSP significantly inhibit serum lipids (low-density lipoprotein cholesterol, total cholesterol, and triglyceride) and cell adhesion molecules (VCAM-1, ICAM-1). Oil Red O staining indicated that the combination of PD and PSP decrease lipid accumulation in the aorta and liver. Moreover, H&E staining suggested that the combination of PD and PSP alleviate aortic intimal hyperplasia, inflammatory cell infiltration, and hepatic steatosis. Finally, the combination of PD and PSP inhibit the expression of TLR4, MyD88, and the phosphorylation level of NF-κB p65 protein in the aorta. Conclusions Polydatin synergizes with P. sibiricum polysaccharides in preventing the development of atherosclerosis in ApoE-/- mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway.
Collapse
|
25
|
Zhang P, Wang W, Li M. Role and mechanism of circular RNA circ_0050486 in regulating oxidized low-density lipoprotein-induced injury in endothelial cells. Clin Hemorheol Microcirc 2022; 82:107-124. [PMID: 35723090 DOI: 10.3233/ch-211259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Dysfunction of endothelial cells in the arterial vasculature is an essential contributor to the pathogenesis of atherosclerosis. Circular RNAs (circRNAs) exert important regulatory functions in endothelial cell dysfunction. Here, we explored the precise role and mechanism of circ_0050486 in regulating endothelial cell injury induced by oxidized low-density lipoprotein (ox-LDL). METHODS Circ_0050486, microRNA (miR)-182-5p and myeloid differentiation primary response gene 88 (MyD88) were quantified by quantitative real-time PCR or western blot. Cell viability, proliferation and apoptosis were examined by MTS, 5-Ethynyl-2'-Deoxyuridine (EdU), and flow cytometry assays, respectively. Direct relationship between miR-182-5p and circ_0050486 or MYD88 was verified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS Circ_0050486 was upregulated in atherosclerosis serum and ox-LDL-treated human aortic endothelial cells (HAECs). Silencing of circ_0050486 suppressed HAEC injury induced by ox-LDL. Mechanistically, circ_0050486 targeted miR-182-5p, and the effects of circ_0050486 silencing were partially due to the upregulation of miR-182-5p. MYD88 was a direct target of miR-182-5p, and miR-182-5p-mediated inhibition of MYD88 attenuated ox-LDL-evoked HAEC injury. Circ_0050486 bound to miR-182-5p to regulate MYD88 expression. Additionally, the NF-κB signaling pathway was involved in the regulation of circ_0050486/miR-182-5p/MYD88 axis in ox-LDL-treated HAECs. CONCLUSION Our study identifies the functional role of circ_0050486 in ox-LDL-induced endogenous cell injury and establishes a mechanism of circ_0050486 function by affecting MYD88 through competitively binding to shared miR-182-5p.
Collapse
Affiliation(s)
- Pu Zhang
- Second Department of Cardiology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan, China
| | - Weiping Wang
- Second Department of Cardiology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan, China
| | - Meilan Li
- Second Department of Cardiology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan, China
| |
Collapse
|
26
|
Xu L, Zhang Y, Ji N, Du Y, Jia T, Wei S, Wang W, Zhang S, Chen W. Tanshinone IIA regulates the TGF‑β1/Smad signaling pathway to ameliorate non‑alcoholic steatohepatitis‑related fibrosis. Exp Ther Med 2022; 24:486. [PMID: 35761808 PMCID: PMC9214595 DOI: 10.3892/etm.2022.11413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/04/2022] [Indexed: 11/19/2022] Open
Abstract
Tanshinone IIA (TIIA) is a major component extracted from the traditional herbal medicine Salvia miltiorrhiza and has been indicated to play a role in the treatment of organ fibrosis. However, the evidence supporting its antifibrotic effect is insufficient and the underlying mechanism is unclear. To investigate the therapeutic effect of TIIA on non-alcoholic steatohepatitis-related fibrosis (NASH-F), the present study used a methionine choline deficiency diet to induce NASH-F in rats, and explored the effect of TIIA on the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway. Wistar rats were randomly divided into control, NASH-F and TIIA groups. After 8 weeks of treatment, the levels of serum markers associated with liver function and fibrosis were measured, liver fat vacuoles and inflammation were assessed by haematoxylin and eosin staining, and liver fibrosis was assessed by Masson's trichrome staining. TGF-β1, Smad2, Smad3, Smad7 and α-smooth muscle actin (α-SMA) mRNA expression, and TGF-β1, Smad2/3, phosphorylated (p)-Smad2/3, Smad7 and α-SMA protein levels were determined. The results revealed that TIIA could remarkably ameliorate liver fat vacuoles and inflammation in NASH-F rats, and could decrease the levels of serum aspartate aminotransferase, alanine aminotransferase, total bilirubin, total bile acid, hyaluronic acid, type Ⅳ collagen, laminin and type III collagen, while increasing the levels of total cholesterol and triglycerides; however, this was not statistically significance. TIIA markedly suppressed the increased TGF-β1, Smad2, Smad3 and α-SMA mRNA expression levels observed in the liver of NASH-F rats, while it increased the mRNA expression level of Smad7. Similarly, TIIA suppressed the increased TGF-β1, p-Smad2/3 and α-SMA protein levels observed in the liver of NASH-F rats, while it increased the protein expression level of Smad7 in vitro and in vivo. TIIA had no significant cytotoxic effect at 10, 20, 40 and 80 µmol/l on human LX-2 cell. In conclusion, the findings of the present study indicated that TIIA alleviated NASH-F by regulating the TGF-β1/Smad signaling pathway. TIIA may be a useful tool in the prevention and treatment of NASH-F.
Collapse
Affiliation(s)
- Lianjie Xu
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yurong Zhang
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Nengbo Ji
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yan Du
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Tao Jia
- Department of Orthopedics, First Clinical Medical College of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650021, P.R. China
| | - Shanshan Wei
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Wei Wang
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Shan Zhang
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Wenhui Chen
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
27
|
Reducing neuroinflammation via therapeutic compounds and lifestyle to prevent or delay progression of Parkinson's disease. Ageing Res Rev 2022; 78:101618. [PMID: 35395416 DOI: 10.1016/j.arr.2022.101618] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the second most common age-associated neurodegenerative disorder and is characterised by progressive loss of dopamine neurons in the substantia nigra. Peripheral immune cell infiltration and activation of microglia and astrocytes are observed in PD, a process called neuroinflammation. Neuroinflammation is a fundamental response to protect the brain but, when chronic, it triggers neuronal damage. In the last decade, central and peripheral inflammation were suggested to occur at the prodromal stage of PD, sustained throughout disease progression, and may play a significant role in the pathology. Understanding the pathological mechanisms of PD has been a high priority in research, primarily to find effective treatments once symptoms are present. Evidence indicates that early life exposure to neuroinflammation as a consequence of life events, environmental or behaviour factors such as exposure to infections, pollution or a high fat diet increase the risk of developing PD. Many studies show healthy habits and products that decrease neuroinflammation also reduce the risk of PD. Here, we aim to stimulate discussion about the role of neuroinflammation in PD onset and progression. We highlight that reducing neuroinflammation throughout the lifespan is critical for preventing idiopathic PD, and present epidemiological studies that detail risk and protective factors. It is possible that introducing lifestyle changes that reduce neuroinflammation at the time of PD diagnosis may slow symptom progression. Finally, we discuss compounds and therapeutics to treat the neuroinflammation associated with PD.
Collapse
|
28
|
Salvia miltiorrhiza Bunge as a Potential Natural Compound against COVID-19. Cells 2022; 11:cells11081311. [PMID: 35455990 PMCID: PMC9028742 DOI: 10.3390/cells11081311] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023] Open
Abstract
Salvia miltiorrhiza Bunge, commonly called danshen, is widely used in traditional Chinese medicine for its cardiovascular and neuroprotective effects, which include antioxidative, anti-inflammatory, and antifibrotic properties. The purpose of this study was to evaluate the preclinical potential of S. miltiorrhiza extracts for the treatment of COVID-19. First, the impact of the extract on the binding between SARS-CoV-2 and the cellular ACE2 receptors was assessed using atomic force microscopy (AFM), showing a significant reduction in binding by the extract at concentrations in the µg/mL range. Second, the interference of this extract with the inflammatory response of blood mononuclear cells (PBMCs) was determined, demonstrating potent inhibitory properties in the same concentration range on pro-inflammatory cytokine release and interference with the activation of NFκB signaling. Together, these in vitro data demonstrate the potential of S. miltiorrhiza against COVID-19, consisting first of the blockade of the binding of SARS-CoV-2 to the ACE2 receptor and the mitigation of the inflammatory response from leukocytes by interfering with NFκB signaling. This dataset prompts the launch of a clinical trial to address in vivo the clinical benefits of this promising agent.
Collapse
|
29
|
Targeting Oxidative Stress and Endothelial Dysfunction Using Tanshinone IIA for the Treatment of Tissue Inflammation and Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2811789. [PMID: 35432718 PMCID: PMC9010204 DOI: 10.1155/2022/2811789] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/29/2022] [Accepted: 02/23/2022] [Indexed: 12/29/2022]
Abstract
Salvia miltiorrhiza Burge (Danshen), a member of the Lamiaceae family, has been used in traditional Chinese medicine for many centuries as a valuable medicinal herb with antioxidative, anti-inflammatory, and antifibrotic potential. Several evidence-based reports have suggested that Salvia miltiorrhiza and its components prevent vascular diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy, and cardiac fibrosis. Tanshinone IIA (TanIIA), a lipophilic component of Salvia miltiorrhiza, has gained attention because of its possible preventive and curative activity against cardiovascular disorders. TanIIA, which possesses antioxidative, anti-inflammatory, and antifibrotic properties, could be a key component in the therapeutic potential of Salvia miltiorrhiza. Vascular diseases are often initiated by endothelial dysfunction, which is accompanied by vascular inflammation and fibrosis. In this review, we summarize how TanIIA suppresses tissue inflammation and fibrosis through signaling pathways such as PI3K/Akt/mTOR/eNOS, TGF-β1/Smad2/3, NF-κB, JNK/SAPK (stress-activated protein kinase)/MAPK, and ERK/Nrf2 pathways. In brief, this review illustrates the therapeutic value of TanIIA in the alleviation of oxidative stress, inflammation, and fibrosis, which are critical components of cardiovascular disorders.
Collapse
|
30
|
miRNA-29a inhibits atherosclerotic plaque formation by mediating macrophage autophagy via PI3K/AKT/mTOR pathway. Aging (Albany NY) 2022; 14:2418-2431. [PMID: 35288486 PMCID: PMC8954956 DOI: 10.18632/aging.203951] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
Background: miR-29a plays a vital role in AS, but the relationship between the miR-29a-targeted PI3K signaling pathway and AS remains unclear. Therefore, this study was carried out. Methods: Gene expression profiles from the GEO database containing AS samples were analyzed. ApoE−/− mice and RAW264.7 cells were treated with miR-29a negative control (NC), miR-29a mimic and miR-29a inhibitor to establish the AS model. Then MOVAT staining, TEM, Western blotting, and immunofluorescence staining were adopted for testing target proteins. Results: DEGs were identified from GSE137578, GSE132651, GSE113969, GSE43292, and GSE97210 datasets. It was found that there were targeted binding sites between miR-29a and PIK3CA. Besides, GO and KEGG analysis demonstrated that autophagy was an enriched pathway in AS. Later, PPI network was depicted, and hub genes were then determined. The results revealed that miR-29a suppressed the areas of plaques and lesional macrophages, but had no impact on VSMCs. TEM results showed the organelles pyknosis of lesional macrophages damaged morphological changes. Furthermore, miR-29a amplified the M2-like macrophages but suppressed the polarization of M1-like macrophages in atherosclerotic plaques. According to mouse and RAW 264.7 cell experiments, miR-29a significantly inhibited the protein expressions of PI3K, p-PI3K, p-AKT, and p-mTOR, which were consistent with the increased expressions of autophagy-related proteins, Beclin 1 and LC3II. However, the miR-29a suppression exhibited the contrary results. Conclusion: MiR-29a elevation induces the increase of autophagy by down-regulating the PI3K/AKT/mTOR pathway in the progression of AS, indicating that miR-29a is a novel therapeutic strategy for AS.
Collapse
|
31
|
Huang Y, Wang JW, Huang J, Tang L, Xu YH, Sun H, Tang J, Wang G. Pyroptosis, a target for cancer treatment? Apoptosis 2022; 27:1-13. [DOI: 10.1007/s10495-021-01703-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 12/22/2022]
|
32
|
Zhong C, Lin Z, Ke L, Shi P, Li S, Huang L, Lin X, Yao H. Recent Research Progress (2015-2021) and Perspectives on the Pharmacological Effects and Mechanisms of Tanshinone IIA. Front Pharmacol 2021; 12:778847. [PMID: 34819867 PMCID: PMC8606659 DOI: 10.3389/fphar.2021.778847] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Tanshinone IIA (Tan IIA) is an important characteristic component and active ingredient in Salvia miltiorrhiza, and its various aspects of research are constantly being updated to explore its potential application. In this paper, we review the recent progress on pharmacological activities and the therapeutic mechanisms of Tan IIA according to literature during the years 2015-2021. Tan IIA shows multiple pharmacological effects, including anticarcinogenic, cardiovascular, nervous, respiratory, urinary, digestive, and motor systems activities. Tan IIA modulates multi-targets referring to Nrf2, AMPK, GSK-3β, EGFR, CD36, HO-1, NOX4, Beclin-1, TLR4, TNF-α, STAT3, Caspase-3, and bcl-2 proteins and multi-pathways including NF-κB, SIRT1/PGC1α, MAPK, SREBP-2/Pcsk9, Wnt, PI3K/Akt/mTOR pathways, TGF-β/Smad and Hippo/YAP pathways, etc., which directly or indirectly influence disease course. Further, with the reported targets, the potential effects and possible mechanisms of Tan IIA against diseases were predicted by bioinformatic analysis. This paper provides new insights into the therapeutic effects and mechanisms of Tan IIA against diseases.
Collapse
Affiliation(s)
- Chenhui Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zuan Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| |
Collapse
|
33
|
Jin GJ, Peng X, Chen ZG, Wang YL, Liao WJ. Celastrol attenuates chronic constrictive injury-induced neuropathic pain and inhibits the TLR4/NF-κB signaling pathway in the spinal cord. J Nat Med 2021; 76:268-275. [PMID: 34510370 DOI: 10.1007/s11418-021-01564-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022]
Abstract
Tripterygium wilfordii Hook F. is a well-known but poisonous traditional Chinese medicine used for treating a wide variety of inflammatory and autoimmune disorders. Celastrol, a quinone methyl triterpenoid compound and a representative component of T. wilfordii Hook F., shows a variety of pharmacological activities, such as anti-inflammatory and antitumor activities. Here, we investigated the antineuropathic pain (NP) effect of celastrol and its potential mechanisms. Rats with chronic constrictive injury (CCI)-induced NP were used to evaluate the analgesic effect of celastrol. Gabapentin was used as a reference compound (positive control). The results showed that gabapentin (100 mg/kg, i.p.) and multiple doses of celastrol (0.5, 1 and 2 mg/kg, i.p.) increased the threshold of mechanical and thermal pain in the rats with NP. Western blot results showed that celastrol significantly inhibited the activation of microglia and astrocytes in the spinal cord of rats with NP. Additionally, the levels of the proinflammatory cytokines tumor necrosis factor α (TNF-α), interleukin 1β and interleukin 6, detected by ELISA in the spinal cord of the rats with NP, were significantly inhibited by celastrol. Furthermore, celastrol treatment dramatically inhibited the expression of the TLR4/NF-κB signaling pathway in the spinal cord. Taken together, our findings suggested that celastrol could attenuate mechanical and thermal pain in CCI-induced NP, and this protection might be attributed to inhibiting the TLR4/NF-κB signaling pathway and exerting anti-inflammatory effects in the spinal cord.
Collapse
Affiliation(s)
- Gui-Juan Jin
- Department of Neonatology, The First People's Hospital of Jingmen, Jingmen, Hubei, China
| | - Xuehuizi Peng
- Department of Children's Rehabilitation, Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhi-Guo Chen
- Department of Pharmacy, College of Traditional Chinese Medicine, Yichang Hospital of Traditional Chinese Medicine, Three Gorges University, Yichang, China
| | - Yu-Lin Wang
- Department of Neonatology, The First People's Hospital of Jingmen, Jingmen, Hubei, China
| | - Wen-Jun Liao
- Department of Neonatology, The First People's Hospital of Jingmen, Jingmen, Hubei, China.
| |
Collapse
|
34
|
Xie Y, Wang L, Sun H, Shang Q, Wang Y, Zhang G, Yang W, Jiang S. A polysaccharide extracted from alfalfa activates splenic B cells by TLR4 and acts primarily via the MAPK/p38 pathway. Food Funct 2021; 11:9035-9047. [PMID: 33021613 DOI: 10.1039/d0fo01711f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alfalfa polysaccharide (APS) has been proposed to exhibit growth-promoting and immune-enhancing bodily functions in vivo. However, little is known about its downstream immunomodulatory and intrinsic molecular mechanisms. Herein, mouse splenic lymphocytes were isolated to characterize the immunomodulatory effects and molecular mechanisms of APS in vitro. The results demonstrated that APS selectively improved the cell viability and IgM production of B cells, but no effects on T cell viability or secretion of IL-2, IL-4 and IFN-γ were observed in vitro. The receptor blocking assay showed that TLR4 was the primary receptor involved in APS-mediated B cell activation, which was confirmed by the results obtained using C57BL/10ScNJ (TLR4 gene-deficient) mice. Moreover, APS activated the TLR4-MyD88 signaling pathway at the translational level by significantly increasing the protein expression of TLR4 and MyD88. Downstream pathway blocking assay demonstrated that both the MAPK and NF-κB pathways were involved in APS-induced B cell activation. Additionally, APS significantly enhanced the phosphorylation of p38, ERK, and JNK and activated the nuclear translocation of the NF-κB p65 subunit. Therefore, we concluded that APS specifically activates the immune functions of splenic B cells by TLR4, acting through the MAPK and NF-κB signaling pathways, and potently activates the p38 pathway.
Collapse
Affiliation(s)
- Yuhuai Xie
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Lixue Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Hua Sun
- Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Qinghui Shang
- Department of Animal Science and Technology, China Agricultural University, Beijing, 100083, PR China
| | - Yuxi Wang
- Lethbridge Research Centre, Agriculture and Agri-Food C, anadaLethbridge, Alberta T1J 4B1, Canada
| | - Guiguo Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
35
|
Huang P, Wang Z, Cai K, Wei L, Chu Y, Guo M, Fan E. Targeting Bacterial Membrane Proteins to Explore the Beneficial Effects of Natural Products: New Antibiotics against Drug Resistance. Curr Med Chem 2021; 29:2109-2126. [PMID: 34126882 DOI: 10.2174/0929867328666210614121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/22/2022]
Abstract
Antibiotic resistance is currently a world health crisis that urges the development of new antibacterial substances. To this end, natural products, including flavonoids, alkaloids, terpenoids, steroids, peptides and organic acids that play a vital role in the development of medicines and thus constitute a rich source in clinical practices, provide an important source of drugs directly or for the screen of lead compounds for new antibiotic development. Because membrane proteins, which comprise more than 60% of the current clinical drug targets, play crucial roles in signal transduction, transport, bacterial pathogenicity and drug resistance, as well as immunogenicity, it is our aim to summarize those natural products with different structures that target bacterial membrane proteins, such as efflux pumps and enzymes, to provide an overview for the development of new antibiotics to deal with antibiotic resistance.
Collapse
Affiliation(s)
- Piying Huang
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhe Wang
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Kun Cai
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Liangwan Wei
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yindi Chu
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Enguo Fan
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Chen T, Zhu Z, Du Q, Wang Z, Wu W, Xue Y, Wang Y, Wu Y, Zeng Q, Jiang C, Shen C, Liu L, Zhu H, Liu Q. A Skin Lipidomics Study Reveals the Therapeutic Effects of Tanshinones in a Rat Model of Acne. Front Pharmacol 2021; 12:675659. [PMID: 34177586 PMCID: PMC8223585 DOI: 10.3389/fphar.2021.675659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Tanshinone (TAN), a class of bioactive components in traditional Chinese medicinal plant Salvia miltiorrhiza, has antibacterial and anti-inflammatory effects, can enhance blood circulation, remove blood stasis, and promote wound healing. For these reasons it has been developed as a drug to treat acne. The purpose of this study was to evaluate the therapeutic effects of TAN in rats with oleic acid-induced acne and to explore its possible mechanisms of action through the identification of potential lipid biomarkers. In this study, a rat model of acne was established by applying 0.5 ml of 80% oleic acid to rats' back skin. The potential metabolites and targets involved in the anti-acne effects of TAN were predicted using lipidomics. The results indicate that TAN has therapeutic efficacy for acne, as supported by the results of the histological analyses and biochemical index assays for interleukin (IL)-8, IL-6, IL-β and tumor necrosis factor alpha. The orthogonal projection of latent structure discriminant analysis score was used to analyze the lipidomic profiles between control and acne rats. Ninety-six potential biomarkers were identified in the skin samples of the acne rats. These biomarkers were mainly related to glycerophospholipid and sphingolipid metabolism, and the regulation of their dysfunction is thought to be a possible therapeutic mechanism of action of TAN on acne.
Collapse
Affiliation(s)
- Tingting Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qunqun Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenfeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Bi Z, Wang Y, Zhang W. A comprehensive review of tanshinone IIA and its derivatives in fibrosis treatment. Biomed Pharmacother 2021; 137:111404. [PMID: 33761617 DOI: 10.1016/j.biopha.2021.111404] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Tanshinone IIA (Tan IIA) is the most abundant lipid-soluble component in Salvia miltiorrhiza. Both Tan IIA and its derivatives including Sodium tanshinone IIA sulfonate (STS) have been widely used in clinic due to their proved anti-inflammation, anti-oxidation, and anti-fibrosis functions. Recently, combinations containing Tan IIA and active components have attracted intensive interest in fibrosis. Multiple studies have been conducted to attempt to decipher the mechanisms of this traditional Chinese medicine and found that Tan IIA can attenuate fibrosis through different pathways such as Smad2/3, NF-κB, Nrf2, E2F and snail/twist axis. However, some of the studies were contradictory and confusing. Therefore, it was important to develop an easy-to-access reference for clinic use. In this study, we reviewed the pharmacological mechanisms, pharmacokinetics, and toxicology of Tan IIA and its derivatives in the treatment of fibrosis and introduced the cutting-edge new formulation of Tan IIA compound.
Collapse
Affiliation(s)
- Zhangyang Bi
- Traditional Chinese Medicine College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yayun Wang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Pneumology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
38
|
Zhang Z, Zhu D, Zhang X, Liu Y, Wang J, Yan L. Tanshinone IIA regulates fibroblast proliferation and migration and post-surgery arthrofibrosis through the autophagy-mediated PI3K and AMPK-mTOR signaling pathway. Am J Transl Res 2021; 13:565-584. [PMID: 33594310 PMCID: PMC7868849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Post-surgery arthrofibrosis is one of the most restrictive factors in the development of intra-articular surgery and has presented tremendous obstacles for most orthopaedic surgeons. Tanshinone IIA (Tan IIA), a key active ingredient of Den-shen, has been used to treat fibrosis-related diseases, such as pulmonary, hepatic and myocardial fibrosis. In the present study, we aimed to investigate the effects of Tan IIA on post-surgery arthrofibrosis in vivo and in vitro. Histological analysis indicated that topical application of Tan IIA (10 mg/mL) could significantly alleviate postsurgery arthrofibrosis in rabbits. Immunohistochemistry results showed that proliferating cell nuclear antigen (PCNA) and tubulin protein expression was inhibited, whereas LC3 was activated in vivo. In vitro, EdU and flow cytometry assays demonstrated that Tan IIA could inhibit fibroblast proliferation by arresting cells in G2 phase. Scratch, Transwell and cytoskeleton protein immunofluorescence assays revealed that fibroblast migration was attenuated. Interestingly, LC3 immunofluorescence staining and transmission electron microscopy indicated that autophagy flux could be induced in fibroblasts by Tan IIA. However, the inhibitory effects of Tan IIA against fibroblast proliferation and migration were partially restored when fibroblast autophagy was suppressed after combined treatment with the autophagy inhibitor 3-methyladenine (3-MA). Finally, the expression of p-mTOR was suppressed in a dose-dependent manner after Tan IIA treatment but partially restored when Tan IIA treatment was combined with 3-MA intervention. The inhibitory effect of Tan IIA against fibroblast proliferation and migration may be related to autophagy induction mediated by the PI3K and AMPK-mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhen Zhang
- Dalian Medicial UniversityDalian 116044, Liaoning, China
| | - Dongming Zhu
- Dalian Medicial UniversityDalian 116044, Liaoning, China
| | - Xiaobo Zhang
- Dalian Medicial UniversityDalian 116044, Liaoning, China
| | - Yun Liu
- Department of Orthopedics, Northern Jiangsu People’s Hospital, Clinical Medical College of Yangzhou UniversityYangzhou 225001, Jiangsu, China
| | - Jingcheng Wang
- Department of Orthopedics, Northern Jiangsu People’s Hospital, Clinical Medical College of Yangzhou UniversityYangzhou 225001, Jiangsu, China
| | - Lianqi Yan
- Central South UniversityChangsha 410012, Hunan, China
- Department of Orthopedics, Northern Jiangsu People’s Hospital, Clinical Medical College of Yangzhou UniversityYangzhou 225001, Jiangsu, China
| |
Collapse
|
39
|
Li Y, Wu H, Wang Z, Tang H, Yang L. Tanshinone IIA, a melanogenic ingredient basis of Salvia miltiorrhiza Bunge. DERMATOL SIN 2021. [DOI: 10.4103/ds.ds_1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
40
|
TLR4-MyD88-NF-κB signaling pathway contributes to the progression of secondary hepatic injury and fibrosis in hepatolithiasis. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211014762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This paper focused on evaluating the effect of TLR4-MyD88-NF-κB signaling pathway in the progression of secondary hepatic injury and fibrosis in hepatolithiasis. The levels of inflammatory factors (IL-1β, IL-6, TNF-α) and serum biochemical values (ALT, AST, Tbil, Dbil, ALP, GGT) were detected by ELISA. IHC was used to detected the expression level of TLR4 in liver tissues of hepatolithiasis patients and mice. The pathological changes of liver tissue were observed by HE staining. The levels of MyD88, NF-κB, IκB, Laminin (LN), and chitosan enzyme 3-like protein 1 (CHI3L1) were detected by western blotting. In hepatolithiasis patients, the levels of TNF-α, IL-1β, and IL-6 were distinctly raised and proteins associated with TLR4-MyD88-NF-κB signaling pathway (such as TLR4, MyD88, NF-κB, and IκB) in liver tissues were significantly up-regulated. In Bile duct ligation (BDL) model of mice, the results showed that in addition to the significant increase of inflammatory factors, liver function indexes, and fibrosis indexes in BDL mice were also significantly up-regulated. Additionally, TLR4-MyD88-NF-κB signaling pathway was activated in BDL mice. After TLR4 knockdown in BDL mice, inflammatory factors, liver function indexes, and fibrosis indexes were significantly down-regulated. TLR4-MyD88-NF-κB signaling pathway proteins were restrained. TLR4-MyD88-NF-κB signaling pathway took part in the progression of secondary hepatic injury and fibrosis in hepatolithiasis. Inhibition of TLR4-MyD88-NF-κB signaling pathway can reduce the progression of secondary hepatic injury and fibrosis in hepatolithiasis.
Collapse
|
41
|
Ansari MA, Khan FB, Safdari HA, Almatroudi A, Alzohairy MA, Safdari M, Amirizadeh M, Rehman S, Equbal MJ, Hoque M. Prospective therapeutic potential of Tanshinone IIA: An updated overview. Pharmacol Res 2020; 164:105364. [PMID: 33285229 DOI: 10.1016/j.phrs.2020.105364] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 01/03/2023]
Abstract
In the past decades, the branch of complementary and alternative medicine based therapeutics has gained considerable attention worldwide. Pharmacological efficacy of various traditional medicinal plants, their products and/or product derivatives have been explored on an increasing scale. Tanshinone IIA (Tan IIA) is a pharmacologically active lipophilic component of Salvia miltiorrhiza extract. Tan IIA shares a history of high repute in Traditional Chinese Medicine. Reckoning with these, the present review collates the pharmacological properties of Tan IIA with a special emphasis on its therapeutic potential against diverse diseases including cardiovascular diseases, cerebrovascular diseases, cancer, diabetes, obesity and neurogenerative diseases. Further, possible applications of various therapeutic preparations of Tan IIA were discussed with special emphasis on nano-based drug delivery formulations. Considering the tremendous advancement in the field of nanomedicine and the therapeutic potential of Tan IIA, the convergence of these two aspects can be foreseen with great promise in clinical application.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1881, Dammam 31441, Saudi Arabia
| | - Farheen Badrealam Khan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Haaris Ahsan Safdari
- New Technology Center, University of Warsaw, Stefana Banacha 2c, 02-097 Warszawa, Poland
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammadreza Safdari
- Imam Ali Hospital, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehran Amirizadeh
- Department of Pharmacotherapy, Faculty of Pharmacy, University of Medical Sciences, Khorramabad, Lorestan, Iran
| | - Suriya Rehman
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1881, Dammam 31441, Saudi Arabia
| | - Mohammad Javed Equbal
- Biomedical Institute for Regenerative Research, Texas A&M University Commerce, Commerce, TX 75429, United States.
| | - Mehboob Hoque
- Department of Biological Sciences, Aliah University, Kolkata 700 160, India.
| |
Collapse
|
42
|
Yuan S, Yang Y, Li J, Tan X, Cao Y, Li S, Hong HD, Liu L, Zhang Q. Ganoderma lucidum Rhodiola compound preparation prevent D-galactose-induced immune impairment and oxidative stress in aging rat model. Sci Rep 2020; 10:19244. [PMID: 33159105 PMCID: PMC7648061 DOI: 10.1038/s41598-020-76249-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Aging is an irreversible process. This research aims to study the anti-aging effects of GRCP, a compound preparation made by Ganoderma lucidum and Rhodiola rosen, in aging rats. Rats were subcutaneously injected with 400 mg/kg of D-galactose daily, and aging could be induced after 8 weeks. The aging rats were treated with GRCP. This experiment was divided into 6 groups. Rats were randomly divided into the model group, positive control group, low-dose GRCP group (25 mg/kg body weight), medium-dose GRCP group (50 mg/kg body weight), and high-dose GRCP group (100 mg/kg body weight), healthy and normal rats were used as blank controls. After the end, the results show that the use of GRCP at a dose of 100 mg/kg is the best treatment for improving aging rats. Rats gained weight, spleen and thymus indexes, and splenocyte proliferation improved, and inflammatory cytokine levels decreased. Besides, biochemical indicators show that GRCP can improve the antioxidant enzyme activity and reduce the content of lipofuscin and TGF-β in aging rats (P < 0.05). GRCP can also inhibit the activation of the MyD88/NF-κB pathway in rat hippocampus. These results seem to suggest that GRCP can be used as a potential natural supplement or functional food to prevent aging.
Collapse
Affiliation(s)
- Shuo Yuan
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, 116622, Liaoning, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133022, Jilin, China
| | - Yong Yang
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, 116622, Liaoning, China
| | - Jiao Li
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, 116622, Liaoning, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133022, Jilin, China
| | - Xiaoyu Tan
- Xinhua Hospital Affiliated of Dalian University, Dalian, 116021, Liaoning, China
| | - Yuying Cao
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, 116622, Liaoning, China
| | - Shaoheng Li
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, 116622, Liaoning, China
| | - Hee-Do Hong
- Korea Food Research Institute, Sungnam-si, South Korea
| | - Liping Liu
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, 116622, Liaoning, China.
| | - Qinggao Zhang
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, 116622, Liaoning, China.
| |
Collapse
|
43
|
Guo R, Li L, Su J, Li S, Duncan SE, Liu Z, Fan G. Pharmacological Activity and Mechanism of Tanshinone IIA in Related Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4735-4748. [PMID: 33192051 PMCID: PMC7653026 DOI: 10.2147/dddt.s266911] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022]
Abstract
Salvia miltiorrhiza: (Danshen) is a significant (traditional Chinese medication) natural remedy, enhancing blood circulation and clear blood stasis. In this view, it is widely used against several heart diseases, eg, cardiomyopathy, arrhythmia, and congenital heart defects. Tanshinone IIA (tan-IIA) is the main fat-soluble component of Salvia miltiorrhiza. Modern pharmacological study shows that tan-IIA has anti-inflammatory and anti-oxidant activities. Tan-IIA induces remarkable cardioprotective effects via enhancing angiogenesis which may serve as an effective treatment against cardiovascular diseases (CVD). There is also evidence that tan-IIA has extensive immunomodulatory effects and plays a significant role in the development and function of immune cells. Tan-IIA reduces the production of inflammatory mediators and restores abnormal signaling pathways via regulating the function and activation of immune cells. It can also regulate signal transduction pathways, ie, TLR/NF-κB pathway and MAPKs/NF-κB pathway, thereby tan-IIA has an anti-inflammatory, anticoagulant, antithrombotic and neuroprotective role. It plays a protective role in the pathogenesis of cardiovascular disorders (ie, atherosclerosis, hypertension) and Alzheimer’s disease. It has also been revealed that tan-IIA has an anti-tumor role by killing various tumor cells, inducing differentiation and apoptosis, and has potential activity against carcinoma progression. In the review of this fact, the tan-IIA role in different diseases and its mechanism have been summarized while its clinical applications are also explored to provide a new perspective of Salvia miltiorrhiza. An extensive study on the mechanism of action of tan-IIA is of great significance for the effective use of Chinese herbal medicine and the promotion of its status and influence on the world.
Collapse
Affiliation(s)
- Rui Guo
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Lan Li
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jing Su
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Sheng Li
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Sophia Esi Duncan
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Zhihao Liu
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Guanwei Fan
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
44
|
Geng L, Liu W, Chen Y. Tanshinone IIA attenuates Aβ-induced neurotoxicity by down-regulating COX-2 expression and PGE2 synthesis via inactivation of NF-κB pathway in SH-SY5Y cells. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2019; 26:15. [PMID: 31754613 PMCID: PMC6852914 DOI: 10.1186/s40709-019-0102-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 10/12/2019] [Indexed: 12/15/2022]
Abstract
Amyloid-β (Aβ)-induced neurotoxicity is a major pathological mechanism of Alzheimer's disease (AD). Tanshinone IIA (Tan IIA), extracted from traditional Chinese herb Radix salvia miltiorrhiza, possesses anti-oxidant and anti-inflammatory actions, as well as neuroprotective effects. The present study aims to explore the possible mechanism by which Tan IIA attenuated Aβ-induced neurotoxicity. Exposure of SH-SY5Y cells to different concentrations of Aβ led to neurotoxicity by reducing cell viability, inducing cell apoptosis and increasing neuroinflammation in a dose-dependent manner. Moreover, Aβ treatment promoted cyclooxygenase-2 (COX-2) expression and Prostaglandin E2 (PGE2) secretion, and activated nuclear transcription factor kappa (NF-κB) pathway in SH-SY5Y cells. However, pretreatment of SH-SY5Y cells with Tan IIA prior to Aβ prevented these Aβ-induced cellular events noticeably. These data suggested that Tan IIA exerted its neuroprotective action by alleviating Aβ-induced increase in COX-2 expression and PGE2 secretion via inactivation of NF-κB pathway.
Collapse
Affiliation(s)
- Lijiao Geng
- Department of Neurology, Huaihe Hospital of Henan University, No. 357 Ximen Street, Kaifeng, 475000 China
| | - Wei Liu
- Department of Neurology, Huaihe Hospital of Henan University, No. 357 Ximen Street, Kaifeng, 475000 China
| | - Yong Chen
- Department of Neurology, Huaihe Hospital of Henan University, No. 357 Ximen Street, Kaifeng, 475000 China
| |
Collapse
|
45
|
He J, Li X, Wang Z, Bennett S, Chen K, Xiao Z, Zhan J, Chen S, Hou Y, Chen J, Wang S, Xu J, Lin D. Therapeutic Anabolic and Anticatabolic Benefits of Natural Chinese Medicines for the Treatment of Osteoporosis. Front Pharmacol 2019; 10:1344. [PMID: 31824310 PMCID: PMC6886594 DOI: 10.3389/fphar.2019.01344] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022] Open
Abstract
Osteoporosis is a bone disease characterized by increasing osseous fragility and fracture due to the reduced bone mass and microstructural degradation. Primary pharmacological strategies for the treatment of osteoporosis, hormone replacement treatment (HRT), and alendronate therapies may produce adverse side-effects and may not be recommended for long-term usage. Some classic and bone-specific natural Chinese medicine are very popularly used to treat osteoporosis and bone fracture effectively in clinical with their potential value in bone growth and development, but with few adverse side-effects. Current evidence suggests that the treatments appear to improve bone metabolism and attenuate the osteoporotic imbalance between bone formation and bone resorption at a cellular level by promoting osteoblast activity and inhibiting the effects of osteoclasts. The valuable therapies might, therefore, provide an effective and safer alternative to primary pharmacological strategies. Therefore, the purpose of this article is to comprehensively review these classic and bone-specific drugs in natural Chinese medicines for the treatment of osteoporosis that had been deeply and definitely studied and reported with both bone formation and antiresorption effects, including Gynochthodes officinalis (F.C.How) Razafim. & B.Bremer (syn. Morinda officinalis F.C.How), Curculigo orchioides Gaertn., Psoralea corylifolia (L.) Medik Eucommia ulmoides Oliv., Dipsacus inermis Wall. (syn. Dipsacus asperoides C.Y.Cheng & T.M.Ai), Cibotium barometz (L.) J. Sm., Velvet Antler, Cistanche deserticola Ma, Cuscuta chinensis Lam., Cnidium monnieri (L.) Cusson, Epimedium brevicornum Maxim, Pueraria montana (Lour.) Merr. and Salvia miltiorrhiza Bunge., thus providing evidence for the potential use of alternative Chinese medicine therapies to effectively treat osteoporosis.
Collapse
Affiliation(s)
- Jianbo He
- Guangzhou University of Chinese Medicine, Guangzhou, China.,The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaojuan Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ziyi Wang
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Samuel Bennett
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Kai Chen
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Zhifeng Xiao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiheng Zhan
- Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shudong Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yu Hou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Junhao Chen
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Shaofang Wang
- Centre for Legumes in Mediterranean Agriculture, University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Dingkun Lin
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|