1
|
Geraci F, Passiatore R, Penzel N, Laudani S, Bertolino A, Blasi G, Graziano ACE, Kikidis GC, Mazza C, Parihar M, Rampino A, Sportelli L, Trevisan N, Drago F, Papaleo F, Sambataro F, Pergola G, Leggio GM. Sex dimorphism controls dysbindin-related cognitive dysfunctions in mice and humans with the contribution of COMT. Mol Psychiatry 2024; 29:2666-2677. [PMID: 38532008 PMCID: PMC11420087 DOI: 10.1038/s41380-024-02527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Cognitive dysfunctions are core-enduring symptoms of schizophrenia, with important sex-related differences. Genetic variants of the DTBPN1 gene associated with reduced dysbindin-1 protein (Dys) expression negatively impact cognitive functions in schizophrenia through a functional epistatic interaction with Catechol-O-methyltransferase (COMT). Dys is involved in the trafficking of dopaminergic receptors, crucial for prefrontal cortex (PFC) signaling regulation. Moreover, dopamine signaling is modulated by estrogens via inhibition of COMT expression. We hypothesized a sex dimorphism in Dys-related cognitive functions dependent on COMT and estrogen levels. Our multidisciplinary approach combined behavioral-molecular findings on genetically modified mice, human postmortem Dys expression data, and in vivo fMRI during a working memory task performance. We found cognitive impairments in male mice related to genetic variants characterized by reduced Dys protein expression (pBonferroni = 0.0001), as well as in male humans through a COMT/Dys functional epistatic interaction involving PFC brain activity during working memory (t(23) = -3.21; pFDR = 0.004). Dorsolateral PFC activity was associated with lower working memory performance in males only (p = 0.04). Also, male humans showed decreased Dys expression in dorsolateral PFC during adulthood (pFDR = 0.05). Female Dys mice showed preserved cognitive performances with deficits only with a lack of estrogen tested in an ovariectomy model (pBonferroni = 0.0001), suggesting that genetic variants reducing Dys protein expression could probably become functional in females when the protective effect of estrogens is attenuated, i.e., during menopause. Overall, our results show the differential impact of functional variants of the DTBPN1 gene interacting with COMT on cognitive functions across sexes in mice and humans, underlying the importance of considering sex as a target for patient stratification and precision medicine in schizophrenia.
Collapse
Affiliation(s)
- Federica Geraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Roberta Passiatore
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205, Baltimore, MD, USA
| | - Nora Penzel
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Alessandro Bertolino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
- Psychiatric Unit - University Hospital, 70124, Bari, Italy
| | - Giuseppe Blasi
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
- Psychiatric Unit - University Hospital, 70124, Bari, Italy
| | - Adriana C E Graziano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Gianluca C Kikidis
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205, Baltimore, MD, USA
| | - Ciro Mazza
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Madhur Parihar
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205, Baltimore, MD, USA
| | - Antonio Rampino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
- Psychiatric Unit - University Hospital, 70124, Bari, Italy
| | - Leonardo Sportelli
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205, Baltimore, MD, USA
- Department of Human Genetics, Radboud University Nijmegen, 6525 GD, Nijmegen, The Netherlands
| | - Nicolò Trevisan
- Department of Neuroscience (DNS), University of Padova, 35121, Padova, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, 35121, Padova, Italy
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124, Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| |
Collapse
|
2
|
Bhardwaj SK, Nath M, Wong TP, Srivastava LK. Loss of dysbindin-1 in excitatory neurons in mice impacts NMDAR-dependent behaviors, neuronal morphology and synaptic transmission in the ventral hippocampus. Sci Rep 2024; 14:15239. [PMID: 38956130 PMCID: PMC11219769 DOI: 10.1038/s41598-024-65566-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Dysbindin-1, a protein encoded by the schizophrenia susceptibility gene DTNBP1, is reduced in the hippocampus of schizophrenia patients. It is expressed in various cellular populations of the brain and implicated in dopaminergic and glutamatergic transmission. To investigate the impact of reduced dysbindin-1 in excitatory cells on hippocampal-associated behaviors and synaptic transmission, we developed a conditional knockout mouse model with deletion of dysbindin-1 gene in CaMKIIα expressing cells. We found that dysbindin-1 reduction in CaMKII expressing cells resulted in impaired spatial and social memories, and attenuation of the effects of glutamate N-methyl-d-asparate receptor (NMDAR) antagonist MK801 on locomotor activity and prepulse inhibition of startle (PPI). Dysbindin-1 deficiency in CaMKII expressing cells also resulted in reduced protein levels of NMDAR subunit GluN1 and GluN2B. These changes were associated with increased expression of immature dendritic spines in basiliar dendrites and abnormalities in excitatory synaptic transmission in the ventral hippocampus. These results highlight the functional relevance of dysbindin-1 in excitatory cells and its implication in schizophrenia-related pathologies.
Collapse
Affiliation(s)
- Sanjeev K Bhardwaj
- Douglas Hospital Research Centre, Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada.
| | - Moushumi Nath
- Douglas Hospital Research Centre, Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Tak Pan Wong
- Douglas Hospital Research Centre, Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Lalit K Srivastava
- Douglas Hospital Research Centre, Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Integrated Programme in Neuroscience, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Malik JA, Yaseen Z, Thotapalli L, Ahmed S, Shaikh MF, Anwar S. Understanding translational research in schizophrenia: A novel insight into animal models. Mol Biol Rep 2023; 50:3767-3785. [PMID: 36692676 PMCID: PMC10042983 DOI: 10.1007/s11033-023-08241-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023]
Abstract
Schizophrenia affects millions of people worldwide and is a major challenge for the scientific community. Like most psychotic diseases, it is also considered a complicated mental disorder caused by an imbalance in neurotransmitters. Due to the complexity of neuropathology, it is always a complicated disorder. The lack of proper understanding of the pathophysiology makes the disorder unmanageable in clinical settings. However, due to recent advances in animal models, we hope we can have better therapeutic approaches with more success in clinical settings. Dopamine, glutamate, GABA, and serotonin are the neurotransmitters involved in the pathophysiology of schizophrenia. Various animal models have been put forward based on these neurotransmitters, including pharmacological, neurodevelopmental, and genetic models. Polymorphism of genes such as dysbindin, DICS1, and NRG1 has also been reported in schizophrenia. Hypothesis based on dopamine, glutamate, and serotonin are considered successful models of schizophrenia on which drug therapies have been designed to date. New targets like the orexin system, muscarinic and nicotinic receptors, and cannabinoid receptors have been approached to alleviate the negative and cognitive symptoms. The non-pharmacological models like the post-weaning social isolation model (maternal deprivation), the isolation rearing model etc. have been also developed to mimic the symptoms of schizophrenia and to create and test new approaches of drug therapy which is a breakthrough at present in psychiatric disorders. Different behavioral tests have been evaluated in these specific models. This review will highlight the currently available animal models and behavioral tests in psychic disorders concerning schizophrenia.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India.,Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Zahid Yaseen
- Department of Pharmaceutical Biotechnology, Delhi Pharmaceutical Sciences and Research University, Delhi, India
| | - Lahari Thotapalli
- Department of Pharmaceutical Sciences, JNTU University, Anantapur, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia. .,School of Dentistry and Medical Sciences, Charles Sturt University, Orange, 2800, New South Wales, Australia.
| | - Sirajudheen Anwar
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail, 81422, Saudi Arabia.
| |
Collapse
|
4
|
Murillo-García N, Barrio-Martínez S, Setién-Suero E, Soler J, Papiol S, Fatjó-Vilas M, Ayesa-Arriola R. Overlap between genetic variants associated with schizophrenia spectrum disorders and intelligence quotient: a systematic review. J Psychiatry Neurosci 2022; 47:E393-E408. [PMID: 36414327 PMCID: PMC9710545 DOI: 10.1503/jpn.220026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/27/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND To study whether there is genetic overlap underlying the risk for schizophrenia spectrum disorders (SSDs) and low intelligence quotient (IQ), we reviewed and summarized the evidence on genetic variants associated with both traits. METHODS We performed this review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and preregistered it in PROSPERO. We searched the Medline databases via PubMed, PsycInfo, Web of Science and Scopus. We included studies in adults with a diagnosis of SSD that explored genetic variants (single nucleotide polymorphisms [SNPs], copy number variants [CNVs], genomic insertions or genomic deletions), estimated IQ and studied the relationship between genetic variability and both traits (SSD and IQ). We synthesized the results and assessed risk of bias using the Quality of Genetic Association Studies (Q-Genie) tool. RESULTS Fifty-five studies met the inclusion criteria (45 case-control, 9 cross-sectional, 1 cohort), of which 55% reported significant associations for genetic variants involved in IQ and SSD. The SNPs more frequently explored through candidate gene studies were in COMT, DTNBP1, BDNF and TCF4. Through genome-wide association studies, 2 SNPs in CHD7 and GATAD2A were associated with IQ in patients with SSD. The studies on CNVs suggested significant associations between structural variants and low IQ in patients with SSD. LIMITATIONS Overall, primary studies used heterogeneous IQ measurement tools and had small samples. Grey literature was not screened. CONCLUSION Genetic overlap between SSD and IQ supports the neurodevelopmental hypothesis of schizophrenia. Most of the risk polymorphisms identified were in genes relevant to brain development, neural proliferation and differentiation, and synaptic plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rosa Ayesa-Arriola
- From the Research Unit in Mental Illness, Valdecilla Biomedical Research Institute, Santander, Cantabria, Spain (Murillo-García, Barrio-Martínez, Ayesa-Arriola); the Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain (Murillo-García, Ayesa-Arriola); the Faculty of Psychology, University Complutense of Madrid, Madrid, Spain (Barrio-Martínez); the Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Basque Country, Spain (Setién-Suero); the Biomedical Research Networking Center for Mental Health (CIBERSAM), Madrid, Madrid, Spain (Soler, Papiol, Fatjó-Vilas, Ayesa-Arriola); the Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain (Soler, Fatjó-Vilas); the Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain (Soler); the Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, Germany (Papiol); the Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany (Papiol); the FIDMAG Sisters Hospitallers Research Foundation, Sant Boi de Llobregat, Barcelona, Spain (Fatjó-Vilas)
| |
Collapse
|
5
|
Ochneva A, Zorkina Y, Abramova O, Pavlova O, Ushakova V, Morozova A, Zubkov E, Pavlov K, Gurina O, Chekhonin V. Protein Misfolding and Aggregation in the Brain: Common Pathogenetic Pathways in Neurodegenerative and Mental Disorders. Int J Mol Sci 2022; 23:14498. [PMID: 36430976 PMCID: PMC9695177 DOI: 10.3390/ijms232214498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Mental disorders represent common brain diseases characterized by substantial impairments of social and cognitive functions. The neurobiological causes and mechanisms of psychopathologies still have not been definitively determined. Various forms of brain proteinopathies, which include a disruption of protein conformations and the formation of protein aggregates in brain tissues, may be a possible cause behind the development of psychiatric disorders. Proteinopathies are known to be the main cause of neurodegeneration, but much less attention is given to the role of protein impairments in psychiatric disorders' pathogenesis, such as depression and schizophrenia. For this reason, the aim of this review was to discuss the potential contribution of protein illnesses in the development of psychopathologies. The first part of the review describes the possible mechanisms of disruption to protein folding and aggregation in the cell: endoplasmic reticulum stress, dysfunction of chaperone proteins, altered mitochondrial function, and impaired autophagy processes. The second part of the review addresses the known proteins whose aggregation in brain tissue has been observed in psychiatric disorders (amyloid, tau protein, α-synuclein, DISC-1, disbindin-1, CRMP1, SNAP25, TRIOBP, NPAS3, GluA1, FABP, and ankyrin-G).
Collapse
Affiliation(s)
- Aleksandra Ochneva
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Yana Zorkina
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Abramova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Pavlova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Valeriya Ushakova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anna Morozova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Eugene Zubkov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Konstantin Pavlov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Gurina
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Vladimir Chekhonin
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- National University of Science and Technology “MISiS”, Leninskiy Avenue 4, 119049 Moscow, Russia
| |
Collapse
|
6
|
Mastrogiacomo R, Trigilio G, Devroye C, Dautan D, Ferretti V, Losi G, Caffino L, Orso G, Marotta R, Maltese F, Vitali E, Piras G, Forgiarini A, Pacinelli G, Lia A, Rothmond DA, Waddington JL, Drago F, Fumagalli F, Luca MAD, Leggio GM, Carmignoto G, Weickert CS, Managò F, Papaleo F. Dysbindin-1A modulation of astrocytic dopamine and basal ganglia dependent behaviors relevant to schizophrenia. Mol Psychiatry 2022; 27:4201-4217. [PMID: 35821415 DOI: 10.1038/s41380-022-01683-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
The mechanisms underlying the dichotomic cortical/basal ganglia dopaminergic abnormalities in schizophrenia are unclear. Astrocytes are important non-neuronal modulators of brain circuits, but their role in dopaminergic system remains poorly explored. Microarray analyses, immunohistochemistry, and two-photon laser scanning microscopy revealed that Dys1 hypofunction increases the reactivity of astrocytes, which express only the Dys1A isoform. Notably, behavioral and electrochemical assessments in mice selectively lacking the Dys1A isoform unraveled a more prominent impact of Dys1A in behavioral and dopaminergic/D2 alterations related to basal ganglia, but not cortical functioning. Ex vivo electron microscopy and protein expression analyses indicated that selective Dys1A disruption might alter intracellular trafficking in astrocytes, but not in neurons. In agreement, Dys1A disruption only in astrocytes resulted in decreased motivation and sensorimotor gating deficits, increased astrocytic dopamine D2 receptors and decreased dopaminergic tone within basal ganglia. These processes might have clinical relevance because the caudate, but not the cortex, of patients with schizophrenia shows a reduction of the Dys1A isoform. Therefore, we started to show a hitherto unknown role for the Dys1A isoform in astrocytic-related modulation of basal ganglia behavioral and dopaminergic phenotypes, with relevance to schizophrenia.
Collapse
Affiliation(s)
- Rosa Mastrogiacomo
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gabriella Trigilio
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Céline Devroye
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Daniel Dautan
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Valentina Ferretti
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gabriele Losi
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Roberto Marotta
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Federica Maltese
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Enrica Vitali
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Alessia Forgiarini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Giada Pacinelli
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Annamaria Lia
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Cynthia S Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Francesca Managò
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.
| | - Francesco Papaleo
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy. .,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| |
Collapse
|
7
|
Fabbri C, Leggio GM, Drago F, Serretti A. Imputed expression of schizophrenia-associated genes and cognitive measures in patients with schizophrenia. Mol Genet Genomic Med 2022; 10:e1942. [PMID: 35488718 PMCID: PMC9184669 DOI: 10.1002/mgg3.1942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/07/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Cognitive dysfunction is a core manifestation of schizophrenia and one of the best predictors of long‐term disability. Genes increasing risk for schizophrenia may partly act through the modulation of cognition. Methods We imputed the expression of 130 genes recently prioritized for association with schizophrenia, using PsychENCODE variant weights and genotypes of patients with schizophrenia in CATIE. Processing speed, reasoning, verbal memory, working memory, vigilance, and a composite cognitive score were used as phenotypes. We performed linear regression models for each cognitive measure and gene expression score, adjusting for age, years of education, antipsychotic treatment, years since the first antipsychotic treatment and population principal components. Results We included 425 patients and expression scores of 91 genes (others had no heritable expression; Bonferroni corrected alpha = 5.49e‐4). No gene expression score was associated with cognitive measures, though ENOX1 expression was very close to the threshold for verbal memory (p = 6e‐4) and processing speed (p = 7e‐4). Other genes were nominally associated with multiple phenotypes (MAN2A1 and PCGF3). Conclusion A better understanding of the mechanisms mediating cognitive dysfunction in schizophrenia may help in the definition of disease prognosis and in the identification of new treatments, as the treatment of cognitive impairment remains an unmet therapeutic need.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Bellotti E, Contarini G, Geraci F, Torrisi SA, Piazza C, Drago F, Leggio GM, Papaleo F, Decuzzi P. Long-lasting rescue of schizophrenia-relevant cognitive impairments via risperidone-loaded microPlates. Drug Deliv Transl Res 2022; 12:1829-1842. [PMID: 34973133 PMCID: PMC9242964 DOI: 10.1007/s13346-021-01099-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a disorder characterized by cognitive impairment and psychotic symptoms that fluctuate over time and can only be mitigated with the chronic administration of antipsychotics. Here, we propose biodegradable microPlates made of PLGA for the sustained release of risperidone over several weeks. Two microPlate configurations - short: 20 × 20 × 10 μm; tall: 20 × 20 × 20 μm - are engineered and compared to conventional ~ 10 μm PLGA microspheres in terms of risperidone loading and release. Tall microPlates realize the slowest release documenting a 35% risperidone delivery at 100 days with a residual rate of 30 ng/ml. Short microPlates and microspheres present similar release profiles with over 50% of the loaded risperidone delivered within the first 40 days. Then, the therapeutic efficacy of one single intraperitoneal injection of risperidone microPlates is compared to the daily administration of free risperidone in heterozygous knockout mice for dysbindin-1, a clinically relevant mouse model of cognitive and psychiatric liability. In temporal order object recognition tasks, mice treated with risperidone microPlates outperform those receiving free risperidone up to 2, 4, 8, and 12 weeks of observation. This suggests that the sustained release of antipsychotics from one-time microPlate deposition can rescue cognitive impairment in dysbindin mice for up to several weeks. Overall, these results demonstrate that risperidone-loaded microPlates are a promising platform for improving cognitive symptoms associated to schizophrenia. Moreover, the long-term efficacy with one single administration could be of clinical relevance in terms of patient's compliance and adherence to the treatment regimen. Single injection of long-acting risperidone-loaded µPL ameliorates the dysbindin-induced deficit in a clinically relevant mouse model of cognitive and psychiatric liability for up to 12 weeks.
Collapse
Affiliation(s)
- Elena Bellotti
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| | - Gabriella Contarini
- Department of Biomedical and Technological Sciences, Università Di Catania, Via Santa Sofia 97, 95125, Catania, Italy
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Federica Geraci
- Department of Biomedical and Technological Sciences, Università Di Catania, Via Santa Sofia 97, 95125, Catania, Italy
| | - Sebastiano Alfio Torrisi
- Department of Biomedical and Technological Sciences, Università Di Catania, Via Santa Sofia 97, 95125, Catania, Italy
| | - Cateno Piazza
- Analytical Department, Consortium Unifarm, Università Di Catania, Viale A. Doria 21, 95125, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Technological Sciences, Università Di Catania, Via Santa Sofia 97, 95125, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Technological Sciences, Università Di Catania, Via Santa Sofia 97, 95125, Catania, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| |
Collapse
|
9
|
Golimbet VE, Klyushnik TP. [Molecular-genetic and immunological aspects of the formation of psychopathological symptoms in schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:66-71. [PMID: 36279230 DOI: 10.17116/jnevro202212210166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The authors present the data indicating that the formation of psychopathological symptoms of schizophrenia is due to complex and diverse genetic factors associated with various functional and metabolic pathways at different stages of ontogenesis. Despite the fact that at present the genetic basis of positive and negative symptoms as the main pathophysiological manifestations of schizophrenia remains largely unknown, the current level of research allows the identification of some common and unique associations for positive and negative disorders. Based on the analysis of the literature, the specificity of the association of genetic variants with negative symptoms of schizophrenia is shown. It has been also suggested that genes of the immune system may be specifically associated with negative symptoms of schizophrenia. The relevance of studying the relationship of immune system genes, in particular, pro- and anti-inflammatory cytokines, with dimensional characteristics of negative symptoms (abulia-apathy and expressive deficit) is substantiated. Studies of this type have not yet been conducted, despite accumulating data indicating that the heterogeneity of negative symptoms is based on different neurobiological mechanisms. It is concluded that the immunological and molecular genetic study of the subdomains of psychopathological symptoms can be promising as part of the transition to deep phenotyping, which seems to be especially relevant for the study of such an extremely heterogeneous disease from a clinical point of view as schizophrenia. The development of this area is important for solving the problems of precision medicine, which aims to provide the most effective therapy for a particular patient by stratifying the disease into subclasses, taking into account their biological basis.
Collapse
|
10
|
Antunes ASLM, Saia-Cereda VM, Crunfli F, Martins-de-Souza D. 14-3-3 proteins at the crossroads of neurodevelopment and schizophrenia. World J Biol Psychiatry 2022; 23:14-32. [PMID: 33952049 DOI: 10.1080/15622975.2021.1925585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The 14-3-3 family comprises multifunctional proteins that play a role in neurogenesis, neuronal migration, neuronal differentiation, synaptogenesis and dopamine synthesis. 14-3-3 members function as adaptor proteins and impact a wide variety of cellular and physiological processes involved in the pathophysiology of neurological disorders. Schizophrenia is a psychiatric disorder and knowledge about its pathophysiology is still limited. 14-3-3 have been proven to be linked with the dopaminergic, glutamatergic and neurodevelopmental hypotheses of schizophrenia. Further, research using genetic models has demonstrated the role played by 14-3-3 proteins in neurodevelopment and neuronal circuits, however a more integrative and comprehensive approach is needed for a better understanding of their role in schizophrenia. For instance, we still lack an integrated assessment of the processes affected by 14-3-3 proteins in the dopaminergic and glutamatergic systems. In this context, it is also paramount to understand their involvement in the biology of brain cells other than neurons. Here, we present previous and recent research that has led to our current understanding of the roles 14-3-3 proteins play in brain development and schizophrenia, perform an assessment of their functional protein association network and discuss the use of protein-protein interaction modulators to target 14-3-3 as a potential therapeutic strategy.
Collapse
Affiliation(s)
- André S L M Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
11
|
Năstase MG, Vlaicu I, Trifu SC, Trifu SC. Genetic polymorphism and neuroanatomical changes in schizophrenia. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:307-322. [PMID: 36374137 PMCID: PMC9801677 DOI: 10.47162/rjme.63.2.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The article is a review of the latest meta-analyses regarding the genetic spectrum in schizophrenia, discussing the risks given by the disrupted-in-schizophrenia 1 (DISC1), catechol-O-methyltransferase (COMT), monoamine oxidases-A∕B (MAO-A∕B), glutamic acid decarboxylase 67 (GAD67) and neuregulin 1 (NRG1) genes, and dysbindin-1 protein. The DISC1 polymorphism significantly increases the risk of schizophrenia, as well injuries from the prefrontal cortex that affect connectivity. NRG1 is one of the most important proteins involved. Its polymorphism is associated with the reduction of areas in the corpus callosum, right uncinate, inferior lateral fronto-occipital fascicle, right external capsule, fornix, right optic tract, gyrus. NRG1 and the ErbB4 receptor (tyrosine kinase receptor) are closely related to the N-methyl-D-aspartate receptor (NMDAR) (glutamate receptor). COMT is located on chromosome 22 and together with interleukin-10 (IL-10) have an anti-inflammatory and immunosuppressive function that influences the dopaminergic system. MAO gene methylation has been associated with mental disorders. MAO-A is a risk gene in the onset of schizophrenia, more precisely a certain type of single-nucleotide polymorphism (SNP), at the gene level, is associated with schizophrenia. In schizophrenia, we find deficits of the γ-aminobutyric acid (GABA)ergic neurotransmitter, the dysfunctions being found predominantly at the level of the substantia nigra. In schizophrenia, missing an allele at GAD67, caused by a SNP, has been correlated with decreases in parvalbumin (PV), somatostatin receptor (SSR), and GAD ribonucleic acid (RNA). Resulting in the inability to mature PV and SSR neurons, which has been associated with hyperactivity.
Collapse
Affiliation(s)
- Mihai Gabriel Năstase
- Department of Neurosciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania;
| | - Ilinca Vlaicu
- Department of Psychiatry, Hospital for Psychiatry, Săpunari, Călăraşi County, Romania
| | - Simona Corina Trifu
- Department of Neurosciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | |
Collapse
|
12
|
A human iPSC-astroglia neurodevelopmental model reveals divergent transcriptomic patterns in schizophrenia. Transl Psychiatry 2021; 11:554. [PMID: 34716291 PMCID: PMC8556332 DOI: 10.1038/s41398-021-01681-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
While neurodevelopmental abnormalities have been associated with schizophrenia (SCZ), the role of astroglia in disease pathophysiology remains poorly understood. In the present study, we used a human induced pluripotent stem cell (iPSC)-derived astrocyte model to investigate the temporal patterns of astroglia differentiation during developmental stages critical for SCZ using RNA sequencing. The model generated astrocyte-specific gene expression patterns during differentiation that corresponded well to astroglia-specific expression signatures of in vivo cortical fetal development. Using this model we identified SCZ-specific expression dynamics, and found that SCZ-associated differentially expressed genes were significantly enriched in the medial prefrontal cortex, striatum, and temporal lobe, targeting VWA5A and ADAMTS19. In addition, SCZ astrocytes displayed alterations in calcium signaling, and significantly decreased glutamate uptake and metalloproteinase activity relative to controls. These results implicate novel transcriptional dynamics in astrocyte differentiation in SCZ together with functional changes that are potentially important biological components of SCZ pathology.
Collapse
|
13
|
O'Tuathaigh CMP, Desbonnet L, Payne C, Petit E, Cox R, Loftus S, Clarke G, Cryan JF, Tighe O, Wilson S, Kirby BP, Dinan TG, Waddington JL. Ethologically based behavioural and neurochemical characterisation of mice with isoform-specific loss of dysbindin-1A in the context of schizophrenia. Neurosci Lett 2020; 736:135218. [PMID: 32615248 DOI: 10.1016/j.neulet.2020.135218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 10/24/2022]
Abstract
Dysbindin-1 is implicated in several aspects of schizophrenia, including cognition and both glutamatergic and dopaminergic neurotransmission. Targeted knockout of dysbindin-1A (Dys-1A KO), the most abundant and widely expressed isoform in the brain, is associated with deficits in delay/interference-dependent working memory. Using an ethologically based approach, the following behavioural phenotypes were examined in Dys-1A KO mice: exploratory activity, social interaction, anxiety and problem-solving ability. Levels of monoamines and their metabolites were measured in striatum, hippocampus and prefrontal cortex using high-performance liquid chromatography with electrochemical detection. The ethogram of initial exploration in Dys-1A KO mice was characterised by increased rearing from a seated position; over subsequent habituation, stillness was decreased relative to wildtype. In a test of dyadic social interaction with an unfamiliar conspecific in a novel environment, female KO mice showed an increase in investigative social behaviours. Marble burying behaviour was unchanged. Using the puzzle-box test to measure general problem-solving performance, no effect of genotype was observed across nine trials of increasing complexity. Dys-1A KO demonstrated lower levels of 5-HT in ratio to its metabolite 5-HIAA in the prefrontal cortex. These studies elaborate the behavioural and neurochemical phenotype of Dys-1A KO mice, revealing subtle genotype-related differences in non-social and social exploratory behaviours and habituation of exploration in a novel environment, as well as changes in 5-HT activity in brain areas related to schizophrenia.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Medical Education Unit, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland.
| | - Lieve Desbonnet
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Psychology, National University of Ireland, Galway, Galway, Ireland
| | - Christina Payne
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Emilie Petit
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rachel Cox
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Samim Loftus
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; Neurogastroenterology Laboratory, APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Neurogastroenterology Laboratory, APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| | - Orna Tighe
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Steve Wilson
- In Vivo Science and Delivery, GlaxoSmithKline, Stevenage, UK
| | - Brian P Kirby
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; Neurogastroenterology Laboratory, APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|