1
|
Hamada Y, Yagi Y. Therapeutic drug monitoring of azole antifungal agents. J Infect Chemother 2024:S1341-321X(24)00276-9. [PMID: 39374735 DOI: 10.1016/j.jiac.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Deep-seated mycoses are generally opportunistic infections that are difficult to diagnose and treat. They are expected to increase with the spread of advanced medical care and aging populations, thus highlighting the need for safe, effective, and rapid drug-based treatments. Depending on a patient's age, sex, underlying diseases, and immune system status, therapeutic drug monitoring (TDM) may be important for assessing variable pharmacokinetic parameters, as well as preventing drug-drug interactions, adverse events, and breakthrough infections caused by fungal resistance. Azole antifungal agents play an important role in the prevention and treatment of deep-seated fungal infections, with each azoles having its own unique pharmacokinetic properties and specific adverse events. Therefore, it is necessary to use national and international guidelines to build evidence for the expansion of TDM indications. This review focuses on the clinical utility and future perspectives of TDM using azole antifungal agents, in the context of recent evidence in the literature.
Collapse
Affiliation(s)
- Yukihiro Hamada
- Department of Pharmacy, Kochi Medical School Hospital, Nankoku, Kochi, Japan.
| | - Yusuke Yagi
- Department of Pharmacy, Kochi Medical School Hospital, Nankoku, Kochi, Japan; Department of Infection Prevention and Control, Kochi Medical School Hospital, Nankoku, Kochi, Japan
| |
Collapse
|
2
|
Abdullah-Koolmees H, van den Nieuwendijk JF, Hoope SMKT, de Leeuw DC, Franken LGW, Said MM, Seefat MR, Swart EL, Hendrikse NH, Bartelink IH. Whole Body Physiologically Based Pharmacokinetic Model to Explain A Patient With Drug-Drug Interaction Between Voriconazole and Flucloxacillin. Eur J Drug Metab Pharmacokinet 2024:10.1007/s13318-024-00916-1. [PMID: 39271639 DOI: 10.1007/s13318-024-00916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND AND OBJECTIVES Voriconazole administered concomitantly with flucloxacillin may result in subtherapeutic plasma concentrations as shown in a patient with Staphylococcus aureus sepsis and a probable pulmonary aspergillosis. After switching our patient to posaconazole, therapeutic concentrations were reached. The aim of this study was to first test our hypothesis that flucloxacillin competes with voriconazole not posaconazole for binding to albumin ex vivo, leading to lower total concentrations in plasma. METHODS A physiologically based pharmacokinetic (PBPK) model was then applied to predict the mechanism of action of the drug-drug interaction (DDI). The model included non-linear hepatic metabolism and the effect of a severe infectious disease on cytochrome P450 (CYP) enzymes activity. RESULTS The unbound voriconazole concentration remained unchanged in plasma after adding flucloxacillin, thereby rejecting our hypothesis of albumin-binding site competition. The PBPK model was able to adequately predict the plasma concentration of both voriconazole and posaconazole over time in healthy volunteers. Upregulation of CYP3A4, CYP2C9, and CYP2C19 through the pregnane X receptor (PXR) gene by flucloxacillin resulted in decreased voriconazole plasma concentrations, reflecting the DDI observations in our patient. Posaconazole metabolism was not affected, or was only limitedly affected, by the changes through the PXR gene, which agrees with the observed plasma concentrations within the target range in our patient. CONCLUSIONS Ex vivo experiments reported that the unbound voriconazole plasma concentration remained unchanged after adding flucloxacillin. The PBPK model describes the potential mechanism driving the drug-drug and drug-disease interaction of voriconazole and flucloxacillin, highlighting the large substantial influence of flucloxacillin on the PXR gene and the influence of infection on voriconazole plasma concentrations, and suggests a more limited effect on other triazoles.
Collapse
Affiliation(s)
- Heshu Abdullah-Koolmees
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Julia F van den Nieuwendijk
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Simone M K Ten Hoope
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - David C de Leeuw
- Department of Haematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Linda G W Franken
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Medhat M Said
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Maarten R Seefat
- Department of Haematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Eleonora L Swart
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - N Harry Hendrikse
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location VUmc, The Netherlands, Amsterdam
- Cancer Treatment and Quality of Life, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Imke H Bartelink
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Zhao YC, Sun ZH, Li JK, Liu HY, Zhang BK, Xie XB, Fang CH, Sandaradura I, Peng FH, Yan M. Individualized dosing parameters for tacrolimus in the presence of voriconazole: a real-world PopPK study. Front Pharmacol 2024; 15:1439232. [PMID: 39318775 PMCID: PMC11419969 DOI: 10.3389/fphar.2024.1439232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Objectives Significant increase in tacrolimus exposure was observed during co-administration with voriconazole, and no population pharmacokinetic model exists for tacrolimus in renal transplant recipients receiving voriconazole. To achieve target tacrolimus concentrations, an optimal dosage regimen is required. This study aims to develop individualized dosing parameters through population pharmacokinetic analysis and simulate tacrolimus concentrations under different dosage regimens. Methods We conducted a retrospective study of renal transplant recipients who were hospitalized at the Second Xiangya Hospital of Central South University between January 2016 and March 2021. Subsequently, pharmacokinetic analysis and Monte Carlo simulation were employed for further analysis. Results Nineteen eligible patients receiving tacrolimus and voriconazole co-therapy were included in the study. We collected 167 blood samples and developed a one-compartment model with first-order absorption and elimination to describe the pharmacokinetic properties of tacrolimus. The final typical values for tacrolimus elimination rate constant (Ka), apparent volume of distribution (V/F), and apparent oral clearance (CL/F) were 8.39 h-1, 2690 L, and 42.87 L/h, respectively. Key covariates in the final model included voriconazole concentration and serum creatinine. Patients with higher voriconazole concentration had lower tacrolimus CL/F and V/F. In addition, higher serum creatinine levels were associated with lower tacrolimus CL/F. Conclusion Our findings suggest that clinicians can predict tacrolimus concentration and estimate optimal tacrolimus dosage based on voriconazole concentration and serum creatinine. The effect of voriconazole concentration on tacrolimus concentration was more significant than serum creatinine. These findings may inform clinical decision-making in the management of tacrolimus and voriconazole therapy in solid organ transplant recipients.
Collapse
Affiliation(s)
- Yi-Chang Zhao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Zhi-Hua Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jia-Kai Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Huai-Yuan Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Xu-Biao Xie
- Department of Urological Organ Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Hua Fang
- Department of Urological Organ Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Indy Sandaradura
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, NSW, Australia
| | - Feng-Hua Peng
- Department of Urological Organ Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| |
Collapse
|
4
|
Yin G, Song G, Xue S, Liu F. Adverse event signal mining and serious adverse event influencing factor analysis of fulvestrant based on FAERS database. Sci Rep 2024; 14:11367. [PMID: 38762547 PMCID: PMC11102440 DOI: 10.1038/s41598-024-62238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/15/2024] [Indexed: 05/20/2024] Open
Abstract
Fulvestrant, as the first selective estrogen receptor degrader, is widely used in the endocrine treatment of breast cancer. However, in the real world, there is a lack of relevant reports on adverse reaction data mining for fulvestrant. To perform data mining on adverse events (AEs) associated with fulvestrant and explore the risk factors contributing to severe AEs, providing a reference for the rational use of fulvestrant in clinical practice. Retrieved adverse event report information associated with fulvestrant from the U.S. Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database, covering the period from market introduction to September 30, 2023. Suspicious AEs were screened using the reporting odds ratio (ROR) and proportional reporting ratio methods based on disproportionality analysis. Univariate and multivariate logistic regression analyses were conducted on severe AEs to explore the risk factors associated with fulvestrant-induced severe AEs. A total of 6947 reports related to AEs associated with fulvestrant were obtained, including 5924 reports of severe AEs and 1023 reports of non-severe AEs. Using the disproportionality analysis method, a total of 210 valid AEs were identified for fulvestrant, with 45 AEs (21.43%) not listed in the product labeling, involving 11 systems and organs. The AEs associated with fulvestrant were sorted by frequency of occurrence, with neutropenia (325 cases) having the highest number of reports. By signal strength, injection site pruritus showed the strongest signal (ROR = 658.43). The results of the logistic regression analysis showed that concurrent use of medications with extremely high protein binding (≥ 98%) is an independent risk factor for severe AEs associated with fulvestrant. Age served as a protective factor for fulvestrant-related AEs. The co-administration of fulvestrant with CYP3A4 enzyme inhibitors did not show statistically significant correlation with the occurrence of severe AEs. Co-administration of drugs with extremely high protein binding (≥ 98%) may increase the risk of severe adverse reactions of fulvestrant. Meanwhile, age (60-74 years) may reduce the risk of severe AEs of fulvestrant. However, further clinical research is still needed to explore and verify whether there is interaction between fulvestrant and drugs with high protein binding through more clinical studies.
Collapse
Affiliation(s)
- Guisen Yin
- Department of Pharmacy, Yantai Hospital of Traditional Chinese Medicine, YantaiShandong, 264000, China
| | - Guiling Song
- Department of Chemical Medicine, Yantai Center for Food and Drug Control, YantaiShandong, 264003, China
| | - Shuyi Xue
- Department of Pharmacy, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266042, Shandong, China
| | - Fen Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Ahmed H, Böhmdorfer M, Eberl S, Jäger W, Zeitlinger M. Interspecies variability in protein binding of antibiotics basis for translational PK/PD studies-a case study using cefazolin. Antimicrob Agents Chemother 2024; 68:e0164723. [PMID: 38376186 PMCID: PMC10989014 DOI: 10.1128/aac.01647-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
For antimicrobial agents in particular, plasma protein binding (PPB) plays a pivotal role in deciphering key properties of drug candidates. Animal models are generally used in the preclinical development of new drugs to predict their effects in humans using translational pharmacokinetics/pharmacodynamics (PK/PD). Thus, we compared the protein binding (PB) of cefazolin as well as bacterial growth under various conditions in vitro. The PB extent of cefazolin was studied in human, bovine, and rat plasmas at different antibiotic concentrations in buffer and media containing 20-70% plasma or pure plasma using ultrafiltration (UF) and equilibrium dialysis (ED). Moreover, bacterial growth and time-kill assays were performed in Mueller Hinton Broth (MHB) containing various plasma percentages. The pattern for cefazolin binding to plasma proteins was found to be similar for both UF and ED. There was a significant decrease in cefazolin binding to bovine plasma compared to human plasma, whereas the pattern in rat plasma was more consistent with that in human plasma. Our growth curve analysis revealed considerable growth inhibition of Escherichia coli at 70% bovine or rat plasma compared with 70% human plasma or pure MHB. As expected, our experiments with cefazolin at low concentrations showed that E. coli grew slightly better in 20% human and rat plasma compared to MHB, most probably due to cefazolin binding to proteins in the plasma. Based on the example of cefazolin, our study highlights the interspecies differences of PB with potential impact on PK/PD. These findings should be considered before preclinical PK/PD data can be extrapolated to human patients.
Collapse
Affiliation(s)
- Hifza Ahmed
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Sabine Eberl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy, University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Laeliocattleya RA, Yunianta Y, Risjani Y, Wulan SN. In silico molecular docking, molecular dynamics, ADMET analysis of fucoidan against receptor frizzled-8 and coreceptor LRP6 in Wnt/β-Catenin pathway and in vitro analysis of fucoidan extract from Sargassum echinocarpum as β-catenin inhibitor in breast cancer cell line (MCF-7). J Biomol Struct Dyn 2023:1-16. [PMID: 37811743 DOI: 10.1080/07391102.2023.2265488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
This study aimed to investigate the effect of fucoidan on the Wnt/β-Catenin pathway using both in-silico molecular docking, molecular dynamics, ADMET analysis (in frizzled-8 receptor and LRP6 coreceptor) and in-vitro experiments using MCF-7 breast cancer cells. Through the molecular docking analysis, the binding energies on the frizzled-8 receptor were -5.6, -5.1, -9.4, and -8.8 kcal/mol, respectively. Meanwhile, those on the LRP6 receptor, were -7.3, -6.2, -10.0, and -9.8 kcal/mol, respectively. The results showed that fucoidan had a favorable binding affinity for both receptors. Furthermore, it was discovered to reduce the interaction and binding affinity between Wnt agonists to frizzled-8 and LRP6 receptors. This reduction was reflected in the change in the binding energy of the fucoidan-Wnt agonist-frizzled 8 and fucoidan-Wnt agonist-LRP6 complexes, which exhibited decreases of -7.0 kcal/mol and -7.8 kcal/mol, respectively. Fucoidan was found stable in complexes with frizzled-8 receptor and co-receptor LRP6. ADMET study showed it's non-carcinogenic and can be distributed in the body. Fucoidan effectively inhibited β-catenin production, a critical factor in the Wnt/β-catenin pathway. The MCF-7 breast cancer cells were treated with fucoidan extract from S. echinocarpum at incubation times of 24, 48, and 72 h, resulting in a reduction of β-catenin levels by 95.19%, 83.88%, and 80.88%, respectively. Fucoidan also shows no significant difference in value compared to fucoidan standard (F. vesiculosus) and doxorubicin. Fucoidan exhibited antiproliferative effects against breast cancer cells, specifically through its modulation of the Wnt/β-Catenin pathway, and held great potential as an herbal anticancer agent.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Yunianta Yunianta
- Department of Food Science and Biotechnology, Faculty of Agricultural Technology, Brawijaya University, Malang, Indonesia
- AlgaEn Research Center, Brawijaya University, Malang, Indonesia
| | - Yenny Risjani
- AlgaEn Research Center, Brawijaya University, Malang, Indonesia
- Department of Aquatic Resources Management, Faculty of Fisheries and Marine Sciences, Brawijaya University, Malang, Indonesia
| | - Siti Narsito Wulan
- Department of Food Science and Biotechnology, Faculty of Agricultural Technology, Brawijaya University, Malang, Indonesia
- AlgaEn Research Center, Brawijaya University, Malang, Indonesia
| |
Collapse
|
7
|
Ronda M, Llop-Talaveron JM, Fuset M, Leiva E, Shaw E, Gumucio-Sanguino VD, Diez Y, Colom H, Rigo-Bonnin R, Puig-Asensio M, Carratalà J, Padullés A. Voriconazole Pharmacokinetics in Critically Ill Patients and Extracorporeal Membrane Oxygenation Support: A Retrospective Comparative Case-Control Study. Antibiotics (Basel) 2023; 12:1100. [PMID: 37508196 PMCID: PMC10376825 DOI: 10.3390/antibiotics12071100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Voriconazole, an antifungal agent, displays high intra- and inter-individual variability. The predictive pharmacokinetic (PK) index requires a minimum plasma concentration (Cmin) in patient serum of between 1-5.5 mg/L. It is common to encounter fungal infections in patients undergoing extracorporeal membrane oxygenation (ECMO) support, and data regarding voriconazole PK changes during ECMO are scarce. Our study compared voriconazole PKs in patients with and without ECMO support in a retrospective cohort of critically-ill patients. Fifteen patients with 26 voriconazole Cmin determinations in the non-ECMO group and nine patients with 27 voriconazole Cmin determinations in the ECMO group were recruited. The ECMO group had lower Cmin (0.38 ± 2.98 vs. 3.62 ± 3.88, p < 0.001) and higher infratherapeutic Cmin values (16 vs. 1, p < 0.001) than the non-ECMO group. Multivariate analysis identified ECMO support (-0.668, CI95 -0.978--0.358) and plasma albumin levels (-0.023, CI95 -0.046--0.001) as risk factors for low Cmin values. When comparing pre- and post-therapeutic drug optimisation samples from the ECMO group, the dose required to achieve therapeutic Cmin was 6.44 mg/kg twice a day. Therapeutic drug optimisation is essential to improve target attainment.
Collapse
Affiliation(s)
- Mar Ronda
- Infectious Disease Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Josep Manuel Llop-Talaveron
- Pharmacy Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Farmacoteràpia, Farmacogenètica i Tecnologia Farmacèutica, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - MariPaz Fuset
- Critical Care Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Elisabet Leiva
- Pharmacy Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Farmacoteràpia, Farmacogenètica i Tecnologia Farmacèutica, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Evelyn Shaw
- Infectious Disease Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28019 Madrid, Spain
- Epidemiologia de les Infeccions Bacterianes, Patologia Infecciosa i Transplantament, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | | | - Yolanda Diez
- Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Helena Colom
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Raul Rigo-Bonnin
- Clinical Laboratory, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Mireia Puig-Asensio
- Infectious Disease Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Epidemiologia de les Infeccions Bacterianes, Patologia Infecciosa i Transplantament, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Jordi Carratalà
- Infectious Disease Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28019 Madrid, Spain
- Epidemiologia de les Infeccions Bacterianes, Patologia Infecciosa i Transplantament, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Ariadna Padullés
- Pharmacy Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Farmacoteràpia, Farmacogenètica i Tecnologia Farmacèutica, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28019 Madrid, Spain
| |
Collapse
|
8
|
Castellino NJ, Montgomery AP, Danon JJ, Kassiou M. Late-stage Functionalization for Improving Drug-like Molecular Properties. Chem Rev 2023. [PMID: 37285604 DOI: 10.1021/acs.chemrev.2c00797] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of late-stage functionalization (LSF) methodologies, particularly C-H functionalization, has revolutionized the field of organic synthesis. Over the past decade, medicinal chemists have begun to implement LSF strategies into their drug discovery programs, allowing for the drug discovery process to become more efficient. Most reported applications of late-stage C-H functionalization of drugs and drug-like molecules have been to rapidly diversify screening libraries to explore structure-activity relationships. However, there has been a growing trend toward the use of LSF methodologies as an efficient tool for improving drug-like molecular properties of promising drug candidates. In this review, we have comprehensively reviewed recent progress in this emerging area. Particular emphasis is placed on case studies where multiple LSF techniques were implemented to generate a library of novel analogues with improved drug-like properties. We have critically analyzed the current scope of LSF strategies to improve drug-like properties and commented on how we believe LSF can transform drug discovery in the future. Overall, we aim to provide a comprehensive survey of LSF techniques as tools for efficiently improving drug-like molecular properties, anticipating its continued uptake in drug discovery programs.
Collapse
Affiliation(s)
| | | | - Jonathan J Danon
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Yang P, Zhang X, Zhou C, Zhai S, Wang C, Yang L. Determination of free and total meropenem levels in human plasma and its application for the consistency evaluation of generic drugs. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9460. [PMID: 36542492 DOI: 10.1002/rcm.9460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
RATIONALE The consistency evaluation of generic drugs is important for the overall reformation of drug registration in China. In this study, we used meropenem as a model drug to explore the key techniques for clinical consistency evaluation by studying the plasma protein binding (PPB) ratio of different preparations. Because the free portion of drug is the effective part in vivo, it is essential to measure the free drug concentration in the circulatory system. Therefore, in this study, a fast and accurate high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method was developed to determine the total and free concentrations of meropenem in human plasma. METHODS Simple protein precipitation procedures were used for the sample processing assay, and ultrafiltration was implemented for the separation of free drugs. Liquid chromatography separation was performed using a hydrophilic interaction liquid chromatography (HILIC) silica column (2.1 × 50 mm, 3 μm). The mobile phase and sample preparation procedures were optimized. Factors affecting the measurement of free drug concentration were also determined. Nonspecific binding of the ultrafiltration membrane was negligible because the recovery rate for post-ultrafiltration was greater than 96%. RESULTS Under optimal conditions, the drug concentrations were linear from 0.5 to 50 μg/ml for both total and free drug concentrations. The PPB ratio was calculated based on the free and total drug concentrations. The PPB of meropenem varied from 1.4% to 24.2% in different subjects. The validated method was applied to evaluate PPB of four preparations, and the results varied from 6.57 ± 3.19% to 10.40 ± 8.31%. One-way analysis of variance (ANOVA) showed no significant differences between the four preparations. CONCLUSIONS We established a rapid, robust, and reliable method for the determination of total and free meropenem concentrations using LC-MS/MS with ultrafiltration techniques. The method provided a new perspective for the clinical consistency evaluation of generic drugs.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing, China
| | - Xianhua Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing, China
| | - Congya Zhou
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing, China
| | - Suodi Zhai
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Chen Wang
- National Institute for Food and Drug Control, Beijing, China
| | - Li Yang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing, China
| |
Collapse
|
10
|
de Almeida Campos L, Fin MT, Santos KS, de Lima Gualque MW, Freire Cabral AKL, Khalil NM, Fusco-Almeida AM, Mainardes RM, Mendes-Giannini MJS. Nanotechnology-Based Approaches for Voriconazole Delivery Applied to Invasive Fungal Infections. Pharmaceutics 2023; 15:pharmaceutics15010266. [PMID: 36678893 PMCID: PMC9863752 DOI: 10.3390/pharmaceutics15010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Invasive fungal infections increase mortality and morbidity rates worldwide. The treatment of these infections is still limited due to the low bioavailability and toxicity, requiring therapeutic monitoring, especially in the most severe cases. Voriconazole is an azole widely used to treat invasive aspergillosis, other hyaline molds, many dematiaceous molds, Candida spp., including those resistant to fluconazole, and for infections caused by endemic mycoses, in addition to those that occur in the central nervous system. However, despite its broad activity, using voriconazole has limitations related to its non-linear pharmacokinetics, leading to supratherapeutic doses and increased toxicity according to individual polymorphisms during its metabolism. In this sense, nanotechnology-based drug delivery systems have successfully improved the physicochemical and biological aspects of different classes of drugs, including antifungals. In this review, we highlighted recent work that has applied nanotechnology to deliver voriconazole. These systems allowed increased permeation and deposition of voriconazole in target tissues from a controlled and sustained release in different routes of administration such as ocular, pulmonary, oral, topical, and parenteral. Thus, nanotechnology application aiming to delivery voriconazole becomes a more effective and safer therapeutic alternative in the treatment of fungal infections.
Collapse
Affiliation(s)
- Laís de Almeida Campos
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Margani Taise Fin
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Kelvin Sousa Santos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Marcos William de Lima Gualque
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Ana Karla Lima Freire Cabral
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| |
Collapse
|
11
|
Ryu S, Tess D, Di L. Addressing the Accuracy of Plasma Protein Binding Measurement for Highly Bound Compounds Using the Dilution Method. AAPS J 2022; 25:7. [PMID: 36471200 DOI: 10.1208/s12248-022-00774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Currently, regulatory guidelines recommend using 0.01 as the lower limit of plasma fraction unbound (fu) for prediction of drug-drug interactions (DDI) to err on the conservative side. One way to increase experimental fu of highly bound compounds is to dilute the plasma. With the dilution method, a diluted fu, or fu,d, of ≥ 0.01 can be achieved by adjusting the dilution factor. The undiluted fu can be calculated from fu,d and be used for DDI prediction. In this study, the dilution method was evaluated, and the results showed that it gave similar fu values as those determined using the pre-saturation method without plasma dilution. The dilution method enables generation of accurate fu values and alignment with the regulatory recommendation of reportable fu values of ≥ 0.01 for DDI prediction. We recommend using the dilution method to bridge the regulatory recommended fu limit of 0.01 for DDI prediction and the pre-saturation or equivalent methods for definitive plasma protein binding studies. As the pharmaceutical industry continues to generate high quality PPB data, regulatory agencies will gain confidence in the accuracy of fu measurements for highly bound compounds, and the fu lower limit may no longer be needed in the future.
Collapse
Affiliation(s)
- Sangwoo Ryu
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut, USA
| | - David Tess
- Modeling and Simulation, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut, USA.
| |
Collapse
|
12
|
Jiang Z, Wei Y, Huang W, Li B, Zhou S, Liao L, Li T, Liang T, Yu X, Li X, Zhou C, Cao C, Liu T. Population pharmacokinetics of voriconazole and initial dosage optimization in patients with talaromycosis. Front Pharmacol 2022; 13:982981. [PMID: 36225581 PMCID: PMC9549404 DOI: 10.3389/fphar.2022.982981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 01/08/2023] Open
Abstract
The high variability and unpredictability of the plasma concentration of voriconazole (VRC) pose a major challenge for clinical administration. The aim of this study was to develop a population pharmacokinetics (PPK) model of VRC and identify the factors influencing VRC PPK in patients with talaromycosis. Medical records and VRC medication history of patients with talaromycosis who were treated with VRC as initial therapy were collected. A total of 233 blood samples from 69 patients were included in the study. A PPK model was developed using the nonlinear mixed-effects models (NONMEM). Monte Carlo simulation was applied to optimize the initial dosage regimens with a therapeutic range of 1.0–5.5 mg/L as the target plasma trough concentration. A one-compartment model with first-order absorption and elimination adequately described the data. The typical voriconazole clearance was 4.34 L/h, the volume of distribution was 97.4 L, the absorption rate constant was set at 1.1 h-1, and the bioavailability was 95.1%. Clearance was found to be significantly associated with C-reactive protein (CRP). CYP2C19 polymorphisms had no effect on voriconazole pharmacokinetic parameters. Monte Carlo simulation based on CRP levels showed that a loading dose of 250 mg/12 h and a maintenance dose of 100 mg/12 h are recommended for patients with CRP ≤ 96 mg/L, whereas a loading dose of 200 mg/12 h and a maintenance dose of 75 mg/12 h are recommended for patients with CRP > 96 mg/L. The average probability of target attainment of the optimal dosage regimen in CRP ≤ 96 mg/L and CRP > 96 mg/L groups were 61.3% and 13.6% higher than with empirical medication, and the proportion of Cmin > 5.5 mg/L decreased by 28.9%. In conclusion, the VRC PPK model for talaromycosis patients shows good robustness and predictive performance, which can provide a reference for the clinical individualization of VRC. Adjusting initial dosage regimens based on CRP may promote the rational use of VRC.
Collapse
Affiliation(s)
- Zhiwen Jiang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Yinyi Wei
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weie Huang
- Department of Infectious Diseases, Baise People’s Hospital, Baise, China
| | - Bingkun Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Siru Zhou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liuwei Liao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Tiantian Li
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Tianwei Liang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Xiaoshu Yu
- Department of Infectious Diseases, Baise People’s Hospital, Baise, China
| | - Xiuying Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Changjing Zhou
- Department of Infectious Diseases, Baise People’s Hospital, Baise, China
- *Correspondence: Changjing Zhou, ; Cunwei Cao, ; TaoTao Liu,
| | - Cunwei Cao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
- *Correspondence: Changjing Zhou, ; Cunwei Cao, ; TaoTao Liu,
| | - TaoTao Liu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Changjing Zhou, ; Cunwei Cao, ; TaoTao Liu,
| |
Collapse
|
13
|
Zhu X, Yuan M, Wang H, Zhangsun D, Yu G, Che J, Luo S. Novel αO-conotoxin GeXIVA[1,2] Nonaddictive Analgesic with Pharmacokinetic Modelling-Based Mechanistic Assessment. Pharmaceutics 2022; 14:pharmaceutics14091789. [PMID: 36145535 PMCID: PMC9505004 DOI: 10.3390/pharmaceutics14091789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
αO-conotoxin GeXIVA[1,2] was isolated in our laboratory from Conus generalis, a snail native to the South China Sea, and is a novel, nonaddictive, intramuscularly administered analgesic targeting the α9α10 nicotinic acetylcholine receptor (nAChR) with an IC50 of 4.61 nM. However, its pharmacokinetics and related mechanisms underlying the analgesic effect remain unknown. Herein, pharmacokinetics and multiscale pharmacokinetic modelling in animals were subjected systematically to mechanistic assessment for αO-conotoxin GeXIVA[1,2]. The intramuscular bioavailability in rats and dogs was 11.47% and 13.37%, respectively. The plasma exposure of GeXIVA[1,2] increased proportionally with the experimental dose. The plasma protein binding of GeXIVA[1,2] differed between the tested animal species. The one-compartment model with the first-order absorption population pharmacokinetics model predicted doses for humans with bodyweight as the covariant. The pharmacokinetics-pharmacodynamics relationships were characterized using an inhibitory loss indirect response model with an effect compartment. Model simulations have provided potential mechanistic insights into the analgesic effects of GeXIVA[1,2] by inhibiting certain endogenous substances, which may be a key biomarker. This report is the first concerning the pharmacokinetics of GeXIVA[1,2] and its potential analgesic mechanisms based on a top-down modelling approach.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Mei Yuan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Huanbai Wang
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China
| | - Gang Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (G.Y.); (J.C.); (S.L.)
| | - Jinjing Che
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (G.Y.); (J.C.); (S.L.)
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China
- Medical School, Guangxi University, Nanning 530004, China
- Correspondence: (G.Y.); (J.C.); (S.L.)
| |
Collapse
|
14
|
Voriconazole-Induced Hepatotoxicity Concise up-to-date review. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2022. [DOI: 10.30621/jbachs.1051669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Zhao Y, Xiao C, Hou J, Wu J, Xiao Y, Zhang B, Sandaradura I, Yan M. A Large Sample Retrospective Study on the Distinction of Voriconazole Concentration in Asian Patients from Different Clinical Departments. Pharmaceuticals (Basel) 2021; 14:ph14121239. [PMID: 34959640 PMCID: PMC8705093 DOI: 10.3390/ph14121239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 01/04/2023] Open
Abstract
Voriconazole (VRZ) is widely used to prevent and treat invasive fungal infections; however, there are a few studies examining the variability and influencing the factors of VRZ plasma concentrations across different clinical departments. This study aimed to evaluate distinction of VRZ concentrations in different clinical departments and provide a reference for its reasonable use. From 1 May 2014 to 31 December 2020, VRZ standard rates and factors affecting the VRZ trough concentration were analyzed, and a multiple linear regression model was constructed. The standard rates of VRZ in most departments were above 60%. A total of 676 patients with 1212 VRZ trough concentrations using a dosing regimen of 200 mg q12h from seven departments were enrolled in the correlation analysis. The concentration distribution varied significantly among different departments (p < 0.001). Fifteen factors, including department, CYP2C19 phenotype, and gender, correlated with VRZ concentration. A multiple linear regression model was established as follows: VRZ trough concentration = 5.195 + 0.049 × age + 0.007 × alanine aminotransferase + 0.010 × total bilirubin − 0.100 × albumin − 0.004 × gamma-glutamyl transferase. According to these indexes, we can predict possible changes in VRZ trough concentration and adjust its dosage precisely and individually.
Collapse
Affiliation(s)
- Yichang Zhao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (C.X.); (J.H.); (J.W.); (Y.X.); (B.Z.)
| | - Chenlin Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (C.X.); (J.H.); (J.W.); (Y.X.); (B.Z.)
| | - Jingjing Hou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (C.X.); (J.H.); (J.W.); (Y.X.); (B.Z.)
| | - Jiamin Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (C.X.); (J.H.); (J.W.); (Y.X.); (B.Z.)
| | - Yiwen Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (C.X.); (J.H.); (J.W.); (Y.X.); (B.Z.)
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (C.X.); (J.H.); (J.W.); (Y.X.); (B.Z.)
| | - Indy Sandaradura
- School of Medicine, University of New South Wales, Sydney, NSW 2052, Australia;
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, NSW 2145, Australia
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (C.X.); (J.H.); (J.W.); (Y.X.); (B.Z.)
- Correspondence: ; Tel.: +86-0731-8529-2098; Fax: +86-0731-8443-6720
| |
Collapse
|
16
|
Danishuddin, Kumar V, Faheem M, Woo Lee K. A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug Discov Today 2021; 27:529-537. [PMID: 34592448 DOI: 10.1016/j.drudis.2021.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022]
Abstract
Traditionally, in vitro and in vivo methods are useful for estimating human pharmacokinetics (PK) parameters; however, it is impractical to perform these complex and expensive experiments on a large number of compounds. The integration of publicly available chemical, or medical Big Data and artificial intelligence (AI)-based approaches led to qualitative and quantitative prediction of human PK of a candidate drug. However, predicting drug response with these approaches is challenging, partially because of the adaptation of algorithmic and limitations related to experimental data. In this report, we provide an overview of machine learning (ML)-based quantitative structure-activity relationship (QSAR) models used in the assessment or prediction of PK values as well as databases available for obtaining such data.
Collapse
Affiliation(s)
- Danishuddin
- Department of Bio & Medical Big Data (BK4), Division of Life Sciences, Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Vikas Kumar
- Department of Bio & Medical Big Data (BK4), Division of Life Sciences, Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Mohammad Faheem
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Keun Woo Lee
- Department of Bio & Medical Big Data (BK4), Division of Life Sciences, Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea.
| |
Collapse
|
17
|
Pu Y, Cai Y, Zhang Q, Hou T, Zhang T, Zhang T, Wang B. Comparison of Pinoresinol and its Diglucoside on their ADME Properties and Vasorelaxant Effects on Phenylephrine-Induced Model. Front Pharmacol 2021; 12:695530. [PMID: 34434107 PMCID: PMC8381248 DOI: 10.3389/fphar.2021.695530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022] Open
Abstract
Pinoresinol (PINL) and pinoresinol diglucoside (PDG), two natural lignans found in Eucommia ulmoides Oliv. (Duzhong), have several pharmacological activities. However, there is no report available on their absorption, distribution, metabolism, and elimination (ADME) properties. Given the possible wide spectrum of their application in therapeutic areas, this area should be investigated. This work studied the in vitro ADME properties of PDG and PINL, including their kinetic solubility, permeability across monolayer cells (PAMPA), protein binding, and metabolic stabilities in liver microsomes. The in vivo pharmacokinetic study and in vitro vasorelaxant effects on isolated phenylephrine-induced aortic rings of PINL and PDG were also investigated. It was found that both of their kinetic solubility in PBS (pH 7.4) was greater than 100 μM, indicating that they are both soluble compounds. The permeability investigations (Peff) by PAMPA indicated that PINL had higher permeability than PDG (p < 0.05). Both components represented moderate plasma protein binding activities (average binding rate in human plasma: PINL 89.03%, PDG 45.21%) and low metabolic rate (t1/2 in human liver microsome: PINL 1509.5 min, PDG 1004.8 min). Furthermore, the results of pharmacokinetic studies indicated that PINL might be eliminated less quickly than PDG from the rat plasma, and its cumulative urinary excretion was much lower than that of PDG. The phenylephrine-induced aortic rings demonstrated concentration-dependent vasorelaxation in PDG, PINL, or their combination group. The vasorelaxant effects of PINL were more obvious than those of PDG, whereas the vasorelaxant effect of the combinations was significantly better than that of the single component (p < 0.05). The similarity or difference between PINL and its diglucoside in these pharmaceutical aspects may offer valuable insights into the further exploration of lignans and might contribute to relevant studies involving natural products with similar molecular structure and their glucosides.
Collapse
Affiliation(s)
- Yiqiong Pu
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiqing Cai
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Clinical Research Institute of Integrated Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Qi Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianling Hou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Teng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Clinical Research Institute of Integrated Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Wang
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
18
|
Ruiz M. Into the Labyrinth of the Lipocalin α1-Acid Glycoprotein. Front Physiol 2021; 12:686251. [PMID: 34168570 PMCID: PMC8217824 DOI: 10.3389/fphys.2021.686251] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
α1-acid glycoprotein (AGP), also known as Orosomucoid (ORM), belongs to the Lipocalin protein family and it is well-known for being a positive acute-phase protein. AGP is mostly found in plasma, with the liver as main contributor, but it is also expressed in other tissues such as the brain or the adipose tissue. Despite the vast literature on AGP, the physiological functions of the protein remain to be elucidated. A large number of activities mostly related to protection and immune system modulation have been described. Recently created AGP-knockout models have suggested novel physiological roles of AGP, including regulation of metabolism. AGP has an outstanding ability to efficiently bind endogenous and exogenous small molecules that together with the complex and variable glycosylation patterns, determine AGP functions. This review summarizes and discusses the recent findings on AGP structure (including glycans), ligand-binding ability, regulation, and physiological functions of AGP. Moreover, this review explores possible molecular and functional connections between AGP and other members of the Lipocalin protein family.
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Wang X, Ye C, Xun T, Mo L, Tong Y, Ni W, Huang S, Liu B, Zhan X, Yang X. Bacteroides Fragilis Polysaccharide A Ameliorates Abnormal Voriconazole Metabolism Accompanied With the Inhibition of TLR4/NF-κB Pathway. Front Pharmacol 2021; 12:663325. [PMID: 33995087 PMCID: PMC8115215 DOI: 10.3389/fphar.2021.663325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
The antifungal agent voriconazole (VRC) exhibits extreme inter-individual and intra-individual variation in terms of its clinical efficacy and toxicity. Inflammation, as reflected by C-reactive protein (CRP) concentrations, significantly affects the metabolic ratio and trough concentrations of voriconazole. Bacteroides fragilis (B. fragilis) is an important component of the human intestinal microbiota. Clinical data have shown that B. fragilis abundance is comparatively higher in patients not presenting with adverse drug reactions, and inflammatory cytokine (IL-1β) levels are negatively correlated with B. fragilis abundance. B. fragilis natural product capsular polysaccharide A (PSA) prevents various inflammatory disorders. We tested the hypothesis that PSA ameliorates abnormal voriconazole metabolism by inhibiting inflammation. Germ-free animals were administered PSA intragastrically for 5 days after lipopolysaccharide (LPS) stimulation. Their blood and liver tissues were collected to measure VRC concentrations. PSA administration dramatically improved the resolution phase of LPS-induced hepatic VRC metabolism and inflammatory factor secretion. It reversed inflammatory lesions and alleviated hepatic pro-inflammatory factor secretion. Both in vitro and in vivo data demonstrate that PSA reversed LPS-induced IL-1β secretion, downregulated the TLR4/NF-κB signaling pathway and upregulated CYP2C19 and P-gp. To the best of our knowledge, this study is the first to show that PSA from the probiotic B. fragilis ameliorates abnormal voriconazole metabolism by inhibiting TLR4-mediated NF-κB transcription and regulating drug metabolizing enzyme and transporter expression. Thus, PSA could serve as a clinical adjunct therapy.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Chunxiao Ye
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Tianrong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Liqian Mo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Tong
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wensi Ni
- Department of Pediatric, Shenzhen University General Hospital, Shenzhen, China
| | - Suping Huang
- Department of Intensive Care Unit, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Bin Liu
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xia Zhan
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
A Novel Cryptococcal Meningitis Therapy: The Combination of Amphotericin B and Posaconazole Promotes the Distribution of Amphotericin B in the Brain Tissue. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8878158. [PMID: 33313322 PMCID: PMC7719495 DOI: 10.1155/2020/8878158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
The deficient brain tissue distribution of amphotericin B (AMPB) seriously restricts its treatment for the clinical efficacy of cryptococcus neoformans meningitis (CNM). We strive to develop a tactic to increase its concentration in brain tissue. We aimed to investigate whether the combination of AMPB and posaconazole (POS) could be more effective in the treatment of CNM and to elucidate its potential mechanisms. HPLC analysis was used to analyze the concentration of AMPB in mouse serum, brain tissue, and BCECs cells. Schrodinger molecular docking, in vitro plasma balance dialysis, and ultrafiltration analysis were performed to evaluate the combinative effect of AMPB and POS with serum albumin and POS on AMPB plasma protein binding. H&E staining and colonization culture experiment of CN were employed to assess the effect of POS on the efficacy of AMPB. POS + AMPB significantly reduced the concentration of plasma total AMPB and increased its concentration in the brain tissue. However, the P-gp inhibitor zosuquidar, BCRP inhibitor Ko143, and a common inhibitor of both, elacridar, had no significant effect on its concentration. Molecular docking, balance dialysis, and ultrafiltration analysis showed that AMPB and POS had potential binding properties to serum albumin. Meanwhile, 4 and 8 μg/mL POS could significantly increase the concentration of free AMPB in plasma. POS and three inhibitors all had no significant effect on the uptake of AMPB by BCECs, but serum albumin had. The therapeutic effect of CNM in mice was confirmed that AMPB and AMPB+POS could restrain the infiltration of neutrophils and lymphocytes in cortical neurons and improve the bleeding and markedly inhibit the proliferation of CN. Collectively, we propose that POS competitively binds to the plasma protein sites of AMPB, thereby increasing its level in the brain tissue. Meanwhile, POS could enhance the efficacy of AMPB in the treatment of CNM, which may be independent of P-gp and BCRP proteins.
Collapse
|