1
|
Qamar T, Ansari MS, Masihuddin, Mukherjee S. MicroRNAs as Biomarker in Rheumatoid Arthritis: Pathogenesis to Clinical Relevance. J Cell Biochem 2025; 126:e30690. [PMID: 39710998 DOI: 10.1002/jcb.30690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/24/2024]
Abstract
MicroRNAs (miRNAs) have emerged as intricate players in rheumatoid arthritis (RA), holding promise as discerning biomarkers for diagnostic and prognostic purposes. The lack of sensitivity and specificity in current diagnostic techniques, such as rheumatoid factor (RF) and anti-citrullinated protein antibodies (ACPA), causes diagnosis delays in RA. The miR-146a and miR-155 act in inflammatory cascades and reduce joint deterioration, and miR-223 is paradoxical, acting differently in different illness scenarios. The microenvironment of RA is shaped by the complex modulation of gene expression and cytokine dynamics by miR-126 and miR-24. miRNAs serve as a promising candidate for precision medicine in the management of RA. There are obstacles encountered in validation, delivery optimization, and off-target effect mitigation before miRNA-based biomarkers may be applied in clinical settings. Machine learning (ML) and artificial intelligence (AI) have been used to integrate miRNA expression patterns with clinical data to greatly advance the treatment of RA. Because of the disease's inherent complexity and variability, these state-of-the-art models provide accurate predictions regarding the onset, development, and response to treatment of RA. By using clinical information and miRNA expression data, ML algorithms are revolutionizing the treatment of RA by predicting the onset and course of the disease with remarkably high accuracy. The development of therapeutic modalities and miRNA profiling has great potential to transform the diagnosis, prognosis, and treatment of RA, providing fresh hope for better patient outcomes.
Collapse
Affiliation(s)
- Tooba Qamar
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Md Samsuddin Ansari
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Masihuddin
- Department of Science and Mathematics, Indian Institute of Information Technology, Guwahati, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
2
|
Wu H, Wu L, Luo L, Wu YT, Zhang QX, Li HY, Zhang BF. Quercetin inhibits mitophagy-mediated apoptosis and inflammatory response by targeting the PPARγ/PGC-1α/NF-κB axis to improve acute liver failure. Int Immunopharmacol 2024; 143:113444. [PMID: 39454407 DOI: 10.1016/j.intimp.2024.113444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Reactive oxygen species (ROS) from mitochondrial dysfunction are critical in triggering apoptosis and inflammation in acute liver failure (ALF). Quercetin (QUE), an antioxidant, is renowned for its therapeutic effects onliverdiseases. There are no studies on whether QUE regulates mitophagy level in hepatocytes to inhibit ALF. OBJECTIVE This study investigates QUE's protective effects on ALF and elucidates the mechanisms involved. METHODS The ALF and hepatocyte inflammatory injury model was established using LPS and D-Galn. To predict potential targets and mechanisms of QUE in ALF treatment, transcriptomics, network pharmacology, molecular docking techniques, and ChIP were employed. The expression level related to mitophagy, apoptosis, and signaling pathways were detected by CCK8, IHC, IF staining, TUNEL, RT-qPCR, TEM, Western blotting, ELISA, and flow cytometry. RESULTS Network pharmacology and transcriptomics revealed common targets between QUE and ALF. Enrichment analysis showed that the anti-ALF targets of QUE were significantly associated with mitochondria and NF-κB-related pathways. Subsequent experiments showed that QUE pretreatment significantly alleviated the loss of hepatocyte viability, enhanced mitochondrial membrane potential, activated mitophagy, and promoted the clearance of damaged mitochondria, thereby reducing ROS accumulation, significantly reducing cell apoptosis and inflammatory responses, reducing ALT and AST levels, and improving liver tissue pathology. Mechanistically, molecular docking, DARTS, and CETSA analyses confirmed that QUE directly binds to the PPARγ molecule, which reduced binding to IκB and significantly inhibit the NF-κB pathway to exert its protective effects. CONCLUSION In short, our results provide the first evidence that QUE improves acute liver failure by promoting mitophagy through regulating the PPARγ/PGC-1α/NF-κB axis and inhibiting apoptosis and inflammatory responses mediated by mitochondrial dysfunction, which provides evidence for the potential of QUE in the treatment of ALF.
Collapse
Affiliation(s)
- Huan Wu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Long Wu
- Department of Anus and Intestinal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Li Luo
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ye-Ting Wu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Qing-Xiu Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hai-Yang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Bao-Fang Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
3
|
Zhang C, Gerzanich V, Cruz-Cosme R, Zhang J, Tsymbalyuk O, Tosun C, Sallapalli BT, Liu D, Keledjian K, Papadimitriou JC, Drachenberg CB, Nasr M, Zhang Y, Tang Q, Simard JM, Zhao RY. SARS-CoV-2 ORF3a induces COVID-19-associated kidney injury through HMGB1-mediated cytokine production. mBio 2024; 15:e0230824. [PMID: 39345136 PMCID: PMC11559048 DOI: 10.1128/mbio.02308-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024] Open
Abstract
The primary challenge posed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is COVID-19-related mortality, often exacerbated by additional medical complications, such as COVID-19-associated kidney injuries (CAKIs). Up to half of COVID-19 patients experience kidney complications, with those facing acute respiratory failure and kidney injury having the worst overall prognosis. Despite the significant impact of CAKI on COVID-19-related mortality and its enduring effects in long COVID, the underlying causes and molecular mechanisms of CAKI remain elusive. In this study, we identified a functional relationship between the expression of the SARS-CoV-2 ORF3a protein and inflammation-driven apoptotic death of renal tubular epithelial cells in patients with CAKI. We demonstrate in vitro that ORF3a independently induces renal cell-specific apoptotic cell death, as evidenced by the elevation of kidney injury molecule-1 (KIM-1) and the activation of NF-kB-mediated proinflammatory cytokine (TNFα and IL-6) production. By examining kidney tissues of SARS-CoV-2-infected K18-ACE2 transgenic mice, we observed a similar correlation between ORF3a-induced cytopathic changes and kidney injury. This correlation was further validated through reconstitution of the ORF3a effects via direct adenoviral injection into mouse kidneys. Through medicinal analysis, we identified a natural compound, glycyrrhizin (GL4419), which not only blocks viral replication in renal cells, but also mitigates ORF3a-induced renal cell death by inhibiting activation of a high mobility group box 1 (HMGB1) protein, leading to a reduction of KIM-1. Moreover, ORF3a interacts with HMGB1. Overproduction or downregulation of hmgb1 expression results in correlative changes in renal cellular KIM-1 response and respective cytokine production, implicating a crucial role of HMGB1 in ORF3a-inflicted kidney injuries. Our data suggest a direct functional link between ORF3a and kidney injury, highlighting ORF3a as a unique therapeutic target contributing to CAKI. IMPORTANCE The major challenge of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the pandemic is COVID-19-related mortality, which has tragically claimed millions of lives. COVID-19-associated morbidity and mortality are often exacerbated by pre-existing medical conditions, such as chronic kidney diseases (CKDs), or the development of acute kidney injury (AKI) due to COVID-19, collectively known as COVID-19-associated kidney injuries (CAKIs). Patients who experience acute respiratory failure with CAKI have the poorest clinical outcomes, including increased mortality. Despite these alarming clinical findings, there is a critical gap in our understanding of the underlying causes of CAKI. Our study establishes a direct correlation between the expression of the SARS-CoV-2 viral ORF3a protein and kidney injury induced by ORF3a linking to CAKI. This functional relationship was initially observed in our clinical studies of COVID-19 patients with AKI and was further validated through animal and in vitro cellular studies, either by expressing ORF3a alone or in the context of viral infection. By elucidating this functional relationship and its underlying mechanistic pathways, our research deepens the understanding of COVID-19-associated kidney diseases and presents potential therapeutic avenues to address the healthcare challenges faced by individuals with underlying conditions.
Collapse
Affiliation(s)
- Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Dongxiao Liu
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John C. Papadimitriou
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cinthia B. Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohamed Nasr
- Division of AIDS, NIAID, NIH, Drug Development and Clinical Sciences Branch, Bethesda, Maryland, USA
| | - Yanjin Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - J. Marc Simard
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Lam HYP, Huang YT, Liang TR, Peng SY. In vivo screening of flavonoid compounds revealed quercetin as a potential drug to improve recovery of angiostrongyliasis after albendazole treatment. PLoS Negl Trop Dis 2024; 18:e0012526. [PMID: 39348380 PMCID: PMC11476796 DOI: 10.1371/journal.pntd.0012526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/10/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Human angiostrongyliasis, caused by consuming the larva stage of Angiostrongylus cantonensis, is an infectious disease involving the central nervous system (CNS) and ophthalmic system. Current treatment of angiostrongyliasis involves albendazole accompanied by analgesics and corticosteroids. However, long-term use of corticosteroids may lead to significant adverse effects. In the current study, we screened through different potentially effective flavonoid compounds and identified quercetin as an effective anti-inflammatory agent in an angiostrongyliasis mouse model. Our results identified that quercetin may reverse the neurological defects in mice with angiostrongyliasis. The brain pathology and inflammatory status were also improved by albendazole-quercetin co-therapy. Further analysis showed that albendazole-quercetin co-therapy had a better therapeutic effect than albendazole or quercetin monotherapy. This therapeutic effect was achieved by inhibiting the brain inflammasome activation and apoptosis. Albendazole-quercetin co-therapy also leads to the inhibition of brain IL-5, possibly leading to improved pathology. Our results here proved that quercetin may serve as a potential adjuvant drug in treating human angiostrongyliasis.
Collapse
Affiliation(s)
- Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan
| | - Yu-Ting Huang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ting-Ruei Liang
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
5
|
Xu R, Yuan LS, Gan YQ, Lu N, Li YP, Zhou ZY, Hu B, Wong TS, He XH, Zha QB, Ouyang DY. Extracellular ATP contributes to the reactive oxygen species burst and exaggerated mitochondrial damage in D-galactosamine and lipopolysaccharide-induced fulminant hepatitis. Int Immunopharmacol 2024; 130:111680. [PMID: 38368772 DOI: 10.1016/j.intimp.2024.111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Fulminant hepatitis (FH) is a severe clinical syndrome leading to hepatic failure and even mortality. D-galactosamine (D-GalN) plus lipopolysaccharide (LPS) challenge is commonly used to establish an FH mouse model, but the mechanism underlying D-GalN/LPS-induced liver injury is incompletely understood. Previously, it has been reported that extracellular ATP that can be released under cytotoxic and inflammatory stresses serves as a damage signal to induce potassium ion efflux and trigger the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome activation through binding to P2X7 receptor. In this study, we tried to investigate whether it contributed to the fulminant hepatitis (FH) induced by D-GalN plus LPS. In an in vitro cellular model, D-GalN plus extracellular ATP, instead of D-GalN alone, induced pyroptosis and apoptosis, accompanied by mitochondrial reactive oxygen species (ROS) burst, and the oligomerization of Drp1, Bcl-2, and Bak, as well as the loss of mitochondrial membrane potential in LPS-primed macrophages, well reproducing the events induced by D-GalN and LPS in vivo. Moreover, these events in the cellular model were markedly suppressed by both A-804598 (an ATP receptor P2X7R inhibitor) and glibenclamide (an ATP-sensitive potassium ion channel inhibitor); in the FH mouse model, administration of A-804598 significantly mitigated D-GalN/LPS-induced hepatic injury, mitochondrial damage, and the activation of apoptosis and pyroptosis signaling, corroborating the contribution of extracellular ATP to the cell death. Collectively, our data suggest that extracellular ATP acts as an autologous damage-associated molecular pattern to augment mitochondrial damage, hepatic cell death, and liver injury in D-GalN/LPS-induced FH mouse model.
Collapse
Affiliation(s)
- Rong Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Sha Yuan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ying-Qing Gan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Na Lu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ya-Ping Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
| | - Zhi-Ya Zhou
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
| | - Bo Hu
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Tak-Sui Wong
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China.
| | - Qing-Bing Zha
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China; Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Dong-Yun Ouyang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Raj R, Shen P, Yu B, Zhang J. A patent review on HMGB1 inhibitors for the treatment of liver diseases. Expert Opin Ther Pat 2024; 34:127-140. [PMID: 38557201 DOI: 10.1080/13543776.2024.2338105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION HMGB1 is a non-histone chromatin protein released or secreted in response to tissue damage or infection. Extracellular HMGB1, as a crucial immunomodulatory factor, binds with several different receptors to innate inflammatory responses that aggravate acute and chronic liver diseases. The increased levels of HMGB1 have been reported in various liver diseases, highlighting that it represents a potential biomarker and druggable target for therapeutic development. AREAS COVERED This review summarizes the current knowledge on the structure, function, and interacting receptors of HMGB1 and its significance in multiple liver diseases. The latest patented and preclinical studies of HMGB1 inhibitors (antibodies, peptides, and small molecules) for liver diseases are summarized by using the keywords 'HMGB1,' 'HMGB1 antagonist, HMGB1-inhibitor,' 'liver disease' in Web of Science, Google Scholar, Google Patents, and PubMed databases in the year from 2017 to 2023. EXPERT OPINIONS In recent years, extensive research on HMGB1-dependent inflammatory signaling has discovered potent inhibitors of HMGB1 to reduce the severity of liver injury. Despite significant progress in the development of HMGB1 antagonists, few of them are approved for clinical treatment of liver-related diseases. Developing safe and effective specific inhibitors for different HMGB1 isoforms and their interaction with receptors is the focus of future research.
Collapse
Affiliation(s)
- Richa Raj
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
7
|
Pauletto M, Giantin M, Tolosi R, Bassan I, Bardhi A, Barbarossa A, Montanucci L, Zaghini A, Dacasto M. Discovering the Protective Effects of Quercetin on Aflatoxin B1-Induced Toxicity in Bovine Foetal Hepatocyte-Derived Cells (BFH12). Toxins (Basel) 2023; 15:555. [PMID: 37755981 PMCID: PMC10534839 DOI: 10.3390/toxins15090555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Aflatoxin B1 (AFB1) induces lipid peroxidation and mortality in bovine foetal hepatocyte-derived cells (BFH12), with underlying transcriptional perturbations associated mainly with cancer, cellular damage, inflammation, bioactivation, and detoxification pathways. In this cell line, curcumin and resveratrol have proven to be effective in mitigating AFB1-induced toxicity. In this paper, we preliminarily assessed the potential anti-AFB1 activity of a natural polyphenol, quercetin (QUE), in BFH12 cells. To this end, we primarily measured QUE cytotoxicity using a WST-1 reagent. Then, we pre-treated the cells with QUE and exposed them to AFB1. The protective role of QUE was evaluated by measuring cytotoxicity, transcriptional changes (RNA-sequencing), lipid peroxidation (malondialdehyde production), and targeted post-transcriptional modifications (NQO1 and CYP3A enzymatic activity). The results demonstrated that QUE, like curcumin and resveratrol, reduced AFB1-induced cytotoxicity and lipid peroxidation and caused larger transcriptional variations than AFB1 alone. Most of the differentially expressed genes were involved in lipid homeostasis, inflammatory and immune processes, and carcinogenesis. As for enzymatic activities, QUE significantly reverted CYP3A variations induced by AFB1, but not those of NQO1. This study provides new knowledge about key molecular mechanisms involved in QUE-mediated protection against AFB1 toxicity and encourages in vivo studies to assess QUE's bioavailability and beneficial effects on aflatoxicosis.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| | - Irene Bassan
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| | - Anisa Bardhi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, I-40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, I-40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Ludovica Montanucci
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA;
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, I-40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| |
Collapse
|
8
|
Abdolmaleky HM, Zhou JR. Underlying Mechanisms of Brain Aging and Neurodegenerative Diseases as Potential Targets for Preventive or Therapeutic Strategies Using Phytochemicals. Nutrients 2023; 15:3456. [PMID: 37571393 PMCID: PMC10473240 DOI: 10.3390/nu15153456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
During aging, several tissues and biological systems undergo a progressive decline in function, leading to age-associated diseases such as neurodegenerative, inflammatory, metabolic, and cardiovascular diseases and cancer. In this review, we focus on the molecular underpinning of senescence and neurodegeneration related to age-associated brain diseases, in particular, Alzheimer's and Parkinson's diseases, along with introducing nutrients or phytochemicals that modulate age-associated molecular dysfunctions, potentially offering preventive or therapeutic benefits. Based on current knowledge, the dysregulation of microglia genes and neuroinflammation, telomere attrition, neuronal stem cell degradation, vascular system dysfunction, reactive oxygen species, loss of chromosome X inactivation in females, and gut microbiome dysbiosis have been seen to play pivotal roles in neurodegeneration in an interactive manner. There are several phytochemicals (e.g., curcumin, EGCG, fucoidan, galangin, astin C, apigenin, resveratrol, phytic acid, acacetin, daucosterol, silibinin, sulforaphane, withaferin A, and betulinic acid) that modulate the dysfunction of one or several key genes (e.g., TREM2, C3, C3aR1, TNFA, NF-kb, TGFB1&2, SIRT1&6, HMGB1, and STING) affected in the aged brain. Although phytochemicals have shown promise in slowing down the progression of age-related brain diseases, more studies to identify their efficacy, alone or in combinations, in preclinical systems can help to design novel nutritional strategies for the management of neurodegenerative diseases in humans.
Collapse
Affiliation(s)
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| |
Collapse
|
9
|
Luo M, Liu Z, Hu Z, He Q. Quercetin improves contrast-induced acute kidney injury through the HIF-1α/lncRNA NEAT1/HMGB1 pathway. PHARMACEUTICAL BIOLOGY 2022; 60:889-898. [PMID: 35587223 PMCID: PMC9122359 DOI: 10.1080/13880209.2022.2058558] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 05/27/2023]
Abstract
CONTEXT The risk of contrast-induced acute kidney injury (CI-AKI) is increasing and the harm is great. Quercetin is the main active component in Abelmoschus manihot (L.) Medik (Malvaceae) and was reported to reduce the expression of HIF-1α. OBJECTIVE We investigate whether quercetin improves the CI-AKI through the HIF-1α/lncRNA NEAT1/HMGB1 pathway. MATERIALS AND METHODS HK-2 cells were treated with iohexol (200 mg/mL) for 6 h to establish a CI-AKI model. Quercetin (20 μM) was administered to CI-AKI cells cultured in dishes for 24 h. Cell morphology was observed by a fluorescence microscope. MTT and TUNEL assays were used to detect cell survival rate and apoptosis. Relative mRNA levels were measured by qRT-PCR. Protein levels were detected using western blotting. IL-6 and TNF-α protein levels were tested by Elisa assay. Targeting binding sites of HIF-1α and lncRNA NEAT1 were detected by luciferase assay. RESULTS The IC50 value of quercetin was 163.25 μM. The expression levels of HIF-1α, lncRNA NEAT1 and HMGB1 were upregulated in the CI-AKI cell model. Quercetin diminished cell injury and apoptosis via inhibiting HIF-1α. Silencing of HIF-1α targeting lncRNA MEAT1 diminished cell injury and apoptosis. Silencing lncRNA NEAT1 has the same effect via suppressing HMGB1 expression. Collectively, quercetin diminished cell injury and apoptosis in CI-AKI cell model via the inhibition of HIF-1α on lncRNA NEAT1/HMGB1 signalling pathway. DISCUSSION AND CONCLUSIONS Quercetin diminished cell injury and apoptosis in CI-AKI cell mode via the inhibition of HIF-1α on the lncRNA NEAT1/HMGB1 signalling pathway, offering a potential novel therapeutic target for CI-AKI therapy.
Collapse
Affiliation(s)
- Min Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua, Hunan Province, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Ziyu Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Zongren Hu
- Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua, Hunan Province, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Qinghu He
- Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua, Hunan Province, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
10
|
Shen P, Peng Y, Zhou X, Jiang X, Raj R, Ge H, Wang W, Yu B, Zhang J. A comprehensive spectral and in silico analysis on the interactions between quercetin, isoquercitrin, rutin and HMGB1. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Wei G, Pan Y, Wang J, Xiong X, He Y, Xu J. Role of HMGB1 in Vitiligo: Current Perceptions and Future Perspectives. Clin Cosmet Investig Dermatol 2022; 15:2177-2186. [PMID: 36267690 PMCID: PMC9576603 DOI: 10.2147/ccid.s381432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Vitiligo is a chronic depigmenting disorder of the skin and mucosa caused by the destruction of epidermal melanocytes. Although the exact mechanism has not been elucidated, studies have shown that oxidative stress plays an important role in the pathogenesis of vitiligo. High mobility group box protein B1 (HMGB1) is a major nonhistone protein and an extracellular proinflammatory or chemotactic molecule that is actively secreted or passively released by necrotic cells. Recent data showed that HMGB1 is overexpressed in both blood and lesional specimens from vitiligo patients. Moreover, oxidative stress triggers the release of HMGB1 from keratinocytes and melanocytes, indicating that HMGB1 may participate in the pathological process of vitiligo. Overall, this review mainly focuses on the role of HMGB1 in the potential mechanisms underlying vitiligo depigmentation under oxidative stress. In this review, we hope to provide new insights into vitiligo pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Guangmin Wei
- Department of Dermatology, Medical Center Hospital of Qionglai City, Qionglai, Sichuan, People’s Republic of China
| | - Yinghao Pan
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jingying Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jixiang Xu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
12
|
Xiao H, Xu X, Du L, Li X, Zhao H, Wang Z, Zhao L, Yang Z, Zhang S, Yang Y, Wang C. Lycorine and organ protection: Review of its potential effects and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154266. [PMID: 35752077 DOI: 10.1016/j.phymed.2022.154266] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Multiorgan dysfunction, especially sepsis-related multiorgan damage, remains a major cause of high mortality in the late stages of infection and a great clinical challenge. In recent years, natural drugs have received widespread attention because of their low cost, wide sources, high efficacy, low toxicity, and limited side effects. Lycorine, a natural compound extracted from Amaryllidaceae, exhibits multiple pharmacological activities, including in the regulation of autophagy and the induction of cancer cell apoptosis, and has anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor activities. However, studies on lycorine have mainly focused on its antitumor properties, and research on its use for organ protection, especially in sepsis-related organ injury, is relatively limited. PURPOSE To review and discuss the effects and mechanisms of lycorine in the treatment of multi-organ dysfunction, especially sepsis. METHODS Literature searches in electronic databases, such as Web of Science, Science Direct, PubMed, Google Scholar, and Scopus, were performed using 'Lycorine', 'Amaryllidaceae', 'Pharmacology', 'Pharmacokinetics', 'Anti-inflammation', 'Autophagy', 'Apoptosis', 'Anti-microbial and anti-parasitic', 'Antitumor', 'Organ protection', and 'Sepsis' as keywords, the correlated literature was extracted and conducted from the databases mentioned above. RESULTS By summarizing the progress made in existing research, we found that the general effects of lycorine involve the regulation of autophagy and the induction of cancer cell apoptosis, and anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor effects; through these pathways, the compound can ameliorate organ damage. In addition, lycorine was found to have an important effect on organ damage in sepsis. CONCLUSION Lycorine is a promising natural organ protective agent. This review will provide a new theoretical basis for the treatment of organ protection, especially in sepsis.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Luyang Du
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Xiyang Li
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Shaofei Zhang
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China.
| | - Changyu Wang
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
13
|
Wang J, Ding L, Wang K, Huang R, Yu W, Yan B, Wang H, Zhang C, Yang Z, Liu Z. Role of endoplasmic reticulum stress in cadmium-induced hepatocyte apoptosis and the protective effect of quercetin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113772. [PMID: 35714484 DOI: 10.1016/j.ecoenv.2022.113772] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is one of the most toxic environmental pollutants. Quercetin (Que) is a kind of natural flavonoid with neuroprotective, antioxidant, and free-radical scavenging pharmacological activities. However, whether Que has the protective effect of on Cd-induced rat hepatocyte injury is unclear. This study aimed to determine the protective effect of Que on Cd-induced hepatotoxicity in vivo and in vitro. For in vivo, 36 4-week-old male SD rats were randomly divided into six groups and were treated with CdCl2 (2 mg/kg b.w.) and/or Que (50 or 100 mg/kg b.w.). Four weeks later, the rats were sacrificed and livers were collected. The levels of alanine aminotransferase, aspartate aminotransferase, glutathione, malondialdehyde, catalase, and superoxide dismutase were measured. Liver histopathological sections were made, and TUNEL method was performed to detect cell apoptosis. The mRNA and protein expression levels of endoplasmic reticulum stress (ERS) signaling pathway-related factors and apoptosis-related factors were detected. For in vitro, BRL-3A rat cells were treated with CdCl2 (12.5 μM) and/or Que (5 μM Que). The mRNA and protein expression levels of ERS signaling pathway-related factors and apoptosis-related factors were detected. Results showed that Cd led to liver injury, disorder of hepatocyte morphology and structure, decreased BRL-3A cells viabilities, increased oxidative damage. The mRNA and protein expression levels of ERS related factors GRP78, PERK, eIF2α, ATF4, CHOP, IRE1α, XBP1, and ATF6 increased. The mRNA and protein levels of apoptosis related factors Caspase12, Caspase3, and Bax increased, whereas Bcl2 decreased. It indicated that cadmium could activate PERK-eIF2α-ATF4-CHOP, IRE1α-XBP1, and ATF6-CHOP ERS-related signal pathways and lead to apoptosis. Moreover, Que can improve the vitality of hepatocytes, and effectively reduce hepatocytes damage, and reduce oxidative damage by Cd. As a result, the mRNA and protein expression levels of ERS related factors were reduced and hepatocyte apoptosis related factors decreased. Therefore, Que can be used as an effective component in daily diet to prevent Cd toxicity.
Collapse
Affiliation(s)
- Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China.
| | - Lulu Ding
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Ke Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Ruxue Huang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Wenjing Yu
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Bingzhao Yan
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Hongwei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Zijun Yang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, No.12, East Wenhui Road, 225009, Yangzhou, PR China
| |
Collapse
|
14
|
Quercetin Attenuates Quinocetone-Induced Cell Apoptosis In Vitro by Activating the P38/Nrf2/HO-1 Pathway and Inhibiting the ROS/Mitochondrial Apoptotic Pathway. Antioxidants (Basel) 2022; 11:antiox11081498. [PMID: 36009217 PMCID: PMC9405464 DOI: 10.3390/antiox11081498] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Quinocetone (QCT), a member of the quinoxaline 1,4-di-N-oxides (QdNOs) family, can cause genotoxicity and hepatotoxicity, however, the precise molecular mechanisms of QCT are unclear. This present study investigated the protective effect of quercetin on QCT-induced cytotoxicity and the underlying molecular mechanisms in human L02 and HepG2 cells. The results showed that quercetin treatment (at 7.5–30 μM) significantly improved QCT-induced cytotoxicity and oxidative damage in human L02 and HepG2 cells. Meanwhile, quercetin treatment at 30 μM significantly inhibited QCT-induced loss of mitochondrial membrane potential, an increase in the expression of the CytC protein and the Bax/Bcl-2 ratio, and an increase in caspases-9 and -3 activity, and finally improved cell apoptosis. Quercetin pretreatment promoted the expression of the phosphorylation of p38, Nrf2, and HO-1 proteins. Pharmacological inhibition of p38 significantly inhibited quercetin-mediated activation of the Nrf2/HO-1 pathway. Consistently, pharmacological inhibitions of the Nrf2 or p38 pathways both promoted QCT-induced cytotoxicity and partly abolished the protective effects of quercetin. In conclusion, for the first time, our results reveal that quercetin could improve QCT-induced cytotoxicity and apoptosis by activating the p38/Nrf2/HO-1 pathway and inhibiting the ROS/mitochondrial apoptotic pathway. Our study highlights that quercetin may be a promising candidate for preventing QdNOs-induced cytotoxicity in humans or animals.
Collapse
|
15
|
Jieduan–Niwan Formula Ameliorates Oxidative Stress and Apoptosis in Acute-on-Chronic Liver Failure by Suppressing HMGB1/TLR-4/NF-κB Signaling Pathway: A Study In Vivo and In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1833921. [PMID: 35873636 PMCID: PMC9307324 DOI: 10.1155/2022/1833921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
Jieduan-Niwan (JDNW) formula is a traditional Chinese medicine compound created by the famous Chinese medicine expert Professor Qian Ying, and has been used clinically for decades to treat acute-on-chronic liver failure (ACLF) and exhibits remarkable efficacy. However, the exact mechanism remains to be discovered. As an important hepatocyte damage-associated molecular patterns (DAMP) factor, high mobility group box 1 (HMGB1) is a potential therapeutic target as an accelerator of ACLF in the pathogenesis. Therefore, the present study investigated whether JDNW inhibits the overexpression and cytoplasmic translocation of HMGB1 in ACLF liver tissue and alleviates its mediated oxidative stress and apoptosis. In vivo, an immune-induced ACLF rat model was established, and then treated with JDNW for 5, 10, and 15 d. The results showed that a large number of cytoplasmic translocations of HMGB1 occurred in the ACLF group. And there was an increase in the expression of HMGB1 in the M-5 d group. After the intervention of JDNW, the overexpression and translocation of HMGB1 were inhibited. In vitro, D-GaLN caused an increase in the expression and translocation of HMGB1 in L02 cells. Similar to the inhibitor of HMGB1, JDNW serum alleviated this kind of increase. Further tests showed that JDNW attenuated ACLF-related oxidative stress and apoptosis, and the inhibition was associated with the regulation of TLR-4/NF-κB signaling pathway. In conclusion, our present findings suggest that the therapeutic effect of JDNW on ACLF was associated with the inhibition of high expression and cytoplasmic translocation of HMGB1 during the acute injury phase, thus, attenuating oxidative stress injury and apoptosis induced by HMGB1/TLR-4/NF-κB pathway.
Collapse
|
16
|
Quercetin Reduces Oxidative Stress and Apoptosis by Inhibiting HMGB1 and Its Translocation, Thereby Alleviating Liver Injury in ACLF Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2898995. [PMID: 34904016 PMCID: PMC8665894 DOI: 10.1155/2021/2898995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
Background Acute on chronic liver failure (ACLF) is a syndrome of acute liver failure that occurs on the basis of chronic liver disease, which is characterized by a rapid deterioration in a short period and high mortality. High mobility group box 1 (HMGB1) may be involved in the pathological process of ACLF; its specific role remains to be further elucidated. Our previous studies have shown that quercetin (Que) exerts anti-oxidant and anti-apoptotic effects by inhibiting HMGB1 in vitro. The present study aimed to investigate the effect of Que on liver injury in ACLF rats. Methods The contents of ALT, AST, TBiL, and PT time of rats in each group were observed. HE staining was used to detect liver pathology. The levels of oxidative stress indicators such as MDA, GSH, and 4-HNE in the rat liver were detected. TUNEL assay was used to detect apoptosis in rat hepatocytes. Immunofluorescence and western blot analysis were performed to explore the protective effect of Que on ACLF rats and the underlying mechanism. Results The results showed that Que could reduce the increase of serum biochemical indices, improve liver pathology, and reduce liver damage in ACLF rats. Further results confirmed that Que reduced the occurrence of oxidative stress and apoptosis of hepatocytes, and these reactions may aggravate the progress of ACLF. Meanwhile, the results of immunofluorescence and western blotting also confirmed that the expression of HMGB1 and extranuclear translocation in ACLF rat hepatocytes were significantly increased, which was alleviated by the treatment of Que. In addition, when cotreated with glycyrrhizin (Gly), an inhibitor of HMGB1, the inhibition of Que on HMGB1 and its translocation, apoptosis and oxidative stress, and the related proteins of HMGB1-mediated cellular pathway have been significantly enhanced. Conclusion Thus, Que alleviates liver injury in ACLF rats, and its mechanism may be related to oxidative stress and apoptosis caused by HMGB1 and its translocation.
Collapse
|
17
|
Hu Y, Li H, Li R, Tian Y, Wu Z. Protective effects of Schisandrin B against D-GalN-induced cell apoptosis in human hepatocyte (L02) cells via modulating Bcl-2 and Bax. Bioengineered 2021; 12:7205-7214. [PMID: 34546847 PMCID: PMC8806808 DOI: 10.1080/21655979.2021.1979863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Schisandrin B is a dibenzocyclooctadiene derivative extracted fromSchisandra chinensis (Turcz.) Baill., that exhibits anti-oxidation, anti-inflammation, anti-tumor and hepatoprotective activities. To understand the hepatoprotective mechanism of schisandrin B, this study investigated the efficacy of schisandrin B on L02 cells after treatment with D-GalN. Following pretreatment with 40 μM schisandrin B, L02 cells were stimulated with 40 mM D-GalN. Cell viability, apoptosis, the expression levels of genes associated with apoptosis, and the intracellular oxidative stress indexes were measured. The viability of L02 cells was determined using MTT assay, and the Annexin V-FITC/PI assay kit was utilized for the assessment of apoptosis. The activities of GSH-Px and SOD, the level of MDA were assessed, separately, using relative detection kits. Moreover, RT-PCR as well as Western blot was applied to measure the mRNA and protein expression of Bax and Bcl-2. The results indicated that schisandrin B significantly prevented D-GalN‑induced oxidative damage in L02 cells (P<0.05), decreased GSH-Px and SOD activities (P<0.05), increased MDA content (P<0.05). Furthermore, schisandrin B inhibited D-GalN-induced apoptosis in L02 cells (P<0.05), regulated the expression of Bax and Bcl-2 (P<0.05). The results indicated that schisandrin B decreased the D-GalN-induced intracellular oxidative stress indexes generation, and inhibited the down-regulation of Bcl-2 and up-regulation of Bax induced by D-GalN. In conclusion, schisandrin B was shown to exert protective effect against oxidative damage of L02 cells, which, in part, was achieved by regulating the mRNA and protein levels of Bax and Bcl-2.
Collapse
Affiliation(s)
- Yanwu Hu
- School of Medicine, Tonghua Normal University, Tonghua, China
| | - Haitao Li
- Department of Pharmacy, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Ruili Li
- Department of Pharmacy, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Yue Tian
- School of Medicine, Tonghua Normal University, Tonghua, China
| | - Zijing Wu
- School of Medicine, Tonghua Normal University, Tonghua, China
| |
Collapse
|
18
|
Protective Role of 4-Octyl Itaconate in Murine LPS/D-GalN-Induced Acute Liver Failure via Inhibiting Inflammation, Oxidative Stress, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9932099. [PMID: 34457120 PMCID: PMC8387163 DOI: 10.1155/2021/9932099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023]
Abstract
Oxidative stress, inflammation, and apoptosis are crucial in the pathogenesis of acute liver failure (ALF). 4-Octyl itaconate (OI) showed antioxidative and anti-inflammatory properties in many disease models. However, its role in lipopolysaccharide- (LPS-)/D-galactosamine- (D-GalN-) induced ALF is still not investigated. Here, we established an ALF murine model induced by LPS/D-GalN administration. And we found that OI improved survival rate in the murine ALF model. Our results also showed that OI alleviated LPS/D-GalN-induced hepatic histopathological injury and reduced the serum activities of alanine transaminase and aspartate transaminase. Moreover, OI reduced serum levels of proinflammatory cytokines such as monocyte chemotactic protein-1, tumor necrosis factors-α, and interlukin-6. Additionally, OI mitigated oxidative stress and alleviated lipid peroxidation in a murine model of ALF. This was evaluated by a reduction of thiobarbituric acid reactive substances (TBARS) in liver tissues. In addition, OI increased the ratio of reduced glutathione/oxidized glutathione and the activities of antioxidant enzymes including catalase and superoxide dismutase. Moreover, the apoptosis of hepatocytes in the liver was inhibited by OI. Furthermore, we found that OI inhibited LPS-induced nuclear translocation and activation of factor-kappa B (NF-κB) p65 in macrophages which could be inhibited by OI-induced activation of nuclear factor erythroid-2-related factor (Nrf2) signaling. Additionally, D-GalN-induced reactive oxygen species (ROS) generation and apoptosis in hepatocytes were inhibited by OI-induced activation of Nrf2 signaling. Therefore, the underlying mechanism for OI's protective effect in LPS/D-GalN-induced ALF may be associated with deactivation of NF-κB signaling in macrophages to reduce inflammation and inhibition of ROS-related hepatocyte apoptosis by activating Nrf2. In conclusion, OI showed a protective role in LPS/D-GalN-induced ALF by reducing inflammation, enhancing antioxidant capacity, and inhibiting cell apoptosis.
Collapse
|
19
|
Effects of Traditional Chinese Medication-Based Bioactive Compounds on Cellular and Molecular Mechanisms of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3617498. [PMID: 34093958 PMCID: PMC8139859 DOI: 10.1155/2021/3617498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 04/28/2021] [Indexed: 12/21/2022]
Abstract
The oxidative stress reaction is the imbalance between oxidation and antioxidation in the body, resulting in excessive production of oxygen free radicals in the body that cannot be removed, leading to excessive oxidation of the body, and causing damage to cells and tissues. A large number of studies have shown that oxidative stress is involved in the pathological process of many diseases, so inhibiting oxidative stress, that is, antioxidation, is of great significance for the treatment of diseases. Studies have shown that many traditional Chinese medications contain antioxidant active bioactive compounds, but the mechanisms of those compounds are different and complicated. Therefore, by summarizing the literature on antioxidant activity of traditional Chinese medication-based bioactive compounds in recent years, our review systematically elaborates the main antioxidant bioactive compounds contained in traditional Chinese medication and their mechanisms, so as to provide references for the subsequent research.
Collapse
|
20
|
Ibrahim KA, Eleyan M, Khwanes SA, Mohamed RA, Abd El-Rahman HA. Quercetin ameliorates the hepatic apoptosis of foetal rats induced by in utero exposure to fenitrothion via the transcriptional regulation of paraoxonase-1 and apoptosis-related genes. Biomarkers 2021; 26:152-162. [PMID: 33439051 DOI: 10.1080/1354750x.2021.1875505] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & PURPOSE Exposure to organophosphorus during different phases of pregnancy induces many adverse impacts on the developing foetuses due to their immature detoxification system. We have estimated the potential amelioration role of quercetin against hepatic injury-induced apoptosis in rat foetuses following gestational exposure to fenitrothion and probable involvement of paraoxonase-1. METHODS Forty pregnant rats were allocated into four groups; the first one kept as control, the second intubated with quercetin (100 mg/kg), the third orally administrated fenitrothion (4.62 mg/kg) and the last group received quercetin two hours before fenitrothion intoxication. RESULTS Fenitrothion significantly elevated the foetal hepatic levels of thiobarbituric acid reactive substances, protein carbonyl, and nitric oxide, but it reduced the enzymatic activities of glutathione-S-transferase, superoxide dismutase, catalase, and acetylcholinesterase. Furthermore, fenitrothion provoked many histopathological changes in the foetal liver and markedly up-regulated the mRNA gene expression of p53, caspase-9 along with elevation in the immunoreactivity of Bax and caspase-3, but it down-regulated the expression level of paraoxonase-1. Remarkably, quercetin co-treatment successfully ameliorated the hepatic oxidative injury and apoptosis prompted by fenitrothion. CONCLUSIONS Dietary supplements with quercetin can be used to reduce the risk from organophosphorus exposure probably through paraoxonase-1 up-regulation and enhancement of the cellular antioxidant system.
Collapse
Affiliation(s)
- Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Mohammed Eleyan
- Department of Laboratory Medical Sciences, Alaqsa University, Gaza, Palestine
| | - Soad A Khwanes
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Rania A Mohamed
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | | |
Collapse
|
21
|
Bodede O, More GK, Prinsloo G. Antimicrobial, Cytotoxic and Oxidative Stress Inhibitory Activities of Terpenoids and Flavonols from Senegalia nigrescens (Oliv.) P.J.H. Hurter. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:329-338. [PMID: 35194450 PMCID: PMC8842601 DOI: 10.22037/ijpr.2021.115653.15463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Senegalia nigrescens (knob thorn) is a deciduous tree distributed in savannah regions from Tanzania to South Africa used for timber but also medicinally for the treatment of convulsions, wounds, and skin problems. In this study, the biological activities of six phytocompounds, namely: 3 β -hydroxy-20(29)-en-lupan-30-al (1), 30-hydroxylup-20(29)-en-3 β -ol (2), ent-kaur-15-en-18,20-diol (3), melanoxetin (4), quercetin (5) and quercetin-3-O-methyl ether (6), isolated from S. nigrescens were investigated. The compounds were screened against two bacterial (Escherichia coli and Staphylococcus aureus) and one fungal (Candida albicans) strain and were also tested for their cytotoxicity on breast cancer (MDA-MB-231) and normal murine macrophage (RAW 264.7) cell line. Effects of the compounds on attenuating the lipopolysaccharide (LPS)-induced intracellular reactive oxygen species (ROS) production in RAW 264.7 cells were quantified with the H2DCF-DA assay. This study revealed that flavonols (5 and 6) had the strongest antibacterial and antifungal effects, both having MIC values of 62.5, 31.25 and 31.25 µg/mL on E. coli, S. aureus and C. albicans, respectively. Compounds 2, 3 and 6 were the most cytotoxic against the breast cancer cells with IC50 values of 11.86, 12.62 and 14.03 µg/mL, respectively, while the least toxicity towards normal cells were observed in compounds 2, 5 and 6. All compounds (1-6) significantly lowered ROS production in RAW264.7 cells. In conclusion, tested compounds represent potential promising candidates as antimicrobial, anticancer and antidotes for LPS-induced oxidative stress. This is the first report on the antifungal, cytotoxicity and antioxidative activities of the ent-kaurene diterpenoid, ent-kaur-15-en-18,20-diol (3).
Collapse
Affiliation(s)
- Olusola Bodede
- Department of Agriculture and Animal Health, University of South Africa, Florida Campus, Florida, 1710, South Africa.
| | | | | |
Collapse
|
22
|
Sun YD, Zhang H, Chen YQ, Wu CX, Zhang JB, Xu HR, Liu JZ, Han JJ. HMGB1, the Next Predictor of Transcatheter Arterial Chemoembolization for Liver Metastasis of Colorectal Cancer? Front Oncol 2020; 10:572418. [PMID: 33473353 PMCID: PMC7812918 DOI: 10.3389/fonc.2020.572418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
HMGB1 is an important mediator of inflammation during ischemia-reperfusion injury on organs. The serum expression of HMGB1 was increased significantly on the 1st day after TACE and decreased significantly which was lower on the 30th day after TACE. Tumor markers of post-DEB-TACE decreased significantly. The correlational analysis showed that patients with low HMGB1 expression had lower risks of fever and liver injury compared those with the higher expression, while the ORR is relatively worse. Patients with lower expression of HMGB1 had longer PFS, better efficacy, and higher quality of life. With the high post-expression, the low expression had lower incidence of fever and liver injury too. There was no statistical difference in the one-year survival among the different groups. The quality of life of all patients was improved significantly. The over-expression of HMGB1 in LMCRC is an adverse prognostic feature and a positive predictor of response to TACE.
Collapse
Affiliation(s)
- Yuan-dong Sun
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Hao Zhang
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Ye-qiang Chen
- Maternal and Child Health Care Hospital of Shandong Province, Ji’nan, China
| | - Chun-xue Wu
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
- School of Medicine and Life Sciences, University of Ji’nan-Shandong Academy of Medical Sciences, Ji’nan, China
| | - Jian-bo Zhang
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Hui-rong Xu
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Jing-zhou Liu
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Jian-jun Han
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| |
Collapse
|