1
|
Ren W, Xi X, Zhang X, Wang K, Liu M, Wang D, Du Y, Sun J, Zhang G. Predicting molecular subtypes of breast cancer based on multi-parametric MRI dataset using deep learning method. Magn Reson Imaging 2024; 117:110305. [PMID: 39681144 DOI: 10.1016/j.mri.2024.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/07/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024]
Abstract
PURPOSE To develop a multi-parametric MRI model for the prediction of molecular subtypes of breast cancer using five types of breast cancer preoperative MRI images. METHODS In this study, we retrospectively analyzed clinical data and five types of MRI images (FS-T1WI, T2WI, Contrast-enhanced T1-weighted imaging (T1-C), DWI, and ADC) from 325 patients with pathologically confirmed breast cancer. Using the five types of MRI images as inputs to the ResNeXt50 model respectively, five base models were constructed, and then the outputs of the five base models were fused using an ensemble learning approach to develop a multi-parametric MRI model. Breast cancer was classified into four molecular subtypes based on immunohistochemical results: luminal A, luminal B, human epidermal growth factor receptor 2-positive (HER2-positive), and triple-negative (TN). The whole dataset was randomly divided into a training set (n = 260; 76 luminal A, 80 luminal B, 50 HER2-positive, 54 TN) and a testing set (n = 65; 20 luminal A, 20 luminal B, 12 HER2-positive, 13 TN). Accuracy, sensitivity, specificity, receiver operating characteristic curve (ROC) and area under the curve (AUC) were calculated to assess the predictive performance of the models. RESULTS In the testing set, for the assessment of the four molecular subtypes of breast cancer, the multi-parametric MRI model yielded an AUC of 0.859-0.912; the AUCs based on the FS-T1WI, T2WI, T1-C, DWI, and ADC models achieved respectively 0.632-0. 814, 0.641-0.788, 0.621-0.709, 0.620-0.701and 0.611-0.785. CONCLUSION The multi-parametric MRI model we developed outperformed the base models in predicting breast cancer molecular subtypes. Our study also showed the potential of FS-T1WI base model in predicting breast cancer molecular subtypes.
Collapse
Affiliation(s)
- Wanqing Ren
- Department of Radiology, Jinan Third People's Hospital, Jinan, China
| | - Xiaoming Xi
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
| | - Xiaodong Zhang
- Postgraduate Department, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, China
| | - Kesong Wang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
| | - Menghan Liu
- Department of Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Dawei Wang
- Department of Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yanan Du
- Department of Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jingxiang Sun
- Postgraduate Department, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, China; Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Guang Zhang
- Department of Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
| |
Collapse
|
2
|
Song Z, Fang J, Wang D, Tian Y, Xu Y, Wang Z, Geng J, Wang C, Li M. Inhibition of LPS-Induced Skin Inflammatory Response and Barrier Damage via MAPK/NF-κB Signaling Pathway by Houttuynia cordata Thunb Fermentation Broth. Foods 2024; 13:1470. [PMID: 38790770 PMCID: PMC11120194 DOI: 10.3390/foods13101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Houttuynia cordata Thunb is rich in active substances and has excellent antioxidant and anti-inflammatory activity. Scanning electron microscopy and gel permeation chromatography were used to analyze the molecular characteristics of the fermentation broth of Houttuynia cordata Thunb obtained through fermentation with Clavispora lusitaniae (HCT-f). The molecular weight of HCT-f was 2.64265 × 105 Da, and the polydispersity coefficient was 183.10, which were higher than that of unfermented broth of Houttuynia cordata Thunb (HCT). By investigating the active substance content and in vitro antioxidant activity of HCT-f and HCT, the results indicated that HCT-f had a higher active substance content and exhibited a superior scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radicals and hydroxyl radicals, with IC50 values of 11.85% and 9.01%, respectively. Our results showed that HCT-f could effectively alleviate the increase in the secretion of inflammatory factors and apoptotic factors caused by lipopolysaccharide (LPS) stimulation, and had a certain effect on repairing skin barrier damage. HCT-f could exert an anti-inflammatory effect by down-regulating signaling in the MAPK/NF-κB pathway. The results of erythrocyte hemolysis and chicken embryo experiments showed that HCT-f had a high safety profile. Therefore, this study provides a theoretical basis for the application of HCT-f as an effective ingredient in food and cosmetics.
Collapse
Affiliation(s)
- Zixin Song
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| | - Jiaxuan Fang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| | - Dongdong Wang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| | - Yuncai Tian
- Shanghai AZ Science & Technology Co., Ltd., Shanghai 201100, China; (Y.T.); (Y.X.)
| | - Yuhua Xu
- Shanghai AZ Science & Technology Co., Ltd., Shanghai 201100, China; (Y.T.); (Y.X.)
| | - Ziwen Wang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| | - Jiman Geng
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| | - Changtao Wang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| | - Meng Li
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| |
Collapse
|
3
|
Lee J, Shin DY, Jang Y, Han JP, Cho EM, Seo YR. Cadmium-induced Carcinogenesis in Respiratory Organs and the Prostate: Insights from Three Perspectives on Toxicogenomic Approach. J Cancer Prev 2023; 28:150-159. [PMID: 38205367 PMCID: PMC10774485 DOI: 10.15430/jcp.2023.28.4.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Cadmium (Cd) exposure primarily occurs through inhalation, either by smoking or occupational exposure to contaminated air. Upon inhalation, Cd ultimately reaches the prostate through the bloodstream. In this review, we investigate the carcinogenic potential of Cd in both respiratory organs and the prostate. Specifically, this review examines cellular metabolism, comprehensive toxicity, and carcinogenic mechanisms by exploring gene ontology, biological networks, and adverse outcome pathways. In the respiratory organs, Cd induces lung cancer by altering the expression of IL1B and FGF2, causing DNA damage, reducing cell junction integrity, and promoting apoptosis. In the prostate, Cd induces prostate cancer by modifying the expression of EDN1 and HMOX1, leading to abnormal protein activities and maturation, suppressing tumor suppressors, and inducing apoptosis. Collectively, this review provides a comprehensive understanding of the carcinogenic mechanisms of Cd in two different organs by adopting toxicogenomic approaches. These insights can serve as a foundation for further research on cadmium-induced cancer, contributing to the establishment of future cancer prevention strategies.
Collapse
Affiliation(s)
- Jun Lee
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Dong Yeop Shin
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Yujin Jang
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Jun Pyo Han
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Eun-Min Cho
- Department of Nano, Chemical & Biological Engineering, College of Natural Science and Engineering, Seokyeong University, Seoul, Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| |
Collapse
|
4
|
Sung HK, Murugathasan M, Abdul-Sater AA, Sweeney G. Autophagy deficiency exacerbates iron overload induced reactive oxygen species production and apoptotic cell death in skeletal muscle cells. Cell Death Dis 2023; 14:252. [PMID: 37029101 PMCID: PMC10081999 DOI: 10.1038/s41419-022-05484-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 04/09/2023]
Abstract
Iron overload is associated with various pathological changes which contribute to metabolic syndrome, many of which have been proposed to occur via damaging tissue through an excessive amount of reactive oxygen species (ROS) production. In this study, we established a model of iron overload in L6 skeletal muscle cells and observed that iron enhanced cytochrome c release from depolarized mitochondria, assayed by immunofluorescent colocalization of cytochrome c with Tom20 and the use of JC-1, respectively. This subsequently elevated apoptosis, determined via use of a caspase-3/7 activatable fluorescent probe and western blotting for cleaved caspase-3. Using CellROX deep red and mBBr, we observed that iron increased generation of reactive oxygen species (ROS), and that pretreatment with the superoxide dismutase mimetic MnTBAP reduced ROS production and attenuated iron-induced intrinsic apoptosis and cell death. Furthermore, using MitoSox Red we observed that iron enhanced mROS and the mitochondria-targeted anti-oxidant SKQ1 reduced iron-induced ROS generation and cell death. Western blotting for LC3-II and P62 levels as well as immunofluorescent detection of autophagy flux with LC3B and P62 co-localization indicated that iron acutely (2-8 h) activated and later (12-24 h) attenuated autophagic flux. We used autophagy-deficient cell models generated by overexpressing a dominant-negative Atg5 mutant or CRISPR-mediated ATG7 knock out to test the functional significance of autophagy and observed that autophagy-deficiency exacerbated iron-induced ROS production and apoptosis. In conclusion, our study showed that high iron levels promoted ROS production, blunted the self-protective autophagy response and led to cell death in L6 skeletal muscle cells.
Collapse
Affiliation(s)
| | | | - Ali A Abdul-Sater
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada.
| |
Collapse
|
5
|
Hashemi M, Paskeh MDA, Orouei S, Abbasi P, Khorrami R, Dehghanpour A, Esmaeili N, Ghahremanzade A, Zandieh MA, Peymani M, Salimimoghadam S, Rashidi M, Taheriazam A, Entezari M, Hushmandi K. Towards dual function of autophagy in breast cancer: A potent regulator of tumor progression and therapy response. Biomed Pharmacother 2023; 161:114546. [PMID: 36958191 DOI: 10.1016/j.biopha.2023.114546] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
As a devastating disease, breast cancer has been responsible for decrease in life expectancy of females and its morbidity and mortality are high. Breast cancer is the most common tumor in females and its treatment has been based on employment of surgical resection, chemotherapy and radiotherapy. The changes in biological behavior of breast tumor relies on genomic and epigenetic mutations and depletions as well as dysregulation of molecular mechanisms that autophagy is among them. Autophagy function can be oncogenic in increasing tumorigenesis, and when it has pro-death function, it causes reduction in viability of tumor cells. The carcinogenic function of autophagy in breast tumor is an impediment towards effective therapy of patients, as it can cause drug resistance and radio-resistance. The important hallmarks of breast tumor such as glucose metabolism, proliferation, apoptosis and metastasis can be regulated by autophagy. Oncogenic autophagy can inhibit apoptosis, while it promotes stemness of breast tumor. Moreover, autophagy demonstrates interaction with tumor microenvironment components such as macrophages and its level can be regulated by anti-tumor compounds in breast tumor therapy. The reasons of considering autophagy in breast cancer therapy is its pleiotropic function, dual role (pro-survival and pro-death) and crosstalk with important molecular mechanisms such as apoptosis. Moreover, current review provides a pre-clinical and clinical evaluation of autophagy in breast tumor.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pegah Abbasi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Gao S, Zhou XQ, Wu Q, Chen XD, Li P, Qin YM. Effects of Holliday Junction-Recognition Protein-Mediated C-Jun N-Terminal Kinase/ Signal Transducer and Activator of Transcription 3 Signaling Pathway on Cell Proliferation, Cell Cycle and Cell Apoptosis in Bladder Urothelial Carcinoma. TOHOKU J EXP MED 2023; 259:209-219. [PMID: 36543245 DOI: 10.1620/tjem.2022.j113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Holliday Junction-Recognition Protein (HJURP) was upregulated in several tumors, which was associated with poor outcome. This study investigated the effects of the HJURP-mediated c-Jun N-terminal kinase (JNK)/ signal transducer and activator of transcription 3 (STAT3) pathway on bladder urothelial carcinoma (BLUC). Online databases were used to analyze HJURP expression in BLUC and the correlation of HJURP to JNK1 [mitogen-activated protein kinase 8 (MAPK8)], JNK2 (MAPK9), STAT3, marker of proliferation Ki-67 (MKI67), proliferating cell nuclear antigen (PCNA), cyclin dependent kinase 2 (CDK2), CDK4 and CDK6. HJURP expression was detected in BLUC cells and human normal primary bladder epithelial cells (BdECs). BLUC cells were treated with HJURP lentivirus activation /shRNA lentivirus particles or JNK inhibitor SP600125. HJURP was upregulated in BLUC tissues and correlated with poor prognosis of patients (all P < 0.05). HJURP in tumor positively correlated with MAPK8 (R = 0.30), MAPK9 (R = 0.30), STAT3 (R = 0.15), MKI67 (R = 0.60), PCNA (R = 0.46), CDK2 (R = 0.39), CDK4 (R = 0.24) and CDK6 (R = 0.21). The JNK inhibitor SP600125 decreased p-JNK/JNK and p-STAT3/STAT3 in BLUC cells, which was reversed by HJURP overexpression (P < 0.05). The HJURP-mediated JNK/STAT3 pathway promoted BLUC cell proliferation and inhibited cell apoptosis (P < 0.05). HJURP reversed the arrested G0/G1 phase of BLUC cells by SP600125. HJURP acted as an oncogene to regulate BLUC cell proliferation, apoptosis and the cell cycle by mediating the JNK/STAT3 pathway. Therefore, HJURP targeting might be an attractive novel therapeutic target for early diagnosis and treatment in BLUC.
Collapse
Affiliation(s)
- Song Gao
- Department of Urology, Lishui People's Hospital
| | | | - Qi Wu
- Department of Urology, Lishui People's Hospital
| | | | - Peng Li
- Department of Urology, Lishui People's Hospital
| | - Ye-Min Qin
- Department of Urology, Lishui People's Hospital
| |
Collapse
|
7
|
Guo L, Kong D, Liu J, Zhan L, Luo L, Zheng W, Zheng Q, Chen C, Sun S. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp Hematol Oncol 2023; 12:3. [PMID: 36624542 PMCID: PMC9830930 DOI: 10.1186/s40164-022-00363-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Breast cancer heterogeneity determines cancer progression, treatment effects, and prognosis. However, the precise mechanism for this heterogeneity remains unknown owing to its complexity. Here, we summarize the origins of breast cancer heterogeneity and its influence on disease progression, recurrence, and therapeutic resistance. We review the possible mechanisms of heterogeneity and the research methods used to analyze it. We also highlight the importance of cell interactions for the origins of breast cancer heterogeneity, which can be further categorized into cooperative and competitive interactions. Finally, we provide new insights into precise individual treatments based on heterogeneity.
Collapse
Affiliation(s)
- Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Deguang Kong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Jianhua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Ling Zhan
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Lan Luo
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Yunyan District, Guiyang, 550001, Guizhou, China
| | - Weijie Zheng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Qingyuan Zheng
- Department of Urology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
8
|
Hou J, Kang N, Liu NN, Tan D, Zhang S, Liu J, Xie Y. Proscillaridin A induces mitochondrial damage and autophagy in pancreatic cancer and reduces the stability of SMAD4 in Panc-1 cells. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:820. [PMID: 36034984 PMCID: PMC9403942 DOI: 10.21037/atm-22-1085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/23/2022] [Indexed: 12/03/2022]
Abstract
Background Pancreatic cancer (PC) is a highly metastatic and lethal cancer with a very low overall 5-year survival rate. There is an urgent need for identifying new therapeutic agents for this deadly disease. Cardiac glycosides (CGs) have been traditionally used for their potent cardiovascular activities and have also recently been reported to exhibit anti-tumor effects. Proscillaridin A (Pro A), a natural CG, has been shown to display anti-tumor effects on multiple cancer types. Methods The cytotoxic effect of Pro A on PC cells was determined using cell viability assay, colony formation assay and transwell assay in vitro. Cell apoptosis, cell cycle, reactive oxygen species (ROS) generation, intracellular Ca2+ levels and mitochondrial membrane potential (MMP) were assayed by flow cytometry. Panc-1-xenografted mice model was used to evaluate Pro A’s effect in tumor growth. Mitochondria morphology was observed by transmission electron microscopy. LC3 aggregation was assessed by GFP-LC3 fluorescence microscopy. Gene expression was assayed by western blot or real-time quantitative polymerase chain reaction (qPCR). Results Pro A inhibits the proliferation, migration and invasion of Panc-1, BxPC-3 and AsPC-1 PC cells in vitro, and Panc-1 cells display the highest sensitivity with an IC50 at the nano-molar level. In vivo, Pro A treatment inhibits tumor progression in Panc-1 xenograft nude mice. Pro A treatment promotes both cell apoptosis and autophagy, and Pro A-treated PC cells display characteristics of mitochondrial damage including increased ROS generation, intracellular Ca2+ levels and disruption of MMP. In addition, high sensitivity towards Pro A of Panc-1 cells compared to BxPC-3 and AsPC-1 cells could be partially attributed to the loss of endogenous SMAD4 expression in the latter. Conclusions Our findings suggest that Pro A constitutes a promising therapeutic candidate for certain types of PC.
Collapse
Affiliation(s)
- Jia Hou
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ning Kang
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nan-Nan Liu
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Tan
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Si Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China.,Children's Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Hasan A, Rizvi SF, Parveen S, Pathak N, Nazir A, Mir SS. Crosstalk Between ROS and Autophagy in Tumorigenesis: Understanding the Multifaceted Paradox. Front Oncol 2022; 12:852424. [PMID: 35359388 PMCID: PMC8960719 DOI: 10.3389/fonc.2022.852424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer formation is a highly regulated and complex process, largely dependent on its microenvironment. This complexity highlights the need for developing novel target-based therapies depending on cancer phenotype and genotype. Autophagy, a catabolic process, removes damaged and defective cellular materials through lysosomes. It is activated in response to stress conditions such as nutrient deprivation, hypoxia, and oxidative stress. Oxidative stress is induced by excess reactive oxygen species (ROS) that are multifaceted molecules that drive several pathophysiological conditions, including cancer. Moreover, autophagy also plays a dual role, initially inhibiting tumor formation but promoting tumor progression during advanced stages. Mounting evidence has suggested an intricate crosstalk between autophagy and ROS where they can either suppress cancer formation or promote disease etiology. This review highlights the regulatory roles of autophagy and ROS from tumor induction to metastasis. We also discuss the therapeutic strategies that have been devised so far to combat cancer. Based on the review, we finally present some gap areas that could be targeted and may provide a basis for cancer suppression.
Collapse
Affiliation(s)
- Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Lucknow, India.,Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Suroor Fatima Rizvi
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Lucknow, India.,Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Sana Parveen
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Lucknow, India.,Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
| | - Neelam Pathak
- Department of Biochemistry, Dr. RML Avadh University, Faizabad, India
| | - Aamir Nazir
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Lucknow, India.,Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| |
Collapse
|
10
|
Chavda V, Chaurasia B, Garg K, Deora H, Umana GE, Palmisciano P, Scalia G, Lu B. Molecular mechanisms of oxidative stress in stroke and cancer. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2021.100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
11
|
Zhang P, Zhang J, Quan H, Chen P, Wang J, Liang Y. Effects of butein on human osteosarcoma cell proliferation, apoptosis, and autophagy through oxidative stress. Hum Exp Toxicol 2022; 41:9603271221074346. [PMID: 35130734 DOI: 10.1177/09603271221074346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Osteosarcoma (OS) is a primary malignant bone tumor, and the cure rate has stagnated in the past three decades. Butein, a plant polyphenol extracted from many herbs, has been proved to possess anti-tumor activity. However, the effect of butein on human OS and the underlying mechanisms remain to be elucidated. MATERIALS AND METHODS The OS cell line 143B was used. The effects of butein were evaluated through the cell proliferation assay, flow cytometry, florescence and transmission electron microscopy, and western blotting. All statistical analyses were performed using GraphPad Prism 7.0. RESULTS Butein was found to inhibit cell proliferation by causing G2/ M phase arrest in the 143B cells. In addition, butein suppressed the invasion of 143B cells upon IL-6 treatment. Additionally, we found that butein inhibited the invasion of 143B cells stimulated with IL-6 via the p-STAT3-MMP9 signaling pathway. Remarkably, butein triggered extrinsic and intrinsic apoptosis and autophagy of 143B cells. The process of autophagy may have tumor-supporting effects. Furthermore, butein induced oxidative stress as evidenced by ROS generation, increase in malondialdehyde (MDA) level, and decrease in GSH/GSSH ratio and GPX4 expression. N-acetylcysteine can reverse the change of ROS. Further experiments indicated apoptosis and autophagy could be attenuated by the N-acetyl-L-cysteine and c-Jun N-terminal kinase (JNK) inhibitor SP600125. Additionally, butein inhibited the Akt/mammalian target of rapamycin (mTOR) signaling pathway, and suppressed the Akt kinase activity increased apoptosis and autophagy. CONCLUSION Our results revealed butein induced apoptosis and autophagy by regulating oxidative stress, activating the JNK signaling pathway and blocking the Akt/mTOR signaling pathway in OS cells. Additionally, butein inhibited the invasion of 143B cells stimulated with IL-6 through the pSTAT3- MMP9 signaling pathway. In view of these results, butein may be a potential anti-tumor drug targeting osteosarcoma.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiale Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, 370089Northern Jiangsu People's Hospital, Yangzhou, China
| | - Huahong Quan
- Department of Orthopedics, Clinical Medical College of Yangzhou University, 370089Northern Jiangsu People's Hospital, Yangzhou, China
| | - Pengtao Chen
- Department of Orthopedics, Clinical Medical College of Yangzhou University, 370089Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jingcheng Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Orthopedics, Clinical Medical College of Yangzhou University, 370089Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yuan Liang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, 370089Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
12
|
Sodium Butyrate Ameliorates Oxidative Stress-Induced Intestinal Epithelium Barrier Injury and Mitochondrial Damage through AMPK-Mitophagy Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3745135. [PMID: 35132348 PMCID: PMC8817854 DOI: 10.1155/2022/3745135] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
Sodium butyrate has gained increasing attention for its vast beneficial effects. However, whether sodium butyrate could alleviate oxidative stress-induced intestinal dysfunction and mitochondrial damage of piglets and its underlying mechanism remains unclear. The present study used a hydrogen peroxide- (H2O2-) induced oxidative stress model to study whether sodium butyrate could alleviate oxidative stress, intestinal epithelium injury, and mitochondrial dysfunction of porcine intestinal epithelial cells (IPEC-J2) in AMPK-mitophagy-dependent pathway. The results indicated that sodium butyrate alleviated the H2O2-induced oxidative stress, decreased the level of reactive oxygen species (ROS), increased mitochondrial membrane potential (MMP), mitochondrial DNA (mtDNA), and mRNA expression of genes related to mitochondrial function, and inhibited the release of mitochondrial cytochrome c (Cyt c). Sodium butyrate reduced the protein expression of recombinant NLR family, pyrin domain-containing protein 3 (NLRP3) and fluorescein isothiocyanate dextran 4 kDa (FD4) permeability and increased transepithelial resistance (TER) and the protein expression of tight junction. Sodium butyrate increased the expression of light-chain-associated protein B (LC3B) and Beclin-1, reduced the expression of P62, and enhanced mitophagy. However, the use of AMPK inhibitor or mitophagy inhibitor weakened the protective effect of sodium butyrate on mitochondrial function and intestinal epithelium barrier function and suppressed the induction effect of sodium butyrate on mitophagy. In addition, we also found that after interference with AMPKα, the protective effect of sodium butyrate on IPEC-J2 cells treated with H2O2 was suppressed, indicating that AMPKα is necessary for sodium butyrate to exert its protective effect. In summary, these results revealed that sodium butyrate induced mitophagy by activating AMPK, thereby alleviating oxidative stress, intestinal epithelium barrier injury, and mitochondrial dysfunction induced by H2O2.
Collapse
|
13
|
Zhu Y, Liu Z, Lv D, Cheng X, Wang J, Liu B, Han Z, Wang Y, Liu R, Gao Y. Identification of PYGL as a key prognostic gene of glioma by integrated bioinformatics analysis. Future Oncol 2022; 18:579-596. [PMID: 35037470 DOI: 10.2217/fon-2021-0759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: PYGL has been reported to have carcinogenic effects in a variety of tumors. This study is the first to reveal the relationship between PYGL and the prognosis of glioma. Materials & methods: Analyzing the Chinese Glioma Genome Atlas database, the authors revealed the expression status and prognostic value of PYGL in gliomas and used RT-qPCR to verify PYGL expression again. Subsequently, they used Gene Set Enrichment Analysis to explore the biological pathways that PYGL may participate in. The authors also used the tumor immune estimation resource database to explore the relationship between PYGL and tumor immune cells. Results: PYGL is involved in the malignant progression of glioma. Conclusions: PYGL can be used as a new biomarker and molecular target for evaluating the prognosis and immunotherapy of glioma.
Collapse
Affiliation(s)
- Yongjie Zhu
- Henan University People's Hospital, Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450003, China
| | - Zhendong Liu
- Department Of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China
| | - Dongbo Lv
- Department Of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China
| | - Xingbo Cheng
- Department of Neurosurgery of the First affiliate Hospital of Harbin Medical University, Harbin 150000, China
| | - Jialin Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450003, China
| | - Binfeng Liu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450003, China
| | - Zhibin Han
- Department of Neurosurgery of the First affiliate Hospital of Harbin Medical University, Harbin 150000, China
| | - Yanbiao Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450003, China
| | - Runze Liu
- Henan University People's Hospital, Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450003, China
| | - Yanzheng Gao
- Department of Surgery of Spine & Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation & Transformation, Henan Key Laboratory for intelligent precision orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, Zhengzhou 450003, China
| |
Collapse
|
14
|
Cardiac Glycosides as Autophagy Modulators. Cells 2021; 10:cells10123341. [PMID: 34943848 PMCID: PMC8699753 DOI: 10.3390/cells10123341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022] Open
Abstract
Drug repositioning is one of the leading strategies in modern therapeutic research. Instead of searching for completely novel substances and demanding studies of their biological effects, much attention has been paid to the evaluation of commonly used drugs, which could be utilized for more distinct indications than they have been approved for. Since treatment approaches for cancer, one of the most extensively studied diseases, have still been very limited, great effort has been made to find or repurpose novel anticancer therapeutics. One of these are cardiac glycosides, substances commonly used to treat congestive heart failure or various arrhythmias. Recently, the antitumor properties of cardiac glycosides have been discovered and, therefore, these compounds are being considered for anticancer therapy. Their mechanism of antitumor action seems to be rather complex and not fully uncovered yet, however, autophagy has been confirmed to play a key role in this process. In this review article, we report on the up-to-date knowledge of the anticancer activity of cardiac glycosides with special attention paid to autophagy induction, the molecular mechanisms of this process, and the potential employment of this phenomenon in clinical practice.
Collapse
|
15
|
Chen RJ, Lyu YJ, Chen YY, Lee YC, Pan MH, Ho YS, Wang YJ. Chloroquine Potentiates the Anticancer Effect of Pterostilbene on Pancreatic Cancer by Inhibiting Autophagy and Downregulating the RAGE/STAT3 Pathway. Molecules 2021; 26:molecules26216741. [PMID: 34771150 PMCID: PMC8588513 DOI: 10.3390/molecules26216741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022] Open
Abstract
The treatment of pancreatic ductal adenocarcinoma (PDAC) remains a huge challenge, because pro-survival signaling pathways—such as the receptor for advanced glycation end products (RAGE)/signal transducer and activator of transcription 3 (STAT3) pathway—are overexpressed in PDAC cells. Moreover, PDAC cells are highly resistant to chemotherapeutic agents because of autophagy induction. Therefore, autophagy and its modulated signaling pathways are attractive targets for developing novel therapeutic strategies for PDAC. Pterostilbene is a stilbenoid chemically related to resveratrol, and has potential for the treatment of cancers. Accordingly, we investigated whether the autophagy inhibitor chloroquine could potentiate the anticancer effect of pterostilbene in the PDAC cell lines MIA PaCa-2 and BxPC-3, as well as in an orthotopic animal model. The results indicated that pterostilbene combined with chloroquine significantly inhibited autophagy, decreased cell viability, and sensitized the cells to pterostilbene-induced apoptosis via downregulation of the RAGE/STAT3 and protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways in PDAC cells. The results of the orthotopic animal model showed that pterostilbene combined with chloroquine significantly inhibited pancreatic cancer growth, delayed tumor quadrupling times, and inhibited autophagy and STAT3 in pancreatic tumors. In summary, the present study suggested the novel therapeutic strategy of pterostilbene combined with chloroquine against the growth of pancreatic ductal adenocarcinoma by inhibiting autophagy and downregulating the RAGE/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan;
| | - Yi-Jhen Lyu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-J.L.); (Y.-Y.C.)
| | - Yu-Ying Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-J.L.); (Y.-Y.C.)
| | - Yen-Chien Lee
- Department of Medical Oncology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan 70043, Taiwan;
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan 70403, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Yuan-Soon Ho
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (Y.-S.H.); (Y.-J.W.); Tel.: +886-2-2736-1661 (ext. 3327) (Y.-S.H.); +886-6-235-3535 (ext. 5804) (Y.-J.W.); Fax: +886-6-275-2484 (Y.-J.W.)
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-J.L.); (Y.-Y.C.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (Y.-S.H.); (Y.-J.W.); Tel.: +886-2-2736-1661 (ext. 3327) (Y.-S.H.); +886-6-235-3535 (ext. 5804) (Y.-J.W.); Fax: +886-6-275-2484 (Y.-J.W.)
| |
Collapse
|
16
|
Chen Y, Li P, Peng Y, Xie X, Zhang Y, Jiang Y, Li T, Qin X, Li S, Yang H, Wu C, Zheng C, Zhu J, You F, Liu Y. Protective autophagy attenuates soft substrate-induced apoptosis through ROS/JNK signaling pathway in breast cancer cells. Free Radic Biol Med 2021; 172:590-603. [PMID: 34242793 DOI: 10.1016/j.freeradbiomed.2021.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023]
Abstract
Tumor microenvironments are characterized not only in terms of chemical composition, but also by physical properties such as stiffness, which influences morphology, proliferation, and fate of tumor cells. However, the underlying mechanisms between matrix stiffness and the apoptosis-autophagy balance remain largely unexplored. In this study, we cultured human breast cancer MDA-MB-231 cells on rigid (57 kPa), stiff (38 kPa) or soft (10 kPa) substrates and demonstrated that increasing autophagy levels and autophagic flux in the cells cultured on soft substrates partly attenuated soft substrate-induced apoptosis. Mechanistically, this protective autophagy is regulated by intracellular reactive oxygen species (ROS) accumulation, which triggers the downstream signals of JNK, Bcl-2 and Beclin-1. More importantly, soft substrate-induced activation of ROS/JNK signaling promotes cell apoptosis through the mitochondrial pathway, whereas it increases protective autophagy by suppressing the interaction of Bcl-2 and Beclin-1. Taken together, our data suggest that JNK is the mediator of soft substrate-induced breast cancer cell apoptosis and autophagy which is likely to be the mechanism that partly attenuates mitochondrial apoptosis. This study provides new insights into the molecular mechanism by which autophagy plays a protective role against soft substrate-induced apoptosis in human breast cancer cells.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ping Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yueting Peng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiaoxue Xie
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yixi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ying Jiang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Jie Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
17
|
Oxidative Stress in Cancer Cell Metabolism. Antioxidants (Basel) 2021; 10:antiox10050642. [PMID: 33922139 PMCID: PMC8143540 DOI: 10.3390/antiox10050642] [Citation(s) in RCA: 263] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are important in regulating normal cellular processes whereas deregulated ROS leads to the development of a diseased state in humans including cancers. Several studies have been found to be marked with increased ROS production which activates pro-tumorigenic signaling, enhances cell survival and proliferation and drives DNA damage and genetic instability. However, higher ROS levels have been found to promote anti-tumorigenic signaling by initiating oxidative stress-induced tumor cell death. Tumor cells develop a mechanism where they adjust to the high ROS by expressing elevated levels of antioxidant proteins to detoxify them while maintaining pro-tumorigenic signaling and resistance to apoptosis. Therefore, ROS manipulation can be a potential target for cancer therapies as cancer cells present an altered redox balance in comparison to their normal counterparts. In this review, we aim to provide an overview of the generation and sources of ROS within tumor cells, ROS-associated signaling pathways, their regulation by antioxidant defense systems, as well as the effect of elevated ROS production in tumor progression. It will provide an insight into how pro- and anti-tumorigenic ROS signaling pathways could be manipulated during the treatment of cancer.
Collapse
|
18
|
Chinese Poplar Propolis Inhibits MDA-MB-231 Cell Proliferation in an Inflammatory Microenvironment by Targeting Enzymes of the Glycolytic Pathway. J Immunol Res 2021; 2021:6641341. [PMID: 33628847 PMCID: PMC7899755 DOI: 10.1155/2021/6641341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/24/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Propolis is rich in flavonoids and has excellent antitumor activity. However, little is known about the potential effects of propolis on glycolysis in tumor cells. Here, the antitumor effects of propolis against human breast cancer MDA-MB-231 cells in an inflammatory microenvironment stimulated with lipopolysaccharide (LPS) were investigated by assessing the key enzymes of glycolysis. Propolis treatment obviously inhibited MDA-MB-231 cell proliferation, migration and invasion, clone forming, and angiogenesis. Proinflammatory mediators, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6, as well as NLRP3 inflammasomes, were decreased following propolis treatment when compared with the LPS group. Moreover, propolis treatment significantly downregulated the levels of key enzymes of glycolysis–hexokinase 2 (HK2), phosphofructokinase (PFK), pyruvate kinase muscle isozyme M2 (PKM2), and lactate dehydrogenase A (LDHA) in MDA-MB-231 cells stimulated with LPS. After treatment with 2-deoxy-D-glucose (2-DG), an inhibitor of glycolysis, the inhibitory effect of propolis on migration was not significant when compared with the LPS group. In addition, propolis increased reactive oxygen species (ROS) levels and decreased mitochondrial membrane potential. Taken together, these results indicated that propolis targeted key enzymes of glycolysis to suppress the proliferation of MDA-MB-231 cells in an inflammatory microenvironment. These studies provide a molecular basis for propolis as a natural anticancer agent against breast cancer.
Collapse
|