1
|
Fang X, Mo C, Zheng L, Gao F, Xue FS, Zheng X. Transfusion-Related Acute Lung Injury: from Mechanistic Insights to Therapeutic Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413364. [PMID: 39836498 DOI: 10.1002/advs.202413364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/08/2024] [Indexed: 01/23/2025]
Abstract
Transfusion-related acute lung injury (TRALI) is a potentially lethal complication of blood transfusions, characterized by the rapid onset of pulmonary edema and hypoxemia within six hours post-transfusion. As one of the primary causes of transfusion-related mortality, TRALI carries a significant mortality rate of 6-12%. However, effective treatment strategies for TRALI are currently lacking, underscoring the urgent need for a comprehensive and in-depth understanding of its pathogenesis. This comprehensive review provides an updated and detailed analysis of the current landscape of TRALI, including its clinical presentation, pathogenetic hypotheses, animal models, cellular mechanisms, signaling pathways, and potential therapeutic targets. By highlighting the critical roles of these pathways and therapies, this review offers valuable insights to inform the development of preventative and therapeutic strategies and to guide future research efforts aimed at addressing this life-threatening condition.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Fei Gao
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Fu-Shan Xue
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Key Laboratory of Critical Medicine, Fujian Provincial Co-constructed Laboratory of "Belt and Road,", Fuzhou, Fujian, China
| |
Collapse
|
2
|
Wang A, Liu J, Li Z, Qian Z, Yang S, Luo S, Lin J, Wu J. CC16 alleviates PM2.5-induced lung epithelial cell injury and airway inflammation in asthmatic mice by inhibiting ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117417. [PMID: 39644566 DOI: 10.1016/j.ecoenv.2024.117417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Exposure to PM2.5 represents a significant public health challenge, closely associated with the worsening of asthma, a condition that still lacks effective preventive measures. Club Cell 16 kDa protein (CC16), recognized for its anti-inflammatory and antioxidant properties, may serve a protective function in asthma exacerbated by PM2.5; however, the underlying mechanisms, particularly those related to ferroptosis, remain poorly understood. METHODS The impact of CC16 on inflammation and ferroptosis was assessed using a TC-1 lung epithelial cell model exposed to PM2.5, as well as an ovalbumin (OVA)-induced asthmatic mouse model also subjected to PM2.5 exposure. RESULTS CC16 significantly modulated key regulators of ferroptosis (NRF2, GPX4, SLC7A11, HO-1) and attenuated pro-inflammatory cytokines (IL-13, IL-5, IL-6, IL-1β, IL-17A) in PM2.5-exposed lung epithelial cells. Furthermore, it enhanced pulmonary function while reducing airway inflammation and mucus secretion and inhibited ferroptosis in PM2.5-induced asthmatic mice. CONCLUSION CC16 demonstrates promise as a therapeutic agent for PM2.5-induced asthma by modulating ferroptosis and alleviating airway inflammation, thereby providing a novel strategy for asthma management.
Collapse
Affiliation(s)
- Aili Wang
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Geriatric Institute, Guangzhou, Guangdong 510080, China; Department of Respiratory and Critical Care Medicine, Wuhan No.1 Hospital, Wuhan, Hubei 430022, China
| | - Jianling Liu
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Geriatric Institute, Guangzhou, Guangdong 510080, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, China
| | - Zhangwen Li
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Geriatric Institute, Guangzhou, Guangdong 510080, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, China
| | - Ze Qian
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Geriatric Institute, Guangzhou, Guangdong 510080, China
| | - Shuo Yang
- Department of Respiratory and Critical Care Medicine, Wuhan No.1 Hospital, Wuhan, Hubei 430022, China
| | - Shaohua Luo
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Geriatric Institute, Guangzhou, Guangdong 510080, China
| | - Jinle Lin
- Department of Emergency Medicine, Affiliated Baoan Hospital of Shenzhen, The Second School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong 518101, China
| | - Jian Wu
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Geriatric Institute, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
3
|
Huang Q, Le Y, Li S, Bian Y. Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS). Respir Res 2024; 25:30. [PMID: 38218783 PMCID: PMC10788036 DOI: 10.1186/s12931-024-02678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common condition associated with critically ill patients, characterized by bilateral chest radiographical opacities with refractory hypoxemia due to noncardiogenic pulmonary edema. Despite significant advances, the mortality of ARDS remains unacceptably high, and there are still no effective targeted pharmacotherapeutic agents. With the outbreak of coronavirus disease 19 worldwide, the mortality of ARDS has increased correspondingly. Comprehending the pathophysiology and the underlying molecular mechanisms of ARDS may thus be essential to developing effective therapeutic strategies and reducing mortality. To facilitate further understanding of its pathogenesis and exploring novel therapeutics, this review provides comprehensive information of ARDS from pathophysiology to molecular mechanisms and presents targeted therapeutics. We first describe the pathogenesis and pathophysiology of ARDS that involve dysregulated inflammation, alveolar-capillary barrier dysfunction, impaired alveolar fluid clearance and oxidative stress. Next, we summarize the molecular mechanisms and signaling pathways related to the above four aspects of ARDS pathophysiology, along with the latest research progress. Finally, we discuss the emerging therapeutic strategies that show exciting promise in ARDS, including several pharmacologic therapies, microRNA-based therapies and mesenchymal stromal cell therapies, highlighting the pathophysiological basis and the influences on signal transduction pathways for their use.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China
| | - Yue Le
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shusheng Li
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| | - Yi Bian
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| |
Collapse
|
4
|
Li K, Huang Z, Liu C, Xu Y, Chen W, Shi L, Li C, Zhou F, Zhou F. Transcriptomic analysis of human pulmonary microvascular endothelial cells treated with LPS. Cell Signal 2023; 111:110870. [PMID: 37633475 DOI: 10.1016/j.cellsig.2023.110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Acute respiratory distress syndrome (ARDS) has a rapid onset and progression, which lead to the severity and complexity of the primary disease and significantly increase the fatality rate of patients. Transcriptomics provides some ideas for clarifying the mechanism of ARDS, exploring prevention and treatment targets, and searching for related specific markers. In this study, RNA-Seq technology was used to observe the gene expression of human pulmonary microvascular endothelial cells (PMVECs) induced by LPS, and to excavate the key genes and signaling pathways in ARDS process. A total of 2300 up-regulated genes were detected, and a corresponding 1696 down-regulated genes were screened. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and protein-protein interaction (PPI) were also used for functional annotation of key genes. TFDP1 was identified as a cell cycle-dependent differentially expressed gene, and its reduced expression was verified in LPS-treated PMVECs and lung tissues of CLP-induced mice. In addition, the inhibition of TFDP1 on inflammation and apoptosis, and the promotion of proliferation were confirmed. The decreased expression of E2F1, Rb, CDK1 and the activation of MAPK signaling pathway were substantiated in the in vivo and in vitro models of ARDS. Moreover, SREBF1 has been demonstrated to be involved in cell cycle arrest in PMVECs by inhibiting CDK1. Our study shows that transcriptomics combined with basic research can broaden the investigation of ARDS mechanisms and may provide a basis for future mechanistic innovations.
Collapse
Affiliation(s)
- Kaili Li
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China.
| | - Zuotian Huang
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, 400030 Chongqing Municipality, China
| | - Chang Liu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China.
| | - Yuanyuan Xu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Wei Chen
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Lu Shi
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Can Li
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Fawei Zhou
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Fachun Zhou
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China; Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China.
| |
Collapse
|
5
|
Iannuzo N, Dy ABC, Guerra S, Langlais PR, Ledford JG. The Impact of CC16 on Pulmonary Epithelial-Driven Host Responses during Mycoplasma pneumoniae Infection in Mouse Tracheal Epithelial Cells. Cells 2023; 12:1984. [PMID: 37566063 PMCID: PMC10416898 DOI: 10.3390/cells12151984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Club Cell Secretory Protein (CC16) plays many protective roles within the lung; however, the complete biological functions, especially regarding the pulmonary epithelium during infection, remain undefined. We have previously shown that CC16-deficient (CC16-/-) mouse tracheal epithelial cells (MTECs) have enhanced Mp burden compared to CC16-sufficient (WT) MTECs; therefore, in this study, we wanted to further define how the pulmonary epithelium responds to infection in the context of CC16 deficiency. Using mass spectrometry and quantitative proteomics to analyze proteins secreted apically from MTECs grown at an air-liquid interface, we investigated the protective effects that CC16 elicits within the pulmonary epithelium during Mycoplasma pneumoniae (Mp) infection. When challenged with Mp, WT MTECs have an overall reduction in apical protein secretion, whereas CC16-/- MTECs have increased apical protein secretion compared to their unchallenged controls. Following Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) assessment, many of the proteins upregulated from CC16-/- MTECS (unchallenged and during Mp infection) were related to airway remodeling, which were not observed by WT MTECs. These findings suggest that CC16 may be important in providing protection within the pulmonary epithelium during respiratory infection with Mp, which is the major causative agent of community-acquired pneumoniae.
Collapse
Affiliation(s)
- Natalie Iannuzo
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA;
| | | | - Stefano Guerra
- Asthma and Airway Disease Research Center, Tucson, AZ 85724, USA
| | - Paul R. Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA
| | - Julie G. Ledford
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA;
- Asthma and Airway Disease Research Center, Tucson, AZ 85724, USA
| |
Collapse
|
6
|
Han Y, Zhu Y, Almuntashiri S, Wang X, Somanath PR, Owen CA, Zhang D. Extracellular vesicle-encapsulated CC16 as novel nanotherapeutics for treatment of acute lung injury. Mol Ther 2023; 31:1346-1364. [PMID: 36635966 PMCID: PMC10188639 DOI: 10.1016/j.ymthe.2023.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/08/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Acute lung injury (ALI) is still associated with high mortality. Growing evidence suggests that Club Cell Protein 16 (CC16) plays a protective role against ALI. However, the doses of recombinant CC16 (rCC16) used in preclinical studies are supraphysiological for clinical applications. Extracellular vesicles (EVs) are nanovesicles endogenously generated by mammalian cells. Our study demonstrated that CC16 is released via small EVs and EV-encapsulated CC16 (sEV-CC16) and has anti-inflammatory activities, which protect mice from lipopolysaccharide (LPS) or bacteria-induced ALI. Additionally, sEV-CC16 can activate the DNA damage repair signaling pathways. Consistent with this activity, we observed more severe DNA damage in lungs from Cc16 knockout (KO) than wild-type (WT) mice. Mechanistically, we elucidated that CC16 suppresses nuclear factor κB (NF-κB) signaling activation by binding to heat shock protein 60 (HSP60). We concluded that sEV-CC16 could be a potential therapeutic agent for ALI by inhibiting the inflammatory and DNA damage responses by reducing NF-κB signaling.
Collapse
Affiliation(s)
- Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; Vascular Biology Center, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
7
|
Rojas-Quintero J, Laucho-Contreras ME, Wang X, Fucci QA, Burkett PR, Kim SJ, Zhang D, Tesfaigzi Y, Li Y, Bhashyam AR, Li Z, Khamas H, Celli B, Pilon AL, Polverino F, Owen CA. CC16 augmentation reduces exaggerated COPD-like disease in Cc16-deficient mice. JCI Insight 2023; 8:130771. [PMID: 36787195 PMCID: PMC10070105 DOI: 10.1172/jci.insight.130771] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Low Club Cell 16 kDa protein (CC16) plasma levels are linked to accelerated lung function decline in patients with chronic obstructive pulmonary disease (COPD). Cigarette smoke-exposed (CS-exposed) Cc16-/- mice have exaggerated COPD-like disease associated with increased NF-κB activation in their lungs. It is unclear whether CC16 augmentation can reverse exaggerated COPD in CS-exposed Cc16-/- mice and whether increased NF-κB activation contributes to the exaggerated COPD in CS-exposed Cc16-/- lungs. CS-exposed WT and Cc16-/- mice were treated with recombinant human CC16 (rhCC16) or an NF-κB inhibitor versus vehicle beginning at the midpoint of the exposures. COPD-like disease and NF-κB activation were measured in the lungs. RhCC16 limited the progression of emphysema, small airway fibrosis, and chronic bronchitis-like disease in WT and Cc16-/- mice partly by reducing pulmonary inflammation (reducing myeloid leukocytes and/or increasing regulatory T and/or B cells) and alveolar septal cell apoptosis, reducing NF-κB activation in CS-exposed Cc16-/- lungs, and rescuing the reduced Foxj1 expression in CS-exposed Cc16-/- lungs. IMD0354 treatment reduced exaggerated lung inflammation and rescued the reduced Foxj1 expression in CS-exposed Cc16-/- mice. RhCC16 treatment reduced NF-κB activation in luciferase reporter A549 cells. Thus, rhCC16 treatment limits COPD progression in CS-exposed Cc16-/- mice partly by inhibiting NF-κB activation and represents a potentially novel therapeutic approach for COPD.
Collapse
Affiliation(s)
- Joselyn Rojas-Quintero
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Eugenia Laucho-Contreras
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Fundación Neumológica Colombiana, Bogotá, Colombia
| | - Xiaoyun Wang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Clinical and Experimental Therapeutics program, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Quynh-Anh Fucci
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick R Burkett
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Se-Jin Kim
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics program, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yohannes Tesfaigzi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yuhong Li
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Abhiram R Bhashyam
- Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Zhang Li
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Haider Khamas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bartolome Celli
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Francesca Polverino
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Balkrishna A, Goswami S, Singh H, Gohel V, Dev R, Haldar S, Varshney A. Herbo-mineral formulation, Divya-Swasari-Vati averts SARS-CoV-2 pseudovirus entry into human alveolar epithelial cells by interfering with spike protein-ACE 2 interaction and IL-6/TNF-α /NF-κB signaling. Front Pharmacol 2022; 13:1024830. [PMID: 36386162 PMCID: PMC9643876 DOI: 10.3389/fphar.2022.1024830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 08/16/2023] Open
Abstract
The herbo-mineral formulation, Divya-Swasari-Vati (DSV), is a well-known Ayurvedic medication for respiratory ailments. In a recent pre-clinical study, DSV rescued humanized zebrafish from SARS-CoV-2 S-protein-induced pathologies. This merited for an independent evaluation of DSV as a SARS-CoV-2 entry inhibitor in the human host cell and its effectiveness in ameliorating associated cytokine production. The ELISA-based protein-protein interaction study showed that DSV inhibited the interactions of recombinant human ACE 2 with three different variants of S proteins, namely, Smut 1 (the first reported variant), Smut 2 (W436R variant) and Smut 3 (D614G variant). Entry of recombinant vesicular stomatitis SARS-CoV-2 (VSVppSARS-2S) pseudovirus, having firefly luciferase and EGFP reporters, was assessed through luciferase assay and fluorescent microscopy. DSV exhibited dose-dependent inhibition of VSVppSARS-2S pseudovirus entry into human lung epithelial A549 cells and also suppressed elevated levels of secreted pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) induced by viral infection mimicking Poly I:C-, S-protein- and VSVppSARS-2S pseudovirus. In human immune cells, DSV also moderated TNF-α-mediated NF-κB induction, in a dose-dependent manner. The observed anti-viral effect of DSV against SARS-CoV-2 is attributable to the presence of different metabolites Summarily, the observations from this study biochemically demonstrated that DSV interfered with the interaction between SARS-CoV-2 S-protein and human ACE 2 receptor which consequently, inhibited viral entry into the host cells and concomitant induction of inflammatory response.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
| | - Sudeep Goswami
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Hoshiyar Singh
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Vivek Gohel
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Swati Haldar
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
Wang Y, Jin X, Fan Q, Li C, Zhang M, Wang Y, Wu Q, Li J, Liu X, Wang S, Wang Y, Li L, Ling J, Li C, Wang Q, Liu Y. Deciphering the Active Compounds and Mechanisms of HSBDF for Treating ALI via Integrating Chemical Bioinformatics Analysis. Front Pharmacol 2022; 13:879268. [PMID: 35721141 PMCID: PMC9201258 DOI: 10.3389/fphar.2022.879268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/06/2022] [Indexed: 01/08/2023] Open
Abstract
The Huashi Baidu Formula (HSBDF), a key Chinese medical drug, has a remarkable clinical efficacy in treating acute lung injury (ALI), and it has been officially approved by the National Medical Products Administration of China for drug clinical trials. Nevertheless, the regulated mechanisms of HSBDF and its active compounds in plasma against ALI were rarely studied. Based on these considerations, the key anti-inflammatory compounds of HSBDF were screened by molecular docking and binding free energy. The key compounds were further identified in plasma by LC/MS. Network pharmacology was employed to identify the potential regulatory mechanism of the key compounds in plasma. Next, the network pharmacological prediction was validated by a series of experimental assays, including CCK-8, EdU staining, test of TNF-α, IL-6, MDA, and T-SOD, and flow cytometry, to identify active compounds. Molecular dynamic simulation and binding interaction patterns were used to evaluate the stability and affinity between active compounds and target. Finally, the active compounds were subjected to predict pharmacokinetic properties. Molecular docking revealed that HSBDF had potential effects of inhibiting inflammation by acting on IL-6R and TNF-α. Piceatannol, emodin, aloe-emodin, rhein, physcion, luteolin, and quercetin were key compounds that may ameliorate ALI, and among which, there were five compounds (emodin, aloe-emodin, rhein, luteolin, and quercetin) in plasma. Network pharmacology results suggested that five key compounds in plasma likely inhibited ALI by regulating inflammation and oxidative damage. Test performed in vitro suggested that HSBDF (0.03125 mg/ml), quercetin (1.5625 μM), emodin (3.125 μM), and rhein (1.5625 μM) have anti-inflammatory function against oxidative damage and decrease apoptosis in an inflammatory environment by LPS-stimulation. In addition, active compounds (quercetin, emodin, and rhein) had good development prospects, fine affinity, and stable conformations with the target protein. In summary, this study suggested that HSBDF and its key active components in plasma (quercetin, emodin, and rhein) can decrease levels of pro-inflammatory factors (IL-6 and TNF-α), decrease expression of MDA, increase expression of T-SOD, and decrease cell apoptosis in an inflammatory environment. These data suggest that HSBDF has significant effect on anti-inflammation and anti-oxidative stress and also can decrease cell apoptosis in treating ALI. These findings provided an important strategy for developing new agents and facilitated clinical use of HSBDF against ALI.
Collapse
Affiliation(s)
- Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaojie Jin
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qin Fan
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Chenghao Li
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Min Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongfeng Wang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Qingfeng Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jiawei Li
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiuzhu Liu
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Siyu Wang
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yu Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ling Li
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jia Ling
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chaoxin Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China.,Key Laboratory of Dunhuang Medical and Transformation, Ministry of Education of The People's Republic of China, Lanzhou, China
| |
Collapse
|
10
|
Li W, Li D, Chen Y, Abudou H, Wang H, Cai J, Wang Y, Liu Z, Liu Y, Fan H. Classic Signaling Pathways in Alveolar Injury and Repair Involved in Sepsis-Induced ALI/ARDS: New Research Progress and Prospect. DISEASE MARKERS 2022; 2022:6362344. [PMID: 35726235 PMCID: PMC9206211 DOI: 10.1155/2022/6362344] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022]
Abstract
Sepsis is a common critical clinical disease with high mortality that can cause approximately 10 million deaths worldwide each year. Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a common clinical complication of sepsis, which occurs primarily as diffuse alveolar injury, hypoxemia, and respiratory distress. The mortality rate of ALI/ARDS is as high as 30%-40%, which greatly endangers human health. Due to the unclear pathogenesis of ALI/ARDS, its treatment is still a worldwide problem. At present, clinical treatment mainly relies on lung-protective ventilation, prone position ventilation, and fluid management. However, there is a lack of effective and specific treatment measures. In recent years, domestic and foreign scholars have committed to basic research on ALI/ARDS, trying to further clarify its pathogenesis and find new targets and methods for the treatment of ALI/ARDS. In this review, we summarize the signaling pathways related to alveolar injury and repair in sepsis-induced ALI/ARDS and their latest research progress. They include the NF-κB, JAK2/STAT3, mitogen-activated protein kinase (MAPK), mTOR, and Notch signaling pathways. Understanding the molecular mechanisms of these signaling pathways in sepsis-induced ALI/ARDS may provide new targets and ideas for the clinical treatment of this disease.
Collapse
Affiliation(s)
- Wenli Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Duo Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yuansen Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Halidan Abudou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haiwang Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Jinxia Cai
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yiping Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Ziquan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| |
Collapse
|
11
|
Huang Z, Huang H, Shen M, Li C, Liu C, Zhu H, Zhang W. MicroRNA-155-5p modulates the progression of acute respiratory distress syndrome by targeting interleukin receptors. Bioengineered 2022; 13:11732-11741. [PMID: 35506298 PMCID: PMC9276023 DOI: 10.1080/21655979.2022.2071020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a multifactorial inflammatory lung failure with a high incidence and a high cost burden. However, the underlying pathogenesis of ARDS is still unclear. Recently, microRNA has been shown to have critical function in regulating the pathogenesis of ARDS development and inflammation. To identify the important microRNA in the serum from patients with ARDS that may be potential biomarkers for the disease and explore the underlying disease mechanism. We found significant upregulation of miR-155-5p expression in serum samples from patients with ARDS compared with the control group (p < 0.01). The levels of interleukin receptors and inflammatory cytokines were significantly increased in blood samples from patients with ARDS (p < 0.05). In the cell model, miR-155-5p had a binding site in the 3’-UTR of the three interleukin receptors. In LPS-simulated BEAS-2B cells, transfection of miR-155-5p mimic inhibited the expression levels of these interleukin receptors, and was found to directly target the inflammatory response of leukocyte nodulin receptor through NF-kB signaling. In conclusion, miR-155-5p can alleviate LPS-simulated injury that induces the expression of IL17RB, IL18R1, and IL22RA2 by affecting the NF-kB pathway; however, it cannot change the occurrence of inflammatory storms. Collectively, this suggests that the progression of ARDS is the result of effects of the multiple regulatory pathways, providing novel evidence for the therapy of ARDS.
Collapse
Affiliation(s)
- Zhenfei Huang
- Department of ICU, GanZhou People`s Hospital, Ganzhou, Jiangxi, China
| | - Hui Huang
- Department of medical, GanZhou People`s hospital, Ganzhou, Jiangxi, China
| | - Meirong Shen
- Department of ICU, GanZhou People`s Hospital, Ganzhou, Jiangxi, China
| | - Changrong Li
- Department of ICU, GanZhou People`s Hospital, Ganzhou, Jiangxi, China
| | - Chao Liu
- Department of ICU, GanZhou People`s Hospital, Ganzhou, Jiangxi, China
| | - Huayong Zhu
- Department of ICU, GanZhou People`s Hospital, Ganzhou, Jiangxi, China
| | - Weiwei Zhang
- Department of ICU, GanZhou People`s Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
12
|
Almuntashiri S, Han Y, Zhu Y, Dutta S, Niazi S, Wang X, Siddiqui B, Zhang D. CC16 Regulates Inflammation, ROS Generation and Apoptosis in Bronchial Epithelial Cells during Klebsiella pneumoniae Infection. Int J Mol Sci 2021; 22:ijms222111459. [PMID: 34768890 PMCID: PMC8583934 DOI: 10.3390/ijms222111459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023] Open
Abstract
Gram-negative (G-) bacteria are the leading cause of hospital-acquired pneumonia in the United States. The devastating damage caused by G- bacteria results from the imbalance of bactericidal effects and overwhelming inflammation. Despite decades of research, the underlying mechanisms by which runaway inflammation is developed remain incompletely understood. Clara Cell Protein 16 (CC16), also known as uteroglobin, is the major protein secreted by Clara cells and the most abundant protein in bronchoalveolar lavage fluid (BALF). However, the regulation and functions of CC16 during G- bacterial infection are unknown. In this study, we aimed to assess the regulation of CC16 in response to Klebsiella pneumoniae (K. pneu) and to investigate the role of CC16 in bronchial epithelial cells. After K. pneu infection, we found that CC16 mRNA expression was significantly decreased in bronchial epithelial cells. Our data also showed that K. pneu infection upregulated cytokine and chemokine genes, including IL-1β, IL-6, and IL-8 in BEAS-2B cells. Endogenously overexpressed CC16 in BEAS-2B cells provided an anti-inflammatory effect by reducing these markers. We also observed that endogenous CC16 can repress NF-κB reporter activity. In contrast, the recombinant CC16 (rCC16) did not show an anti-inflammatory effect in K. pneu-infected cells or suppression of NF-κB promoter activity. Moreover, the overexpression of CC16 reduced reactive oxygen species (ROS) levels and protected BEAS-2B cells from K. pneu-induced apoptosis.
Collapse
Affiliation(s)
- Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.H.); (Y.Z.); (S.D.); (X.W.)
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.H.); (Y.Z.); (S.D.); (X.W.)
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.H.); (Y.Z.); (S.D.); (X.W.)
| | - Saugata Dutta
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.H.); (Y.Z.); (S.D.); (X.W.)
| | - Sara Niazi
- College of Pharmacy, University of Georgia, Augusta, GA 30912, USA;
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.H.); (Y.Z.); (S.D.); (X.W.)
| | - Budder Siddiqui
- Division of Infectious Diseases, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.H.); (Y.Z.); (S.D.); (X.W.)
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-6491; Fax: +1-706-721-3994
| |
Collapse
|
13
|
Hu T, Sun F, Yu X, Li Q, Zhao L, Hao W, Han W. CC16-TNF-α negative feedback loop formed between Clara cells and normal airway epithelial cells protects against diesel exhaust particles exposure-induced inflammation. Aging (Albany NY) 2021; 13:19442-19459. [PMID: 34339391 PMCID: PMC8386526 DOI: 10.18632/aging.203356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022]
Abstract
CC16 is almost exclusively expressed in non-ciliated epithelial Clara cells, and widely used as a Clara cell marker. Diesel exhaust particles (DEPs), the fine particulate matters produced by diesel engines, cause or exacerbate airway-related diseases. Our previous study documented that DEP inhibits the CC16 expression in the immortalized mouse Clara cell line through methylation of C/EBPα promoter. However, the molecular mechanism by which DEP regulates CC16 secretion is unclear. Here, we isolated CC16 containing Clara cells (CC16+) from human distal lung, and found that DEP inhibited CC16 secretion from CC16+ cells via methylation of C/EBPα and inhibition of Munc18b transcription. CC16+ cell conditioned media containing different concentrations of CC16 was prepared and used for culture of airway epithelial cells BEAS-2B with no expression of CC16. A positive correlation was observed between CC16 level and DEP-induced autophagy activity, and a negative correlation between CC16 level and DEP-induced pro-inflammatory cytokine TNF-α, IL-6, and IL-8 level, suggesting that CC16 might mitigate DEP-induced inflammation via promoting autophagy in BEAS-2B cells. This result was further confirmed by adding recombinant CC16 to BEAS-2B cells exposed to DEP. Moreover, CC16 level was significantly increased when CC16+ cells were cultured in BEAS-2B cell conditioned medium containing TNF-α or the normal medium supplemented with recombinant TNF-α, suggesting that TNF-α induced CC16 production and secretion from CC16+ cells. Collectively, these data point that CC16 and TNF-α form a negative feedback loop, and this negative feedback loop between Clara cells and normal airway epithelial cells protects against DEP exposure-induced inflammation.
Collapse
Affiliation(s)
- Ting Hu
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Fenglan Sun
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Xinjuan Yu
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Qinghai Li
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Long Zhao
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Wanming Hao
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Wei Han
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| |
Collapse
|
14
|
Chen C, Li X, Li C, Jin J, Wang D, Zhao Y, Gu Y, Chen M, Zhu S, Liu H, Lv T, Zhang F, Song Y. CD39 + Regulatory T Cells Attenuate Lipopolysaccharide-Induced Acute Lung Injury via Autophagy and the ERK/FOS Pathway. Front Immunol 2021; 11:602605. [PMID: 33488601 PMCID: PMC7819860 DOI: 10.3389/fimmu.2020.602605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by an uncontrollable cytokine storm, which is associated with high mortality due to lack of effective treatment. Regulatory T cells (Tregs) play an indispensable role in maintaining immune homeostasis and CD39 is considered as a functional cell marker of Tregs. In this study, we aimed to evaluate the effect of CD39+ Tregs on acute lung injury (ALI) and investigate the frequency of CD39+ Tregs in ARDS patients. We found that after lipopolysaccharide (LPS) treatment, CD39-/- mice exhibited more severe inflammation and wild type (WT) mice exhibited a decreased frequency of CD39+ Tregs in the peripheral blood. Furthermore, CD39+ Tregs had a protective effect on LPS-induced inflammation in vitro and the adoptive transfer of CD39+ Tregs had a therapeutic effect on ALI in vivo. We further sought to explore the mechanisms that affect CD39 expression on Tregs. LPS-induced inflammation in the lung impaired the immunosuppressive effect of Tregs via the autophagy-mediated downregulation of CD39. In addition, CD39 induced the expression of itself in Tregs via activating the ERK1/2-FOS pathway. Consistent with this finding, the frequency of CD39+ Tregs was also decreased in the peripheral blood of ARDS patients and was positively correlated with disease severity. Our results suggested that the adoptive transfer of CD39+ Tregs may provide a novel method for the clinical prevention and treatment of ARDS.
Collapse
Affiliation(s)
- Cen Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Xinying Li
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chuling Li
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Jiajia Jin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Donghui Wang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Zhao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yanli Gu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Meizi Chen
- Department of General Internal Medicine, The First People’s Hospital of Chenzhou, Chenzhou, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Hongbing Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Fang Zhang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|