1
|
Baird R, Yusuf A, Forde L, Pohl K, Kavanagh K, Fitzpatrick F, Gogoi D, Reeves EP. The vacuolar anti- Pseudomonal activity of neutrophil primary granule peptidyl-arginine deiminase enzymes. Front Immunol 2024; 15:1452393. [PMID: 39493757 PMCID: PMC11527647 DOI: 10.3389/fimmu.2024.1452393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/13/2024] [Indexed: 11/05/2024] Open
Abstract
The role of neutrophils in host defense involves several cell processes including phagocytosis, degranulation of antimicrobial proteins, and the release of neutrophil extracellular traps (NETs). In turn, dysregulated cell activity is associated with the pathogenesis of airway and rheumatic diseases, in which neutrophil-derived enzymes including peptidyl-arginine deiminases (PADs) play a role. Known physiological functions of PADs in neutrophils are limited to the activity of PAD isotype 4 in histone citrullination in NET formation. The aim of this study was to extend our knowledge on the role of PADs in neutrophils and, specifically, bacterial killing within the confines of the phagocytic vacuole. Human neutrophils were fractionated by sucrose gradient ultracentrifuge and PADs localized in subcellular compartments by Western blot analysis. Direct interaction of PADs with Pseudomonas aeruginosa (P. aeruginosa) was assessed by flow cytometry and Western blot overlay. The participation of neutrophil PAD2 and PAD4 in killing of P. aeruginosa was assessed by inclusion of PAD-specific inhibitors. In vitro, bactericidal activity of recombinant human PAD2 or PAD4 enzymes against P. aeruginosa was determined by enumeration of colony-forming units (CFU). Together with neutrophil elastase (NE), PAD2 and PAD4 were localized to primary granules and, following activation with particulate stimuli, were degranulated in to the phagocytic vacuole. In vitro, PAD2 and PAD4 bound P. aeruginosa (p = 0.04) and significantly reduced bacterial survival to 49.1 ± 17.0 (p < 0.0001) and 48.5 ± 13.9% (p < 0.0001), respectively. Higher antibacterial activity was observed at neutral pH levels with the maximum toxicity at pH 6.5 and pH 7.5, comparable to the effects of neutrophil bactericidal permeability increasing protein. In phagosomal killing assays, inclusion of the PAD2 inhibitor, AFM-30a, or PAD4 inhibitor, GSK484, significantly increased survival of P. aeruginosa (AFM-30a, p = 0.05; and GSK484, p = 0.0079). Results indicate that PAD2 and PAD4 possess antimicrobial activity and are directly involved in the neutrophil antimicrobial processes. This study supports further research into the development of PAD-based antimicrobials.
Collapse
Affiliation(s)
- Rory Baird
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Azeez Yusuf
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Luke Forde
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Kerstin Pohl
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Kildare, Ireland
| | - Fidelma Fitzpatrick
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Debananda Gogoi
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Emer P. Reeves
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
2
|
Nickerson R, Thornton CS, Johnston B, Lee AHY, Cheng Z. Pseudomonas aeruginosa in chronic lung disease: untangling the dysregulated host immune response. Front Immunol 2024; 15:1405376. [PMID: 39015565 PMCID: PMC11250099 DOI: 10.3389/fimmu.2024.1405376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.
Collapse
Affiliation(s)
- Rhea Nickerson
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amy H. Y. Lee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Gu Y, Zhang T, Peng M, Han Y, Zhang W, Shi J. Latent class analysis of chest CT abnormalities to define subphenotypes in patients with MPO-ANCA-positive microscopic polyangiitis. Respir Med 2024; 226:107613. [PMID: 38548141 DOI: 10.1016/j.rmed.2024.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Patients with microscopic polyangiitis (MPA) and positive myeloperoxidase antineutrophil cytoplasmic antibody (MPO-ANCA) may present with various abnormalities in chest computed tomography (CT). This study aimed to identify subphenotypes using latent class analysis (LCA) and to explore the relationship between the subphenotypes and clinical patterns, as well as compare the clinical characteristics of these subphenotypes in patients with MPO-ANCA-positive MPA (MPO-MPA). METHODS The study identified subphenotypes using LCA based on chest CT findings in 178 patients with MPO-MPA and pulmonary involvement from June 2014 to August 2022. RESULTS LCA identified 27 participants (15.2%) in class 1, 43 (24.1%) in class 2, 35 (19.7%) in class 3, and 73 (41.0%) in class 4. Class 1 was characterized by prominent inflammatory exudation, class 2 by fibrosis and architectural distortion, class 3 by predominantly bronchiectasis, and class 4 by lesions mixed with inflammation and fibrosis. Class 1 had the highest level of extrapulmonary disease activity, with 77.8% of patients experiencing diffuse alveolar hemorrhage. Class 2 had the lowest level of extrapulmonary disease activity, with 41.9% of patients showing usual interstitial pneumonia. Class 3 patients were more likely to have complications involving the ear, nose, and throat, as well as pulmonary infections before treatment, and they exhibited the best outcomes. The characteristics and outcomes of class 4 were intermediate among the four classes. CONCLUSIONS These findings suggest that bronchiectasis may represent a unique pattern of pulmonary involvement in MPO-MPA, highlighting the importance of screening for bronchiectasis in MPO-MPA and identifying optimal management strategies.
Collapse
Affiliation(s)
- Yu Gu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dongcheng-Qu, Beijing, 100730, China
| | - Ting Zhang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dongcheng-Qu, Beijing, 100730, China.
| | - Min Peng
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dongcheng-Qu, Beijing, 100730, China
| | - Yang Han
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dongcheng-Qu, Beijing, 100730, China
| | - Weihong Zhang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dongcheng-Qu, Beijing, 100730, China
| | - Juhong Shi
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dongcheng-Qu, Beijing, 100730, China.
| |
Collapse
|
4
|
Iwuji K, Kanu A, Stroever S, Nugent K, Hamood A, Scott C, Navarro S. Clinical significance of BPI-ANCA in patients with cystic fibrosis: a single center prospective study. Sci Rep 2023; 13:18138. [PMID: 37875496 PMCID: PMC10598027 DOI: 10.1038/s41598-023-45273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Recurrent pulmonary exacerbation due to infection and inflammation remain the major cause of mortality and morbidity in patients with cystic fibrosis (CF). Increased levels of BPI-ANCA have been linked to Pseudomonas colonization and pulmonary exacerbations in patients with CF. The majority of these studies were done in Europe, and it is unclear whether similar findings are true in CF patients who lives in United States. In our single center study of 47 patients with CF, the prevalence of BPI-ANCA was 19% at baseline and 15% at annual follow-up visit. Overall, there were no statistical differences noted in FEV1 and frequency of pulmonary exacerbations in CF patients who were positive for BPI-ANCA compared to those who were negative for BPI-ANCA. The role of BPI-ANCA in patients with CF still remains unclear.
Collapse
Affiliation(s)
- Kenneth Iwuji
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Adaobi Kanu
- Department of Pediatrics/Pulmonology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Stephanie Stroever
- Clinical Research Institute, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kenneth Nugent
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Abdul Hamood
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Chris Scott
- Clinical Research Institute, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Stephany Navarro
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
5
|
Holzinger JM, Toelge M, Werner M, Ederer KU, Siegmund HI, Peterhoff D, Blaas SH, Gisch N, Brochhausen C, Gessner A, Bülow S. Scorpionfish BPI is highly active against multiple drug-resistant Pseudomonas aeruginosa isolates from people with cystic fibrosis. eLife 2023; 12:e86369. [PMID: 37461324 PMCID: PMC10353861 DOI: 10.7554/elife.86369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/07/2023] [Indexed: 07/20/2023] Open
Abstract
Chronic pulmonary infection is a hallmark of cystic fibrosis (CF) and requires continuous antibiotic treatment. In this context, Pseudomonas aeruginosa (Pa) is of special concern since colonizing strains frequently acquire multiple drug resistance (MDR). Bactericidal/permeability-increasing protein (BPI) is a neutrophil-derived, endogenous protein with high bactericidal potency against Gram-negative bacteria. However, a significant range of people with CF (PwCF) produce anti-neutrophil cytoplasmic antibodies against BPI (BPI-ANCA), thereby neutralizing its bactericidal function. In accordance with literature, we describe that 51.0% of a total of 39 PwCF expressed BPI-ANCA. Importantly, an orthologous protein to human BPI (huBPI) derived from the scorpionfish Sebastes schlegelii (scoBPI) completely escaped recognition by these autoantibodies. Moreover, scoBPI exhibited high anti-inflammatory potency towards Pa LPS and was bactericidal against MDR Pa derived from PwCF at nanomolar concentrations. In conclusion, our results highlight the potential of highly active orthologous proteins of huBPI in treatment of MDR Pa infections, especially in the presence of BPI-ANCA.
Collapse
Affiliation(s)
- Jonas Maurice Holzinger
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| | - Martina Toelge
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| | - Maren Werner
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| | - Katharina Ursula Ederer
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| | | | - David Peterhoff
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene Regensburg, University of Regensburg, Regensburg, Germany
| | | | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, Regensburg, Germany
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene Regensburg, University of Regensburg, Regensburg, Germany
| | - Sigrid Bülow
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Fee LT, Gogoi D, O’Brien ME, McHugh E, Casey M, Gough C, Murphy M, Hopkins AM, Carroll TP, McElvaney NG, Reeves EP. C3d Elicits Neutrophil Degranulation and Decreases Endothelial Cell Migration, with Implications for Patients with Alpha-1 Antitrypsin Deficiency. Biomedicines 2021; 9:biomedicines9121925. [PMID: 34944741 PMCID: PMC8698851 DOI: 10.3390/biomedicines9121925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/25/2022] Open
Abstract
Alpha-1 antitrypsin (AAT) deficiency (AATD) is characterized by increased risk for emphysema, chronic obstructive pulmonary disease (COPD), vasculitis, and wound-healing impairment. Neutrophils play a central role in the pathogenesis of AATD. Dysregulated complement activation in AATD results in increased plasma levels of C3d. The current study investigated the impact of C3d on circulating neutrophils. Blood was collected from AATD (n = 88) or non-AATD COPD patients (n = 10) and healthy controls (HC) (n = 40). Neutrophils were challenged with C3d, and degranulation was assessed by Western blotting, ELISA, or fluorescence resonance energy transfer (FRET) substrate assays. Ex vivo, C3d levels were increased in plasma (p < 0.0001) and on neutrophil plasma membranes (p = 0.038) in AATD compared to HC. C3d binding to CR3 receptors triggered primary (p = 0.01), secondary (p = 0.004), and tertiary (p = 0.018) granule release and increased CXCL8 secretion (p = 0.02). Ex vivo plasma levels of bactericidal-permeability-increasing-protein (p = 0.02), myeloperoxidase (p < 0.0001), and lactoferrin (p < 0.0001) were significantly increased in AATD patients. In endothelial cell scratch wound assays, C3d significantly decreased cell migration (p < 0.0001), an effect potentiated by neutrophil degranulated proteins (p < 0.0001). In summary, AATD patients had increased C3d in plasma and on neutrophil membranes and, together with neutrophil-released granule enzymes, reduced endothelial cell migration and wound healing, with potential implications for AATD-related vasculitis.
Collapse
Affiliation(s)
- Laura T. Fee
- Alpha-1 Foundation Ireland, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (L.T.F.); (T.P.C.)
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
| | - Debananda Gogoi
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
| | - Michael E. O’Brien
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
| | - Emer McHugh
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
| | - Michelle Casey
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
| | - Ciara Gough
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
| | - Mark Murphy
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
| | - Ann M. Hopkins
- Department of Surgery, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland;
| | - Tomás P. Carroll
- Alpha-1 Foundation Ireland, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (L.T.F.); (T.P.C.)
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
| | - Noel G. McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
| | - Emer P. Reeves
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
- Correspondence:
| |
Collapse
|
7
|
Bojanowski CM, Lu S, Kolls JK. Mucosal Immunity in Cystic Fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2901-2912. [PMID: 35802761 PMCID: PMC9270582 DOI: 10.4049/jimmunol.2100424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/21/2021] [Indexed: 05/27/2023]
Abstract
The highly complex and variable genotype-phenotype relationships observed in cystic fibrosis (CF) have been an area of growing interest since the discovery of the CF transmembrane conductance regulator (CFTR) gene >30 y ago. The consistently observed excessive, yet ineffective, activation of both the innate and adaptive host immune systems and the establishment of chronic infections within the lung, leading to destruction and functional decline, remain the primary causes of morbidity and mortality in CF. The fact that both inflammation and pathogenic bacteria persist despite the introduction of modulator therapies targeting the defective protein, CFTR, highlights that we still have much to discover regarding mucosal immunity determinants in CF. Gene modifier studies have overwhelmingly implicated immune genes in the pulmonary phenotype of the disease. In this context, we aim to review recent advances in our understanding of the innate and adaptive immune systems in CF lung disease.
Collapse
Affiliation(s)
- Christine M Bojanowski
- Section of Pulmonary Diseases, Critical Care, and Environmental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA;
| | - Shiping Lu
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA; and
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
8
|
Hayes E, Murphy MP, Pohl K, Browne N, McQuillan K, Saw LE, Foley C, Gargoum F, McElvaney OJ, Hawkins P, Gunaratnam C, McElvaney NG, Reeves EP. Altered Degranulation and pH of Neutrophil Phagosomes Impacts Antimicrobial Efficiency in Cystic Fibrosis. Front Immunol 2020; 11:600033. [PMID: 33391268 PMCID: PMC7775508 DOI: 10.3389/fimmu.2020.600033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Studies have endeavored to understand the cause for impaired antimicrobial killing by neutrophils of people with cystic fibrosis (PWCF). The aim of this study was to focus on the bacterial phagosome. Possible alterations in degranulation of cytoplasmic granules and changes in pH were assessed. Circulating neutrophils were purified from PWCF (n = 28), PWCF receiving ivacaftor therapy (n = 10), and healthy controls (n = 28). Degranulation was assessed by Western blot analysis and flow cytometry. The pH of phagosomes was determined by use of BCECF-AM-labelled Staphylococcus aureus or SNARF labelled Candida albicans. The antibacterial effect of all treatments tested was determined by colony forming units enumeration. Bacterial killing by CF and healthy control neutrophils were found to differ (p = 0.0006). By use of flow cytometry and subcellular fractionation the kinetics of intraphagosomal degranulation were found to be significantly altered in CF phagosomes, as demonstrated by increased primary granule CD63 (p = 0.0001) and myeloperoxidase (MPO) content (p = 0.03). In contrast, decreased secondary and tertiary granule CD66b (p = 0.002) and decreased hCAP-18 and MMP-9 (p = 0.02), were observed. After 8 min phagocytosis the pH in phagosomes of neutrophils of PWCF was significantly elevated (p = 0.0001), and the percentage of viable bacteria was significantly increased compared to HC (p = 0.002). Results demonstrate that the recorded alterations in phagosomal pH generate suboptimal conditions for MPO related peroxidase, and α-defensin and azurocidine enzymatic killing of Staphylococcus aureus and Pseudomonas aeruginosa. The pattern of dysregulated MPO degranulation (p = 0.02) and prolonged phagosomal alkalinization in CF neutrophils were normalized in vivo following treatment with the ion channel potentiator ivacaftor (p = 0.04). Our results confirm that alterations of circulating neutrophils from PWCF are corrected by CFTR modulator therapy, and raise a question related to possible delayed proton channel activity in CF.
Collapse
Affiliation(s)
- Elaine Hayes
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Mark P Murphy
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Kerstin Pohl
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Niall Browne
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Karen McQuillan
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Le Er Saw
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Clare Foley
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Fatma Gargoum
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Oliver J McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Padraig Hawkins
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Cedric Gunaratnam
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|