1
|
Dang W, Tao Y, Xu X, Zhao H, Zou L, Li Y. The role of lung macrophages in acute respiratory distress syndrome. Inflamm Res 2022; 71:1417-1432. [PMID: 36264361 PMCID: PMC9582389 DOI: 10.1007/s00011-022-01645-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute and diffuse inflammatory lung injury in a short time, one of the common severe manifestations of the respiratory system that endangers human life and health. As an innate immune cell, macrophages play a key role in the inflammatory response. For a long time, the role of pulmonary macrophages in ARDS has tended to revolve around the polarization of M1/M2. However, with the development of single-cell RNA sequencing, fate mapping, metabolomics, and other new technologies, a deeper understanding of the development process, classification, and function of macrophages in the lung are acquired. Here, we discuss the function of pulmonary macrophages in ARDS from the two dimensions of anatomical location and cell origin and describe the effects of cell metabolism and intercellular interaction on the function of macrophages. Besides, we explore the treatments for targeting macrophages, such as enhancing macrophage phagocytosis, regulating macrophage recruitment, and macrophage death. Considering the differences in responsiveness of different research groups to these treatments and the tremendous dynamic changes in the gene expression of monocyte/macrophage, we discussed the possibility of characterizing the gene expression of monocyte/macrophage as the biomarkers. We hope that this review will provide new insight into pulmonary macrophage function and therapeutic targets of ARDS.
Collapse
Affiliation(s)
- Wenpei Dang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xinxin Xu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Hui Zhao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Lijuan Zou
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yongsheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Li W, Li T, Zhao C, Song T, Mi Y, Chuangfeng Z, Hou Y, Jia Z. XiaoEr LianHuaQinqGan alleviates viral pneumonia in mice infected by influenza A and respiratory syncytial viruses. PHARMACEUTICAL BIOLOGY 2022; 60:2355-2366. [PMID: 36444944 PMCID: PMC9809968 DOI: 10.1080/13880209.2022.2147961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Xiaoer lianhuaqinqgan (XELH), developed based on Lianhua Qingwen (LHQW) prescription, contains 13 traditional Chinese medicines. It has completed the investigational new drug application to treat respiratory viral infections in children in China. OBJECTIVE This study demonstrates the pharmacological effects of XELH against viral pneumonia. MATERIALS AND METHODS The antiviral and anti-inflammatory effects of XELH were investigated in vitro using H3N2-infected A549 and LPS-stimulated RAW264.7 cells and in vivo using BALB/c mice models of influenza A virus (H3N2) and respiratory syncytial virus (RSV)-infection. Mice were divided into 7 groups (n = 20): Control, Model, LHQW (0.5 g/kg), XELH-low (2 g/kg), XELH-medium (4 g/kg), XELH-high (8 g/kg), and positive drug (20 mg/kg oseltamivir or 60 mg/kg ribavirin) groups. The anti-inflammatory effects of XELH were tested in a rat model of LPS-induced fever and a mouse model of xylene-induced ear edoema. RESULTS In vitro, XELH inhibited the pro-inflammatory cytokines and replication of H1N1, H3N2, H1N1, FluB, H9N2, H6N2, H7N3, RSV, and HCoV-229E viruses, with (IC50 47.4, 114, 79, 250, 99.2, 170, 79, 62.5, and 93 μg/mL, respectively). In vivo, XELH reduced weight loss and lung index, inhibited viral replication and macrophage M1 polarization, ameliorated lung damage, decreased inflammatory cell infiltration and pro-inflammatory cytokines expression in lung tissues, and increased the CD4+/CD8+ ratio. XELH inhibited LPS-induced fever in rats and xylene-induced ear edoema in mice. CONCLUSION XELH efficacy partially depends on integrated immunoregulatory effects. XELH is a promising therapeutic option against childhood respiratory viral infections.
Collapse
Affiliation(s)
- Wenyan Li
- Hebei Yiling Hospital, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Tongtong Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Chi Zhao
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tao Song
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Yao Mi
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Zhang Chuangfeng
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Yunlong Hou
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, Hebei, China
- Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang, Hebei, China
| | - Zhenhua Jia
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang, Hebei, China
- Hebei Yiling Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Lv X, Yao T, He R, He Y, Li M, Han Y, Zhang Y, Long L, Jiang G, Cheng X, Xie Y, Huang L, Peng Z, Hu G, Li Q, Tao L, Meng J. Protective Effect of Fluorofenidone Against Acute Lung Injury Through Suppressing the MAPK/NF-κB Pathway. Front Pharmacol 2022; 12:772031. [PMID: 34987397 PMCID: PMC8721041 DOI: 10.3389/fphar.2021.772031] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is a severe disease that presents serious damage and excessive inflammation in lungs with high mortality without effective pharmacological therapy. Fluorofenidone (AKFPD) is a novel pyridone agent that has anti-fibrosis, anti-inflammation, and other pharmacological activities, while the effect of fluorofenidone on ALI is unclarified. Here, we elucidated the protective effects and underlying mechanism of fluorofenidone on lipopolysaccharide (LPS)-induced ALI. In this study, fluorofenidone alleviated lung tissue structure injury and reduced mortality, decreased the pulmonary inflammatory cell accumulation and level of inflammatory cytokines IL-1β, IL-6, and TNF-α in the bronchoalveolar lavage fluid, and attenuated pulmonary apoptosis in LPS-induced ALI mice. Moreover, fluorofenidone could block LPS-activated phosphorylation of ERK, JNK, and P38 and further inhibited the phosphorylation of IκB and P65. These results suggested that fluorofenidone can significantly contrast LPS-induced ALI through suppressing the activation of the MAPK/NF-κB signaling pathway, which indicates that fluorofenidone could be considered as a novel therapeutic candidate for ALI.
Collapse
Affiliation(s)
- Xin Lv
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Yao
- Department of Respirology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Rongling He
- Department of Respirology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yijun He
- Department of Respirology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Mengyu Li
- Department of Respirology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Han
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhang
- Department of Respirology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lingzhi Long
- Department of Respirology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Guoliang Jiang
- Department of Respirology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyun Cheng
- Department of Respirology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China.,Organ Fibrosis Key Laboratory of Hunan Province, Changsha, China
| | - Ling Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China.,Organ Fibrosis Key Laboratory of Hunan Province, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China.,Organ Fibrosis Key Laboratory of Hunan Province, Changsha, China.,National International Collaborative Research Center for Medical Metabolomics, Changsha, China
| | - Gaoyun Hu
- Organ Fibrosis Key Laboratory of Hunan Province, Changsha, China.,Faculty of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qianbin Li
- Organ Fibrosis Key Laboratory of Hunan Province, Changsha, China.,Faculty of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China.,Organ Fibrosis Key Laboratory of Hunan Province, Changsha, China.,National International Collaborative Research Center for Medical Metabolomics, Changsha, China
| | - Jie Meng
- Department of Respirology, Third Xiangya Hospital, Central South University, Changsha, China.,Organ Fibrosis Key Laboratory of Hunan Province, Changsha, China.,National International Collaborative Research Center for Medical Metabolomics, Changsha, China
| |
Collapse
|
4
|
Wu YX, Wang YY, Gao ZQ, Chen D, Liu G, Wan BB, Jiang FJ, Wei MX, Zuo J, Zhu J, Chen YQ, Qian F, Pang QF. Ethyl ferulate protects against lipopolysaccharide-induced acute lung injury by activating AMPK/Nrf2 signaling pathway. Acta Pharmacol Sin 2021; 42:2069-2081. [PMID: 34417573 DOI: 10.1038/s41401-021-00742-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Ethyl ferulate (EF) is abundant in Rhizoma Chuanxiong and grains (e.g., rice and maize) and possesses antioxidative, antiapoptotic, antirheumatic, and anti-inflammatory properties. However, its effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) is still unknown. In the present study, we found that EF significantly alleviated LPS-induced pathological damage and neutrophil infiltration and inhibited the gene expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) in murine lung tissues. Moreover, EF reduced the gene expression of TNF-α, IL-1β, IL-6, and iNOS and decreased the production of NO in LPS-stimulated RAW264.7 cells and BMDMs. Mechanistic experiments revealed that EF prominently activated the AMPK/Nrf2 pathway and promoted Nrf2 nuclear translocation. AMPK inhibition (Compound C) and Nrf2 inhibition (ML385) abolished the beneficial effect of EF on the inflammatory response. Furthermore, the protective effect of EF on LPS-induced ALI was not observed in Nrf2 knockout mice. Taken together, the results of our study suggest that EF ameliorates LPS-induced ALI in an AMPK/Nrf2-dependent manner. These findings provide a foundation for developing EF as a new anti-inflammatory agent for LPS-induced ALI/ARDS therapy.
Collapse
|
5
|
Du Q, Huang W, Zhao J, Zeng J, Zhang W, Huang X, Chen R, Jiang H, Xie Y, Wang Y, Zhong N, Wang X, Yang Z. Lianhuaqingwen capsule inhibits influenza-induced bacterial adhesion to respiratory epithelial cells through down-regulation of cell adhesion molecules. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114128. [PMID: 33872750 DOI: 10.1016/j.jep.2021.114128] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Influenza virus infection is widely believed to cause mild symptoms, but can lead to high mortality and severe disease complicated by secondary bacterial pneumonia. Traditional Chinese medicine (TCM) has been proposed as a promising agent to treat respiratory viral infections. A herbal formula Lianhuaqingwen capsule (LHQW) comprising two prescriptions: Maxing Shigan decoction and Yinqiao San, has been used clinically to treat respiratory infection with immune regulatory effects. However, little is known about the capacity of LHQW against influenza-induced secondary bacterial pneumonia. AIM OF STUDY This study aimed to evaluate the efficacy and underlying mechanism of LHQW on influenza A virus A/PR/8/34 (PR8) secondary methicillin-resistant Staphy-lococcus aureus (MRSA) infection. METHODS The anti-adhesion activity of LHQW against PR8-induced MRSA infection was assessed in human lung epithelial (A549) cells and the effect of LHQW on the expression of intracellular adhesion molecule 1 (ICAM-1) was detected. Also, the mRNA expression levels of inflammatory cytokines upon lipopolysaccharide (LPS) stimulation in PR8-infected A549 cells were determined. The body weight change, survivals, viral titers, colonies and the pathological parameters after LHQW treatment in severe pneumonia model have all been systematically determined. RESULTS LHQW significantly reduced the adhesion of MRSA to PR8-infected A549 cells in a dose-dependent manner by suppressing the up-regulation of bacterial receptors. LHQW also markedly declined the overexpression of IL-6, IL-8, and TNF-α induced by LPS stimulated-A549 cells following influenza virus infection. Furthermore, the abnormal changes of lung index in dual-infection mice were relieved after administered with LHQW in preventive and therapeutic mode, but with no significantly difference (P > 0.05). LHQW could not effectively improve survival rate or prolong the survival time of mice (P > 0.05). LHQW (1000 mg/kg/d) administered prophylactically significantly decreased the lung viral titers (P < 0.05), slightly downregulated IL-6 but TNF-α, IL-1β levels and improved lung pathological inflammation including neutrophil infiltration, necrosis, which is consistent with the expression of inflammatory factors. CONCLUSIONS LHQW inhibited influenza-induced bacterial adhesion by down-regulating the adhesion molecules with the improvement trend on severe pneumonia, indicating that it can be used as an adjuvant medication in severe viral-bacterial pneumonia therapy rather than as a single medication.
Collapse
Affiliation(s)
- Qiuling Du
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China; Department of Intensive Care Unit, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, PR China
| | - Wenbo Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
| | - Jin Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
| | - Jun Zeng
- Department of Intensive Care Unit, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, PR China
| | - Wenjie Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
| | - Xiaodong Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
| | - Ruifeng Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
| | - Haiming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
| | - Yuqi Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
| | - Yutao Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China.
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China; Guangzhou Laboratory, Guangzhou, Guangdong, PR China; Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed College of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 510006, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China.
| |
Collapse
|
6
|
Lyu M, Fan G, Xiao G, Wang T, Xu D, Gao J, Ge S, Li Q, Ma Y, Zhang H, Wang J, Cui Y, Zhang J, Zhu Y, Zhang B. Traditional Chinese medicine in COVID-19. Acta Pharm Sin B 2021; 11:3337-3363. [PMID: 34567957 PMCID: PMC8450055 DOI: 10.1016/j.apsb.2021.09.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread across the globe, posing an enormous threat to public health and safety. Traditional Chinese medicine (TCM), in combination with Western medicine (WM), has made important and lasting contributions in the battle against COVID-19. In this review, updated clinical effects and potential mechanisms of TCM, presented in newly recognized three distinct phases of the disease, are summarized and discussed. By integrating the available clinical and preclinical evidence, the efficacies and underlying mechanisms of TCM on COVID-19, including the highly recommended three Chinese patent medicines and three Chinese medicine formulas, are described in a panorama. We hope that this comprehensive review not only provides a reference for health care professionals and the public to recognize the significant contributions of TCM for COVID-19, but also serves as an evidence-based in-depth summary and analysis to facilitate understanding the true scientific value of TCM.
Collapse
Affiliation(s)
- Ming Lyu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanwei Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taiyi Wang
- Oxford Chinese Medicine Research Centre, University of Oxford, Oxford OX1 3PT, UK
| | - Dong Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Gao
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Shaoqin Ge
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Qingling Li
- Institute of Basic Medicine and Cancer, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuling Ma
- Oxford Chinese Medicine Research Centre, University of Oxford, Oxford OX1 3PT, UK
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jigang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanlu Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Junhua Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Boli Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
7
|
Li S, Lei Y, Lei J, Li H. All‑trans retinoic acid promotes macrophage phagocytosis and decreases inflammation via inhibiting CD14/TLR4 in acute lung injury. Mol Med Rep 2021; 24:868. [PMID: 34676874 PMCID: PMC8554390 DOI: 10.3892/mmr.2021.12508] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/18/2021] [Indexed: 12/22/2022] Open
Abstract
Acute lung injury (ALI) is a common clinical emergency and all-trans retinoic acid (ATRA) can alleviate organ injury. Therefore, the present study investigated the role of ATRA in ALI. Lipopolysaccharide (LPS)-induced ALI rats were treated with ATRA and the arterial partial pressure of oxygen (PaO2), lung wet/dry weight (W/D) ratio and protein content in the bronchial alveolar lavage fluid (BALF) were measured to evaluate the effect of ATRA on ALI rats. Alveolar macrophages were isolated from the BALF. The phagocytic function of macrophages was detected using the chicken erythrocyte phagocytosis method and flow cytometry. The viability of macrophages was measured using a Cell Counting Kit-8 assay, and apoptosis was analyzed using a TUNEL assay and flow cytometry. The expression levels of Toll-like receptor 4 (TLR4) and cluster of differentiation (CD)14 on the macrophage membrane were detected by immunofluorescence staining. The protein levels of TLR4, CD14, phosphorylated (p)-65, p65, p-IκBα and IκBα were analyzed using western blotting. The concentrations of IL-6, IL-1β and macrophage inflammatory protein-2 in the plasma of rats were detected by ELISA. Macrophages were treated with IAXO-102 (TLR4 inhibitor) to verify the involvement of CD14/TLR4 in the effect of ATRA on ALI. ATRA provided protection against LPS-induced ALI, as evidenced by the increased PaO2 and reduced lung W/D ratio and protein content in the BALF. ATRA enhanced macrophage phagocytosis and viability and reduced apoptosis and inflammation in ALI rats. Mechanically, ATRA inhibited CD14 and TLR4 expression and NF-κB pathway activation. ATRA enhanced macrophage phagocytosis and reduced inflammation by inhibiting the CD14/TLR4-NF-κB pathway in LPS-induced ALI. In summary, ATRA inactivated the NF-κB pathway by inhibiting the expression of CD14/TLR4 receptor in the alveolar macrophages of rats, thus enhancing the phagocytic function of macrophages in ALI rats, improving the activity of macrophages, inhibiting apoptosis, reducing the levels of inflammatory factors, and consequently playing a protective role in ALI model rats. This study may offer novel insights for the clinical management of ALI.
Collapse
Affiliation(s)
- Shuangxue Li
- Department of Respiratory and Critical Care Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Yuansheng Lei
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jieyun Lei
- Department of Cardiology, Taiyuan Central Hospital, Taiyuan, Shanxi 030009, P.R. China
| | - Hui Li
- Department of Gynecology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
8
|
Li BH, Li ZY, Liu MM, Tian JZ, Cui QH. Progress in Traditional Chinese Medicine Against Respiratory Viruses: A Review. Front Pharmacol 2021; 12:743623. [PMID: 34531754 PMCID: PMC8438140 DOI: 10.3389/fphar.2021.743623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 01/07/2023] Open
Abstract
Respiratory viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV)-1, SARS-CoV-2, influenza A viruses, and respiratory syncytial virus, pose a serious threat to society. Based on the guiding principles of “holism” and “syndrome differentiation and treatment”, traditional Chinese medicine (TCM) has unique advantages in the treatment of respiratory virus diseases owing to the synergistic effect of multiple components and targets, which prevents drug resistance from arising. According to TCM theory, there are two main strategies in antiviral treatments, namely “dispelling evil” and “fu zheng”. Dispelling evil corresponds to the direct inhibition of virus growth and fu zheng corresponds to immune regulation, inflammation control, and tissue protection in the host. In this review, current progress in using TCMs against respiratory viruses is summarized according to modern biological theories. The prospects for developing TCMs against respiratory viruses is discussed to provide a reference for the research and development of innovative TCMs with multiple components, multiple targets, and low toxicity.
Collapse
Affiliation(s)
- Bao-Hong Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhong-Yuan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miao-Miao Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing-Zhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qing-Hua Cui
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
9
|
Wang Z, Ma P, Wang Y, Hou B, Zhou C, Tian H, Li B, Shui G, Yang X, Qiang G, Yin C, Du G. Untargeted metabolomics and transcriptomics identified glutathione metabolism disturbance and PCS and TMAO as potential biomarkers for ER stress in lung. Sci Rep 2021; 11:14680. [PMID: 34282162 PMCID: PMC8290008 DOI: 10.1038/s41598-021-92779-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a cellular state that results from the overload of unfolded/misfolded protein in the ER that, if not resolved properly, can lead to cell death. Both acute lung infections and chronic lung diseases have been found related to ER stress. Yet no study has been presented integrating metabolomic and transcriptomic data from total lung in interpreting the pathogenic state of ER stress. Total mouse lungs were used to perform LC-MS and RNA sequencing in relevance to ER stress. Untargeted metabolomics revealed 16 metabolites of aberrant levels with statistical significance while transcriptomics revealed 1593 genes abnormally expressed. Enrichment results demonstrated the injury ER stress inflicted upon lung through the alteration of multiple critical pathways involving energy expenditure, signal transduction, and redox homeostasis. Ultimately, we have presented p-cresol sulfate (PCS) and trimethylamine N-oxide (TMAO) as two potential ER stress biomarkers. Glutathione metabolism stood out in both omics as a notably altered pathway that believed to take important roles in maintaining the redox homeostasis in the cells critical for the development and relief of ER stress, in consistence with the existing reports.
Collapse
Affiliation(s)
- Zijing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Yisa Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
- College of Pharmacy, Harbin University of Commerce, Harbin, 510006, China
| | - Biyu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Can Zhou
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bowen Li
- LipidALL Technologies Ltd., Changzhou, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China.
| | - Chengqian Yin
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China.
| |
Collapse
|
10
|
Wang Z, Yang L. Chinese herbal medicine: Fighting SARS-CoV-2 infection on all fronts. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113869. [PMID: 33485973 PMCID: PMC7825841 DOI: 10.1016/j.jep.2021.113869] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 05/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19), a highly pathogenic virus that has spread rapidly across the entire world. There is a critical need to develop safe and effective drugs, especially broad-spectrum antiviral and organ protection agents in order to treat and prevent this dangerous disease. It is possible that Chinese herbal medicine may play an essential role in the treatment of patients with SARS-CoV-2 infection. AIM OF THE REVIEW We aim to review the use of Chinese herbal medicine in the treatment of COVID-19 both in vitro and in clinical practice. Our goal was to provide a better understanding of the potential therapeutic effects of Chinese herbal medicine and to establish a "Chinese protocol" for the treatment of COVID-19. MATERIALS AND METHODS We systematically reviewed published research relating to traditional Chinese herbal medicines and the treatment of SARS-CoV-2 from inception to the 6th January 2021 by screening a range of digital databases (Web of Science, bioRxiv, medRxiv, China National Knowledge Infrastructure, X-MOL, Wanfang Data, Google Scholar, PubMed, Elsevier, and other resources) and public platforms relating to the management of clinical trials. We included the active ingredients of Chinese herbal medicines, monomer preparations, crude extracts, and formulas for the treatment of COVID-19. RESULTS In mainland China, a range of Chinese herbal medicines have been recognized as very promising anti-SARS-CoV-2 agents, including active ingredients (quercetagetin, osajin, tetrandrine, proscillaridin A, and dihydromyricetin), monomer preparations (xiyanping injection, matrine-sodium chloride injection, diammonium glycyrrhizinate enteric-coated capsules, and sodium aescinate injection), crude extracts (Scutellariae Radix extract and garlic essential oil), and formulas (Qingfei Paidu decoction, Lianhuaqingwen capsules, and Pudilan Xiaoyan oral liquid). All these agents have potential activity against SARS-CoV-2 and have attracted significant attention due to their activities both in vitro and in clinical practice. CONCLUSIONS As a key component of the COVID-19 treatment regimen, Chinese herbal medicines have played an irreplaceable role in the treatment of SARS-CoV-2 infection. The "Chinese protocol" has already demonstrated clear clinical importance. The use of Chinese herbal medicines that are capable of inhibiting SARS-Cov-2 infection may help to address this immediate unmet clinical need and may be attractive to other countries that are also seeking new options for effective COVID-19 treatment. Our analyses suggest that countries outside of China should also consider protocols involving Chinese herbal medicines combat this fast-spreading viral infection.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China.
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, PR China.
| |
Collapse
|
11
|
Li J, Luo H, Deng G, Chang J, Qiu X, Liu C, Qin B. Multidimensional Evaluation of All-Cause Mortality Risk and Survival Analysis for Hospitalized Patients with COVID-19. Int J Med Sci 2021; 18:3140-3149. [PMID: 34400884 PMCID: PMC8364453 DOI: 10.7150/ijms.58889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Coronavirus disease 2019 (COVID-19) has caused over 3.8 million deaths globally. Up to date, the number of death in 2021 is more than that in 2020 globally. Here, we aimed to compare clinical characteristics of deceased patients and recovered patients, and analyze the risk factors of death to help reduce mortality of COVID-19. Methods: In this retrospective study, a total of 2719 COVID-19 patients were enrolled, including 109 deceased patients and 2610 recovered patients. Medical records of all patients were collected between February 4, 2020, and April 7, 2020. Clinical characteristics, laboratory indices, treatments, and deep-learning system- assessed lung lesion volumes were analyzed. The effect of different medications on survival time of fatal cases was also investigated. Results: The deceased patients were older (73 years versus 60 years) and had a male predominance. Nausea (10.1% versus 4.1%) and dyspnea (54.1% versus 39.2%) were more common in deceased patients. The proportion of patients with comorbidities in deceased patients was significantly higher than those in recovered patients. The median times from hospital admission to outcome in deceased patients and recovered patients were 9 days and 13 days, respectively. Patients with severe or critical COVID-19 were more frequent in deceased group. Leukocytosis (11.35×109/L versus 5.60×109/L) and lymphocytopenia (0.52×109/L versus 1.58×109/L) were shown in patients who died. The level of prothrombin time, activated partial prothrombin time, D-dimer, aspartate aminotransferase, alanine aminotransferase, urea, creatinine, creatine kinase, glucose, brain natriuretic peptide, and inflammatory indicators were significantly higher in deceased patients than in recovered patients. The volumes of ground-glass, consolidation, total lesions and total lung in all patients were quantified. Complications were more common in deceased patients than in recovered patients; respiratory failure (57.8%), septic shock (36.7%), and acute respiratory distress syndrome (26.6%) were the most common complications in patients who died. Many treatments were more frequent in deceased patients, such as antibiotic therapy (88.1% versus 53.7%), glucocorticoid treatment (70.6% versus 11.0%), intravenous immunoglobin treatment (36.6% versus 4.9%), invasive mechanical ventilation (62.3% versus 3.8%). Antivirals, antibiotics, traditional Chinese medicines and glucocorticoid treatment may significantly increase the survival time of fatal cases. Quantitative computed tomography imaging results were correlated with biochemical markers. Conclusions: Most patients with fatal outcomes were more likely to have common comorbidities. The leading causes of death were respiratory failure and multiple organ dysfunction syndrome. Acute respiratory distress syndrome, respiratory failure and septic shock were the most common serious complications. Antivirals, antibiotics, traditional Chinese medicines, and glucocorticoid treatment may prolong the survival time of deceased patients with COVID-19.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hu Luo
- No 1. Intensive Care Unit, Huoshenshan Hospital, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Gang Deng
- Department of Radiology, Guanggu district, Hubei Maternal and Child Health Hospital, Wuhan, China.,63650 Hospital of PLA, Malan, 841700, China
| | - Jinying Chang
- College of Mathematics and Statistics, Chongqing University, Chongqing, China
| | - Xiaoming Qiu
- Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Chen Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Bo Qin
- Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Zhang FX, Yuan YLL, Cui SS, Wang GH, Li RM. Revealing the potential pharmacological mechanism of traditional Chinese medicine by integrating metabolite profiling of a Q-marker and network pharmacology, prim- O-glucosylcimifugin as an example. NEW J CHEM 2021. [DOI: 10.1039/d1nj02209a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Along with definite clinical effects, traditional Chinese medicine (TCM) has increasingly gained worldwide attention.
Collapse
Affiliation(s)
- Feng-Xiang Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yu-Lin-Lan Yuan
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuang-Shuang Cui
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guan-Hua Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Rui-Man Li
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|