1
|
Atmane MI, Vigneau AL, Beaudry F, Rico C, Boerboom D, Paquet M. Therapeutic trial of fluvastatin in a cell line xenograft model of canine mammary gland cancer. Vet Comp Oncol 2023; 21:634-645. [PMID: 37709554 DOI: 10.1111/vco.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 09/16/2023]
Abstract
The Hippo signalling pathway is involved in breast cancer and canine mammary tumour (CMT). This study sought to evaluate the efficacy of fluvastatin on the Hippo pathway and its main effectors, YAP and TAZ, in vivo in a murine CMT cell line xenograft model. On treatment day 1, mice were divided into four groups: vehicle, fluvastatin, doxorubicin or a combination therapy. Tumour volumes were monitored with callipers and tissues harvested on day 28th of treatment. Histopathological examination of tumour tissues and major organs was performed as well as tumour evaluation of necrosis, apoptosis, cellular proliferation, expression of YAP, TAZ and the mRNA levels of four of their target genes (CTGF, CYR61, ANKRD1 and RHAMM2). Results showed a statistically significant variation in tumour volumes only for the combination therapy and final tumour weight only for the doxorubicin group compared to control. There was no significant difference in tumour necrosis, expression of CC3, ki-67, YAP and TAZ measured by immunohistochemistry and in the mRNA levels of the target genes. Unexpectedly, lung metastases were found in the control group (9) and not in the fluvastatin treated group (7). In addition, mass spectrometry-based quantification of fluvastatin reveals concentrations comparable to levels reported to exert therapeutic effects. This study shows that fluvastatin tumours concentration reached therapeutic levels without having an effect on the hippo pathway or various tumour parameters. Interestingly, only the control group had lung metastases. This study is the first to explore the repurposing of statins for cancer treatment in veterinary medicine.
Collapse
Affiliation(s)
- Mohamed Issam Atmane
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Anne-Laurence Vigneau
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Charlène Rico
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Centre de recherche en reproduction et fertilité (CRRF), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Marilène Paquet
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Centre de recherche en reproduction et fertilité (CRRF), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
2
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
3
|
Wei Y, Hui VLZ, Chen Y, Han R, Han X, Guo Y. YAP/TAZ: Molecular pathway and disease therapy. MedComm (Beijing) 2023; 4:e340. [PMID: 37576865 PMCID: PMC10412783 DOI: 10.1002/mco2.340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The Yes-associated protein and its transcriptional coactivator with PDZ-binding motif (YAP/TAZ) are two homologous transcriptional coactivators that lie at the center of a key regulatory network of Hippo, Wnt, GPCR, estrogen, mechanical, and metabolism signaling. YAP/TAZ influences the expressions of downstream genes and proteins as well as enzyme activity in metabolic cycles, cell proliferation, inflammatory factor expression, and the transdifferentiation of fibroblasts into myofibroblasts. YAP/TAZ can also be regulated through epigenetic regulation and posttranslational modifications. Consequently, the regulatory function of these mechanisms implicates YAP/TAZ in the pathogenesis of metabolism-related diseases, atherosclerosis, fibrosis, and the delicate equilibrium between cancer progression and organ regeneration. As such, there arises a pressing need for thorough investigation of YAP/TAZ in clinical settings. In this paper, we aim to elucidate the signaling pathways that regulate YAP/TAZ and explore the mechanisms of YAP/TAZ-induce diseases and their potential therapeutic interventions. Furthermore, we summarize the current clinical studies investigating treatments targeting YAP/TAZ. We also address the limitations of existing research on YAP/TAZ and propose future directions for research. In conclusion, this review aims to provide fresh insights into the signaling mediated by YAP/TAZ and identify potential therapeutic targets to present innovative solutions to overcome the challenges associated with YAP/TAZ.
Collapse
Affiliation(s)
- Yuzi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Victoria Lee Zhi Hui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsLanzhou Stomatological HospitalLanzhouGansuChina
| |
Collapse
|
4
|
Luo J, Zou H, Guo Y, Tong T, Chen Y, Xiao Y, Pan Y, Li P. The oncogenic roles and clinical implications of YAP/TAZ in breast cancer. Br J Cancer 2023; 128:1611-1624. [PMID: 36759723 PMCID: PMC10133323 DOI: 10.1038/s41416-023-02182-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed form of cancer and a leading cause of cancer-related deaths among women worldwide. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are homologous transcriptional coactivators and downstream effectors of Hippo signalling. YAP/TAZ activation has been revealed to play essential roles in multiple events of BC development, including tumour initiation, progression, metastasis, drug resistance and stemness regulations. In this review, we will first give an overview of YAP/TAZ-mediated oncogenesis in BC, and then systematically summarise the oncogenic roles of YAP/TAZ in various BC subtypes, BC stem cells (BCSCs) and tumour microenvironments (TMEs). Based on these findings, we will further discuss the clinical implications of YAP/TAZ-based targeted therapies in BC and the potential future direction.
Collapse
Affiliation(s)
- Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Yibo Guo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Tongyu Tong
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China.,Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Yun Chen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Yunjun Xiao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China. .,Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China.
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China. .,Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Krasniqi E, Di Lisa FS, Di Benedetto A, Barba M, Pizzuti L, Filomeno L, Ercolani C, Tinari N, Grassadonia A, Santini D, Minelli M, Montemurro F, Fabbri MA, Mazzotta M, Gamucci T, D’Auria G, Botti C, Pelle F, Cavicchi F, Cappelli S, Cappuzzo F, Sanguineti G, Tomao S, Botticelli A, Marchetti P, Maugeri-Saccà M, De Maria R, Ciliberto G, Sperati F, Vici P. The Impact of the Hippo Pathway and Cell Metabolism on Pathological Complete Response in Locally Advanced Her2+ Breast Cancer: The TRISKELE Multicenter Prospective Study. Cancers (Basel) 2022; 14:cancers14194835. [PMID: 36230758 PMCID: PMC9563553 DOI: 10.3390/cancers14194835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
The Hippo pathway and its two key effectors, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), are consistently altered in breast cancer. Pivotal regulators of cell metabolism such as the AMP-activated protein kinase (AMPK), Stearoyl-CoA-desaturase 1 (SCD1), and HMG-CoA reductase (HMGCR) are relevant modulators of TAZ/YAP activity. In this prospective study, we measured the tumor expression of TAZ, YAP, AMPK, SCD1, and HMGCR by immunohistochemistry in 65 Her2+ breast cancer patients who underwent trastuzumab-based neoadjuvant treatment. The aim of the study was to assess the impact of the immunohistochemical expression of the Hippo pathway transducers and cell metabolism regulators on pathological complete response. Low expression of cytoplasmic TAZ, both alone and in the context of a composite signature identified by machine learning including also low nuclear levels of YAP and HMGCR and high cytoplasmic levels of SCD1, was a predictor of residual disease in the univariate logistic regression. This finding was not confirmed in the multivariate model including estrogen receptor > 70% and body mass index > 20. However, our findings were concordant with overall survival data from the TCGA cohort. Our results, possibly affected by the relatively small sample size of this study population, deserve further investigation in adequately sized, ad hoc prospective studies.
Collapse
Affiliation(s)
- Eriseld Krasniqi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesca Sofia Di Lisa
- Phase IV Clinical Studies Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Anna Di Benedetto
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Maddalena Barba
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Correspondence: or (M.B.); (C.E.); Tel.: +39-0652666762 (M.B.); +39-0652666134 (C.E.)
| | - Laura Pizzuti
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Lorena Filomeno
- Phase IV Clinical Studies Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Cristiana Ercolani
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Correspondence: or (M.B.); (C.E.); Tel.: +39-0652666762 (M.B.); +39-0652666134 (C.E.)
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), G. D’Annunzio University, 66100 Chieti, Italy
| | - Antonino Grassadonia
- Department of Innovative Technologies in Medicine and Dentistry, Centre for Advanced Studies and Technology (CAST), G. D’Annunzio University, 66100 Chieti, Italy
| | - Daniele Santini
- “Sapienza” University of Rome, Polo Pontino, 04011 Aprilia, Italy
| | - Mauro Minelli
- Division of Oncology, San Giovanni Hospital, 00184 Rome, Italy
| | - Filippo Montemurro
- Breast Unit, Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia-IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), 10060 Candiolo, Italy
| | | | - Marco Mazzotta
- Medical Oncology Unit, Belcolle Hospital, 01100 Viterbo, Italy
| | - Teresa Gamucci
- Medical Oncology, Sandro Pertini Hospital, 00157 Rome, Italy
| | | | - Claudio Botti
- Department of Surgery, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Fabio Pelle
- Department of Surgery, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Flavia Cavicchi
- Department of Surgery, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Sonia Cappelli
- Department of Surgery, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Federico Cappuzzo
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Giuseppe Sanguineti
- Department of Radiation Oncology, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Silverio Tomao
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Andrea Botticelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Paolo Marchetti
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Marcello Maugeri-Saccà
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Ruggero De Maria
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), 00168 Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesca Sperati
- Clinical Trial Center, Biostatistics and Bioinformatics, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy
| | - Patrizia Vici
- Phase IV Clinical Studies Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
6
|
Zeng J, He SL, Li LJ, Wang C. Hsp90 up-regulates PD-L1 to promote HPV-positive cervical cancer via HER2/PI3K/AKT pathway. Mol Med 2021; 27:130. [PMID: 34666670 PMCID: PMC8524852 DOI: 10.1186/s10020-021-00384-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND HPV16 is the predominant cancer-causing strain that is responsible for over 50% of all cervical cancers. In this study, we aim to investigate the therapeutic effect of heat shock protein 90 (Hsp90) knockdown on HPV16+ cervical cancer progression and the underlying mechanism. METHODS The transcript and protein expression of Hsp90 in normal cervical and HPV16+ cervical cancer tissues and cell lines were detected by qRT-PCR, immunohistochemistry staining and Western blot. Hsp90 knockdown clones were established using HPV16+ cervical cancer cell line Caski and SiHa cells. The effect of Hsp90 knockdown on HER2/PI3K/AKT pathway and PD-L1 expression was characterized using qRT-PCR and Western blot analysis. Cell proliferation and migration were determined using MTT and transwell assays. Using mouse xenograft tumor model, the impact of Hsp90 knockdown and PD-L1 overexpression on tumor progression was evaluated. RESULTS Hsp90 expression was up-regulated in HPV16+ cervical cancer tissues and cells. Knockdown of Hsp90 inhibited proliferation and migration of Caski and SiHa cells. PD-L1 expression in cervical cancer tissues was positively correlated with Hsp90 expression, and Hsp90 regulated PD-L1 expression via HER2/PI3K/AKT signaling pathway. The results of mouse xenograft tumor model demonstrated Hsp90 knockdown suppressed tumor formation and overexpression of PD-L1 simultaneously eliminated the cancer-suppressive effect of Hsp90 knockdown. CONCLUSION In this study, we demonstrated a promising tumor-suppressive effect of Hsp90 knockdown in HPV16+ cervical cancers, and investigated the underlying molecular pathway. Our results suggested that Hsp90 knockdown holds great therapeutic potential in treating HPV16+ cervical cancers.
Collapse
Affiliation(s)
- Jie Zeng
- Pharmacy Intravenous Admixture Services, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Si-Li He
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan Province, People's Republic of China
| | - Li-Jie Li
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan Province, People's Republic of China
| | - Chen Wang
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan Province, People's Republic of China.
| |
Collapse
|
7
|
Strepkos D, Markouli M, Papavassiliou KA, Papavassiliou AG, Piperi C. Emerging roles for the YAP/TAZ transcriptional regulators in brain tumour pathology and targeting options. Neuropathol Appl Neurobiol 2021; 48:e12762. [PMID: 34409639 DOI: 10.1111/nan.12762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
The transcriptional co-activators Yes-associated protein 1/transcriptional co-activator with PDZ-binding motif (YAP/TAZ) have emerged as significant regulators of a wide variety of cellular and organ functions with impact in early embryonic development, especially during the expansion of the neural progenitor cell pool. YAP/TAZ signalling regulates organ size development, tissue homeostasis, wound healing and angiogenesis by participating in a complex network of various pathways. However, recent evidence suggests an association of these physiologic regulatory effects of YAP/TAZ with pro-oncogenic activities. Herein, we discuss the physiological functions of YAP/TAZ as well as the extensive network of signalling pathways that control their expression and activity, leading to brain tumour development and progression. Furthermore, we describe current targeting approaches and drug options including direct YAP/TAZ and YAP-TEA domain transcription factor (TEAD) interaction inhibitors, G-protein coupled receptors (GPCR) signalling modulators and kinase inhibitors, which may be used to successfully attack YAP/TAZ-dependent tumours.
Collapse
Affiliation(s)
- Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|