1
|
Kumari J, Kumawat R, Prasanna R, Jothieswari D, Debnath R, Ikbal AMA, Palit P, Rawat R, Gopikrishna K, Tiwari ON. Microbial exopolysaccharides: Classification, biosynthetic pathway, industrial extraction and commercial production to unveil its bioprospection: A comprehensive review. Int J Biol Macromol 2025; 297:139917. [PMID: 39824430 DOI: 10.1016/j.ijbiomac.2025.139917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Polysaccharides, found universally in all living-species, exhibit diverse biochemical structures and play crucial roles in microorganisms, animals, and plants to defend against pathogens, environmental stress and climate-changing. Microbial exopolysaccharides are essential for cell adhesion and stress resilience and using them has notable advantages over synthetic polysaccharides. Exopolysaccharides have versatile structures and physicochemical properties, used in food systems, therapeutics, cosmetics, agriculture, and polymer industries. Immense economic and infrastructural constraints hinder its widespread commercial use, necessitating a deeper understanding of metabolic-pathways amidst changing environmental climate that influences the biomass composition of EPS-producing wild-microbes. Green and sustainable extraction of EPS from microbes followed by commercial product development has still not been exploited comprehensively. Yield of EPS production vary from 0.1 to 3 g/g of cell weight, influenced by fermentation conditions. Economic barriers, including substrate and processing costs, limit commercial viability. Key biosynthetic pathways involve glycosyltransferases enzymes, whose regulatory network gaps and substrate specificity remain areas for optimization. Addressing these could enhance yields and lower production costs. Review illustrates various microbial-exopolysaccharides, influencing factors of production, and offer valuable insights on the bioplastic, biofuel, agri-bioproduct, and biomedicine. But their bioprospecting potential is yet to be exhaustively explored, along with their pros and cons nor documented comprehensively in scientific literature.
Collapse
Affiliation(s)
- Juhi Kumari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Roopam Kumawat
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Radha Prasanna
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - D Jothieswari
- Sri Venkateswara College of Pharmacy, Chittoor 517 127, Andhra Pradesh, India
| | | | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India
| | - Rajni Rawat
- DST, Science for Equity, Empowerment & Development (SEED) Division, New Delhi 110016, India
| | - K Gopikrishna
- DST, Science for Equity, Empowerment & Development (SEED) Division, New Delhi 110016, India
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
2
|
Cueva-Clavijo RI, Téllez-Téllez M, Aguilar-Marcelino L, Wong-Villarreal A, Acosta-Urdapilleta MDL, Castañeda-Ramírez GS, Montañez-Palma LF, Hernández-Núñez E. Evaluation of Ointments with Daldinia eschscholtzii in Wound Healing in an In Vivo Model. J Med Food 2024; 27:681-691. [PMID: 39018055 DOI: 10.1089/jmf.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Fungi are a source of a variety of secondary metabolites of importance in different areas of biotechnology. Several compounds have been characterized with antioxidant, antimicrobial, and anti-inflammatory activity from fungi of the division of the Ascomycota, among which is the species Daldinia eschscholtzii, an endophyte fungus of pantropical distribution. In this study, we evaluated the effect of an ointment made with D. eschscholtzii on the wound healing of BALB/c mice. The species was corroborated using a molecular marker Internal Transcribed Spacer (ITS1 and ITS4). The extracts and dust of the fungus were considered nontoxic as they caused a mortality of <15% in the nematode Panagrellus redivivus, and experimental ointments had no adverse effects on the skin of BALB/c mice. Wounds treated with the D. eschscholtzii ointments had 99.9-100% wound contraction after 17 days, which was similar to commercial healing (positive control). As such, the ointment of D. eschscholtzii is a natural alternative to improve wound healing.
Collapse
Affiliation(s)
- Reina Isabel Cueva-Clavijo
- Master's Degree in Natural Resource Management, Biological Research Center of the Autonomous University of the State of Morelos, Cuernavaca, Mexico
| | - Maura Téllez-Téllez
- Biological Research Center of the Autonomous University of the State of Morelos, Cuernavaca, México
| | | | | | | | | | | | - Emanuel Hernández-Núñez
- Departamento de Recursos del Mar, Centro de Investigación y Estudios Avanzados-Unidad Mérida, Mérida, México
| |
Collapse
|
3
|
Tsivileva O, Shaternikov A, Evseeva N. Basidiomycetes Polysaccharides Regulate Growth and Antioxidant Defense System in Wheat. Int J Mol Sci 2024; 25:6877. [PMID: 38999986 PMCID: PMC11241571 DOI: 10.3390/ijms25136877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Higher-fungi xylotrophic basidiomycetes are known to be the reservoirs of bioactive metabolites. Currently, a great deal of attention has been paid to the exploitation of mycelial fungi products as an innovative alternative in crop protection. No data exist on the mechanisms behind the interaction between xylotrophic mushrooms' glycopolymeric substances and plants. In this study, the effects of basidiomycete metabolites on the morphophysiological and biochemical variables of wheat plants have been explored. Wheat (Triticum aestivum L. cv. Saratovskaya 29) seedlings were treated with extracellular polysaccharides (EPSs) isolated from the submerged cultures of twenty basidiomycete strains assigned to 13 species and 8 genera. The EPS solutions at final concentrations of 15, 40, and 80 mg/L were applied to wheat seedlings followed by their growth for 10 days. In the plant samples, the biomass, length of coleoptile, shoot and root, root number, rate of lipid peroxidation by malondialdehyde concentration, content of hydrogen peroxide, and total phenols were measured. The peroxidase and superoxide dismutase activity were defined. Most of the EPS preparations improved biomass yields, as well as the morphological parameters examined. EPS application enhanced the activities of antioxidant enzymes and decreased oxidative damage to lipids. Judging by its overall effect on the growth indices and redox system of wheat plants, an EPS concentration of 40 mg/L has been shown to be the most beneficial compared to other concentrations. This study proves that novel bioformulations based on mushroom EPSs can be developed and are effective for wheat growth and antioxidative response. Phytostimulating properties found for EPSs give grounds to consider extracellular metabolites produced in the xylotrophic basidiomycete cultures as an active component capable of inducing plant responses to stress.
Collapse
Affiliation(s)
- Olga Tsivileva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Andrei Shaternikov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Nina Evseeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| |
Collapse
|
4
|
Teymoorian SK, Nouri H, Moghimi H. In-vivo and in-vitro wound healing and tissue repair effect of Trametes versicolor polysaccharide extract. Sci Rep 2024; 14:3796. [PMID: 38360911 PMCID: PMC10869720 DOI: 10.1038/s41598-024-54565-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/14/2024] [Indexed: 02/17/2024] Open
Abstract
Regarding different medical benefits of fungi, using the medical mushroom extracts as wound-healing agents is gaining popularity. This study, evaluated the wound healing characteristics of Trametes versicolor. Anti-oxidant activity addressed by employing the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay resulting 53.7% inhibitory effect. Besides, for anti-microbial ability determination, the MIC (Minimum Inhibitory Concentration) of extract measured which Escherichia coli growth was inhibited at 1.1 mg/ml, and Staphylococcus aureus did not grow at 4.38 mg/ml of extract. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method indicated dose dependence of the extract with 63 ± 3% and 28 ± 3% viability at 1250 μg/ml and 156.25 μg/ml of extract, which higher concentration caused higher cell viability. The outcome of gene expression analysis determined that overall expression of FGF2 (Fibroblast Growth Factor 2), IL-1β (Interleukin-1β), and TGF-β1 (Transforming Growth Factor-β1) was 4 times higher at 48 h than at 24 h in treated cells, suggesting a stimulating effect on cell growth. An in-vivo animal model suggested enhanced wound healing process after treatment with 0.01 g of extract. Furthermore, the number of fibroblasts, epidermal thickness, and collagen fiber was respectively 2, 3, and threefold higher in treated mice when compared to untreated mice. The treated wounds of mice showed 100% and 60% of untreated mice of healing within 14 days. The results of this research show promise for the fungus-based wound healing treatments, which may help with tissue regeneration and the healing of cutaneous wounds.
Collapse
Affiliation(s)
- Seyedeh Kiana Teymoorian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hoda Nouri
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Filardo S, Roberto M, Di Risola D, Mosca L, Di Pietro M, Sessa R. Olea europaea L-derived secoiridoids: Beneficial health effects and potential therapeutic approaches. Pharmacol Ther 2024; 254:108595. [PMID: 38301769 DOI: 10.1016/j.pharmthera.2024.108595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Over the years, health challenges have become increasingly complex and global and, at the beginning of the 21st century, chronic diseases, including cardiovascular, neurological, and chronic respiratory diseases, as well as cancer and diabetes, have been identified by World Health Organization as one of the biggest threats to human health. Recently, antimicrobial resistance has also emerged as a growing problem of public health for the management of infectious diseases. In this scenario, the exploration of natural products as supplementation or alternative therapeutic options is acquiring great importance, and, among them, the olive tree, Olea europaea L, specifically leaves, fruits, and oil, has been increasingly investigated for its health promoting properties. Traditionally, these properties have been largely attributed to the high concentration of monounsaturated fatty acids, although, in recent years, beneficial effects have also been associated to other components, particularly polyphenols. Among them, the most interesting group is represented by Olea europaea L secoiridoids, comprising oleuropein, oleocanthal, oleacein, and ligstroside, which display anti-inflammatory, antioxidant, cardioprotective, neuroprotective and anticancer activities. This review provides an overview of the multiple health beneficial effects, the molecular mechanisms, and the potential applications of secoiridoids from Olea europaea L.
Collapse
Affiliation(s)
- Simone Filardo
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Mattioli Roberto
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Daniel Di Risola
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
6
|
Ruvalcaba L, Gutiérrez A, Esqueda M. Current Biological Knowledge, Applications, and Potential Use of the Desert Shaggy Mane Mushroom Podaxis pistillaris (Agaricomycetes): A Review. Int J Med Mushrooms 2024; 26:1-12. [PMID: 38780419 DOI: 10.1615/intjmedmushrooms.2024052892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Podaxis pistillaris, an abundant gasteroid mushroom, has become an important biological element in arid and semiarid communities worldwide. This mushroom possesses cosmetic, edible, and medicinal attributes, playing a crucial role in communities in countries such as Australia, India, Saudi Arabia, Yemen, and Mexico. Proximate studies highlight the nutritional richness of P. pistillaris, characterized by high protein content and essential bioelements such as K, P, and Mg. Furthermore, P. pistillaris is integral to the traditional medicine of indigenous communities in America, Asia, and Africa, where it is revered for its purported wound-healing, anti-inflammatory, and coagulant properties. In the case of Mexico, the Seri community uses and markets P. pistillaris in various forms, including ointments and, within the region, its spores. Chemical analysis of this species reveals notable compounds, including epicorazines A-C exhibiting antimicrobial properties, along with polysaccharides such as β-glucans, and a recently identified ergosterol derivative named podaxisterol. Despite its importance, the chemical characterization and assessment of the biological activity of its compounds have been largely understudied. Consequently, there are currently no wound-healing products on the market derived from fungi, as the majority originate from plant sources. This work aims to present the essential aspects of P. pistillaris's ethnobiological use, medicinal properties, bioactive compounds, and biotechnological applications. In addition, it underscores the overlooked status of P. pistillaris among fungi inhabiting arid areas, emphasizing its potential as a valuable subject for further research.
Collapse
Affiliation(s)
- Lucía Ruvalcaba
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, 83304 Hermosillo, Sonora, México
| | - Aldo Gutiérrez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, 83304 Hermosillo, Sonora, México
| | - Martín Esqueda
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, 83304 Hermosillo, Sonora, México
| |
Collapse
|
7
|
Di Pietro M, Filardo S, Mattioli R, Bozzuto G, Molinari A, Mosca L, Sessa R. Extra Virgin Olive Oil-Based Formulations: A "Green" Strategy against Chlamydia trachomatis. Int J Mol Sci 2023; 24:12701. [PMID: 37628881 PMCID: PMC10454370 DOI: 10.3390/ijms241612701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
In recent decades, antibiotic misuse has emerged as an important risk factor for the appearance of multi-drug-resistant bacteria, and, recently, antimicrobial resistance has also been described in Chlamydia trachomatis as the leading cause of bacterial sexually transmitted diseases worldwide. Herein, we investigated, for the first time, the antibacterial activity against C. trachomatis of a polyphenolic extract of extra virgin olive oil (EVOO), alongside purified oleocanthal and oleacein, two of its main components, in natural deep eutectic solvent (NaDES), a biocompatible solvent. The anti-chlamydial activity of olive-oil polyphenols (OOPs) was tested in the different phases of chlamydial developmental cycle by using an in vitro infection model. Transmission and scanning electron microscopy analysis were performed for investigating potential alterations of adhesion and invasion, as well as morphology, of chlamydial elementary bodies (EBs) to host cells. The main result of our study is the anti-bacterial activity of OOPs towards C. trachomatis EBs down to a total polyphenol concentration of 1.7 μg/mL, as shown by a statistically significant decrease (93.53%) of the total number of chlamydial-inclusion-forming units (p < 0.0001). Transmission and scanning electron microscopy analysis supported its anti-chlamydial effect, suggesting that OOP might damage the chlamydial outer layers, impairing their structural integrity and hindering EB capability to infect the host cell. In conclusion, OOPs may represent an interesting alternative therapeutic option toward C. trachomatis, although further studies are necessary for exploring its clinical applications.
Collapse
Affiliation(s)
- Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University of Rome, 00185 Rome, Italy; (M.D.P.); (R.S.)
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University of Rome, 00185 Rome, Italy; (M.D.P.); (R.S.)
| | - Roberto Mattioli
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.M.); (L.M.)
| | - Giuseppina Bozzuto
- National Centre for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (A.M.)
| | - Agnese Molinari
- National Centre for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (A.M.)
| | - Luciana Mosca
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.M.); (L.M.)
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University of Rome, 00185 Rome, Italy; (M.D.P.); (R.S.)
| |
Collapse
|
8
|
Mkhize SS, Simelane MBC, Mongalo NI, Pooe OJ. Bioprospecting the Biological Effects of Cultivating Pleurotus ostreatus Mushrooms from Selected Agro-Wastes and Maize Flour Supplements. J Food Biochem 2023. [DOI: 10.1155/2023/2762972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Pleurotus mushrooms are valuable food supplements with health and environmental restorative potential. In this paper, we sought to evaluate the biological activities and profile the bioactive compounds found in Pleurotus ostreatus cultivated from agro-waste supplemented with maize flour. We investigated carbon to nitrogen (C/N), antimicrobial, antioxidant, and antimalarial potential for the varying supplementation during mushroom cultivation. GCMS was utilized for screening bioactive compounds found in P. ostreatus. Changes in supplementation directly correlate with changes in compound profiling. Nonetheless, some compounds were found to be common amongst the tested mushrooms, including pentadecanoic acid; 9,12-octadecadienoic acid, methyl ester; pentadecanoic acid, methyl ester; octadecanoic acid; and diisooctyl phthalate. The highest antimicrobial potential against Gram-positive Staphylococcus aureus was observed when maize flour supplements were increased to 12% and 18%. Our data demonstrated that the observed antioxidant (DPPH, ABTS, and reducing power) and antimicrobial activity could emanate from various supplementation conditions. Furthermore, supplementation has an impact on the mushroom yield and phytochemical profiles of the produced mushroom.
Collapse
|
9
|
Kewlani P, Tiwari D, Singh L, Balodi S, Bhatt ID. Food and Antioxidant Supplements with Therapeutic Properties of Morchella esculenta (Ascomycetes): A Review. Int J Med Mushrooms 2023; 25:11-29. [PMID: 37824403 DOI: 10.1615/intjmedmushrooms.2023049147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Morchella esculenta, commonly known as yellow morels, is an edible and medicinal mushroom popular worldwide for its unique flavor and culinary purposes. The traditional medical system effectively uses morels against infertility, fatigue, cancer, muscular pain, cough, and cold. The M. esculenta possesses many health-promoting nutritional components such as mono and polyunsaturated fatty acids, polyphenols, protein hydrolysates, vitamins, amino acids and minerals. The potential medicinal properties of morels is due to polysaccharides (galactomannan, chitin, β-glucans, and β-1,3-1,6-glucan) present that has high economic importance worldwide. Polysaccharides present possess a broad spectrum of biological activities such as anti-cancer, anti-inflammatory, anti-microbial, anti-diabetic, and antioxidant. However, the toxicity and clinical trials to prove its safety and efficacy for medicinal uses are yet to be evaluated. Moreover, the separation, purification, identification, and structural elucidation of active compounds responsible for the unique flavors and biological activities are still lacking in M. esculenta. The available information provides a new base for future perspectives. It highlights the need for further studies of this potent medicinal mushroom species as a source of beneficial therapeutic drugs and nutraceutical supplements.
Collapse
Affiliation(s)
- Pushpa Kewlani
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| | - Deepti Tiwari
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| | - Laxman Singh
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| | - Shivani Balodi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| | - Indra D Bhatt
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| |
Collapse
|
10
|
Lesa KN, Khandaker MU, Mohammad Rashed Iqbal F, Sharma R, Islam F, Mitra S, Emran TB. Nutritional Value, Medicinal Importance, and Health-Promoting Effects of Dietary Mushroom (Pleurotus ostreatus). J FOOD QUALITY 2022; 2022:1-9. [DOI: 10.1155/2022/2454180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Pleurotus ostreatus is the second cultivated and most popular edible mushroom after Agaricus bisporus worldwide. As dietary supplements, nutraceuticals like Pleurotus ostreatus that go beyond the usual health benefits of mushrooms are becoming more popular. The objective of this study is to put together a summary of the nutrition information and link it to the possible health benefits and health-improving effects of eating oyster mushrooms. This review is based on secondary data from 102 published articles about P. ostreatus. All papers were examined following predetermined criteria for inclusion and exclusion, and this study contained 83 publications. The high nutritional content and beneficial health effects make P. ostreatus a high-quality food. It makes up for the lack of protein by switching between a diet based on wheat, rice, and maize. Nowadays, P. ostreatus is famous precious functional food ingredients due to the fact they may be cholesterol-free and low in calories, carbohydrates, fat, and sodium. Side by side, they offer crucial nutrients including riboflavin, selenium, potassium, niacin, proteins, and fiber.
Collapse
Affiliation(s)
- Kaisun Nesa Lesa
- Faculty of Institute of Climate Change, Universiti Kebangsaan Malaysia (The National University of Malaysia), Bangi, Malaysia
- Department of Nutrition and Food Technology, Jessore University of Science and Technology, Jessore, Bangladesh
- Department of Food and Nutrition, Khulna City Corporation Women’s College Affiliated by Khulna University, Khulna, Bangladesh
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Selangor 47500, Subang Jaya, Malaysia
| | - Faruque Mohammad Rashed Iqbal
- Faculty of Institute of Climate Change, Universiti Kebangsaan Malaysia (The National University of Malaysia), Bangi, Malaysia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
11
|
Cardoso-Daodu IM, Ilomuanya MO, Azubuike CP. Development of curcumin-loaded liposomes in lysine–collagen hydrogel for surgical wound healing. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
A surgical wound is an incision made by a surgeon. Slow surgical wound healing may lead to chronic wounds which may be a potential health problem. The aim of this study is to formulate curcumin-loaded liposomes in lysine–collagen hydrogel for enhancing surgical wound healing. Curcumin-loaded liposomes were prepared using thin-film hydration method. The liposomal formulation was characterized by analysing its size, morphology, encapsulation efficiency, and in vitro release. The hydrogel base was prepared, and then, curcumin-loaded liposomes were infused to give formulation (F1). Curcumin-loaded liposomes were infused into the hydrogel base after which lysine and collagen were incorporated to give (F2), while (F3) comprised lysine and collagen incorporated in hydrogel base. All formulations were characterized by evaluation of the safety, stability, swelling index, pH, rheological properties, and in vivo wound healing assay. Histology and histomorphometry of tissue samples of wound area treated with formulations F1, F2, and F3 and the control, respectively, were examined.
Results
Curcumin-loaded liposomes were 5–10 µm in size, and the values for encapsulation efficiency and flux of the loaded liposomes are 99.934% and 51.229 µg/cm2/h, respectively. Formulations F1, F2, and F3 had a pH of 5.8. F1 had the highest viscosity, while F2 had the highest swelling index indications for efficient sustained release of drug from the formulation. The in vivo wound healing evaluation showed that curcumin-loaded liposomes in lysine–collagen hydrogel had the highest percentage wound contraction at 79.25% by day three post-surgical operation. Histological evaluation reflected a normal physiological structure of the layers of the epidermis and dermis after surgical wound healing in tissue samples from wound areas treated with formulations F1 and F2. The histomorphometrical values show highest percentage of collagen, lowest inflammatory rates, highest presence of microvessels, and re-epithelization rates at wound site in wounds treated with formulation F2 (curcumin-loaded liposomes in lysine–collagen hydrogel).
Conclusion
Curcumin-loaded liposomes in lysine–collagen hydrogel was found to be the most effective of the three formulations in promoting wound healing. Hence, this formulation can serve as a prototype for further development and has great potential as a smart wound dressing for the treatment of surgical wounds.
Collapse
|
12
|
Sharma N, Tapwal A, Verma R, Kumar D, Nepovimova E, Kuca K. Medicinal, nutritional, and nutraceutical potential of Sparassis crispa s. lat.: a review. IMA Fungus 2022; 13:8. [PMID: 35513833 PMCID: PMC9074205 DOI: 10.1186/s43008-022-00095-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
Sparassis crispa is an edible mushroom exhibiting a wide range of medicinal properties. It is recognized for therapeutic value because of the high β-glucan content in the basidiomes. The broad range of its reported curative effects include anti-tumour, anti-cancer, immune-enhancing, hematopoietic, anti-angiogenic, anti-inflammatory, anti-diabetic, wound-healing, antioxidant, anti-coagulant, and anti-hypertensive properties. However, most of the studies are conducted on immunomodulatory and anticancer activities. Besides this, it also exhibits anti-microbial properties due to the presence of sparassol. Technology is now available for the cultivation of S. crispa on coniferous sawdust. This review is an attempt to focus on its distribution, taxonomy, chemical composition, medicinal properties, potential applications, and artificial cultivation.
Collapse
Affiliation(s)
- Neha Sharma
- Himalayan Forest Research Institute, Conifer Campus, Panthaghati, Shimla, 171013, India
| | - Ashwani Tapwal
- Himalayan Forest Research Institute, Conifer Campus, Panthaghati, Shimla, 171013, India.
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences , Solan, Himachal Pradesh, 173229, India.
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences , Solan, Himachal Pradesh, 173229, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| |
Collapse
|
13
|
Hamidi M, Okoro OV, Milan PB, Khalili MR, Samadian H, Nie L, Shavandi A. Fungal exopolysaccharides: Properties, sources, modifications, and biomedical applications. Carbohydr Polym 2022; 284:119152. [DOI: 10.1016/j.carbpol.2022.119152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/04/2022] [Accepted: 01/15/2022] [Indexed: 12/20/2022]
|
14
|
Di Pietro M, Filardo S, Mattioli R, Francioso A, Raponi G, Mosca L, Sessa R. Extra Virgin Olive Oil-Based Green Formulations With Promising Antimicrobial Activity Against Drug-Resistant Isolates. Front Pharmacol 2022; 13:885735. [PMID: 35548334 PMCID: PMC9082028 DOI: 10.3389/fphar.2022.885735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Extra virgin olive oil (EVOO) from Olea europaea L. drupes, a cornerstone in the Mediterranean diet, is well known for its nutritional and health properties, especially for prevention of cardiovascular diseases and metabolic disorders. Traditionally, beneficial health effects have been largely attributed to the high concentration of monounsaturated fatty acids, and in recent years, these have also been related to other components including oleacein and oleocanthal. Here, we evaluated, for the first time, the antimicrobial activity of different green extra virgin olive oil-based formulations in natural deep eutectic solvents (NaDESs) emerging as powerful and biocompatible solvents. Specifically, the antimicrobial activity of the EVOO extract, as well as purified oleocanthal and oleacein in two NaDESs (choline/glycerol and choline/propylene glycol), against several drug-resistant clinical isolates and standard microbial strains has been evaluated. The main result was the inhibitory activity of the EVOO extract in choline/glycerol as well as oleacein in choline/propylene glycol toward drug-resistant Gram-positive and -negative strains. Specifically, the EVOO extract in choline/glycerol showed the highest antibacterial activity against several clinical strains of Staphylococcus aureus, whereas oleacein in choline/propylene glycol was the most effective toward various clinical strains of Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In addition, all the formulations tested were effective against Candida spp. In conclusion, our results suggest EVOO-based formulations in NaDESs as an interesting strategy that may help in reducing the risk of development of drug resistance. Under this perspective, the usage of NaDESs for the preparation of new antimicrobial formulations may represent a promising approach.
Collapse
Affiliation(s)
- Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| | - Roberto Mattioli
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| | - Antonio Francioso
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Faculty of Pharmacy and Medicine, “Sapienza” University of Rome, Roma, Italy
| |
Collapse
|
15
|
Fochi V, Sillo F, Travaglia F, Coïsson JD, Balestrini R, Arlorio M. A Rapid and Efficient Loop-mediated Isothermal Amplification (LAMP) Assay for the Authentication of Food Supplements Based on Maitake (Grifola Frondosa). FOOD ANAL METHOD 2022; 15:1803-1815. [PMID: 35282313 PMCID: PMC8903311 DOI: 10.1007/s12161-022-02235-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/21/2022] [Indexed: 12/22/2022]
Abstract
Grifola frondosa (“Maitake”) is an edible fungus with several nutraceutical properties, largely used in traditional medicine. The increased use of Maitake as a food supplements ingredient raised the need of accurate authentication methods since the morphological identification of G. frondosa is not feasible in formulated food supplements. We developed a diagnostic tool based on loop-mediated isothermal AMPlification (LAMP) for the detection of G. frondosa in food supplements. First, a modified CTAB protocol for DNA extraction from food supplements has been set up and it has been shown to be able to isolate amplifiable total genomic material from different types of commercial products. Subsequently, the LAMP assay confirmed high specificity and good analytical sensitivity, allowing to detect up to 0.62 pg of genomic DNA in less than 20 min. Ten related fungal species resulted negative, confirming the specificity of the assay. The presence of Maitake in commercial food supplements was confirmed, except for one, revealing a mislabeling (or a food fraud). This assay proved to be a rapid powerful tool for food authentication purposes and routine inspections at any level of the supply chain of Maitake-based products and it can be used as a model for other quality control assays of fungal food products.
Collapse
Affiliation(s)
- Valeria Fochi
- Dipartimento Di Scienze del Farmaco & Drug and Food Biotechnology (DFB) Center, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Fabiano Sillo
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Fabiano Travaglia
- Dipartimento Di Scienze del Farmaco & Drug and Food Biotechnology (DFB) Center, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Jean Daniel Coïsson
- Dipartimento Di Scienze del Farmaco & Drug and Food Biotechnology (DFB) Center, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Raffaella Balestrini
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Marco Arlorio
- Dipartimento Di Scienze del Farmaco & Drug and Food Biotechnology (DFB) Center, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
16
|
Ogbole OO, Noleto-Dias C, Kamdem RST, Akinleye TE, Nkumah A, Ward JL, Beale MH. γ-Glutamyl-β-phenylethylamine, a novel α-glucosidase and α-amylase inhibitory compound from Termitomyces robustus, an edible Nigerian mushroom. Nat Prod Res 2021; 36:4681-4691. [PMID: 34878952 DOI: 10.1080/14786419.2021.2012774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Termitomyces species are known edible mushrooms in Nigeria, believed to have exceptional culinary and nutraceutical properties. Methanol extract from fruiting bodies of Termitomyces robustus was evaluated for antidiabetic activity using in vitro α-amylase and α-glucosidase assays. The isolation and structural elucidation of metabolites from the T. robustus extract afforded five compounds including a new natural product γ-glutamyl-β-phenylethylamine 3 and four known phenyl derivatives: tryptophan 1, 4-hydroxyphenylacetic acid 2, 4-hydroxyphenylpropionic acid 4, and phenyllactic acid 5. Structures were elucidated from analyses of spectroscopic data (1 D and 2 D NMR, HRESIMS) and all isolated compounds were tested for α-amylase and α-glycosidase inhibitory activity. The in vitro assay established crude extract to possess α- amylase and α-glucosidase inhibition with IC50 of 78.05 µg/mL and 86.10 µg/mL, respectively. The isolated compounds compared favourably with the standard drug, acarbose with IC50 ranging from 6.18-15.08 µg/mL and 18.28-44.63 µg/mL for α-amylase and glucosidase, respectively.
Collapse
Affiliation(s)
- Omonike O Ogbole
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria.,Department of Computational and Analytical Sciences, Rothamsted Research, Hertfordshire, United Kingdom
| | - Clarice Noleto-Dias
- Department of Computational and Analytical Sciences, Rothamsted Research, Hertfordshire, United Kingdom
| | - Ramsay S T Kamdem
- Department of Organic Chemistry, Higher Teachers Training College, The University of Yaounde I, Yaounde, Cameroon.,Institute of Organic and Analytical Chemistry, Bremen-University, Bremen, Germany
| | - Toluwanimi E Akinleye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abraham Nkumah
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Jane L Ward
- Department of Computational and Analytical Sciences, Rothamsted Research, Hertfordshire, United Kingdom
| | - Michael H Beale
- Department of Computational and Analytical Sciences, Rothamsted Research, Hertfordshire, United Kingdom
| |
Collapse
|
17
|
Prebiotic Effect of Maitake Extract on a Probiotic Consortium and Its Action after Microbial Fermentation on Colorectal Cell Lines. Foods 2021; 10:foods10112536. [PMID: 34828817 PMCID: PMC8617840 DOI: 10.3390/foods10112536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Maitake (Grifola frondosa) is a medicinal mushroom known for its peculiar biological activities due to the presence of functional components, including dietary fibers and glucans, that can improve human health through the modulation of the gut microbiota. In this paper, a Maitake ethanol/water extract was prepared and characterized through enzymatic and chemical assays. The prebiotic potential of the extract was evaluated by the growth of some probiotic strains and of a selected probiotic consortium. The results revealed the prebiotic properties due to the stimulation of the growth of the probiotic strains, also in consortium, leading to the production of SCFAs, including lactic, succinic, and valeric acid analyzed via GC-MSD. Then, their beneficials effect were employed in evaluating the vitality of three different healthy and tumoral colorectal cell lines (CCD841, CACO-2, and HT-29) and the viability rescue after co-exposure to different stressor agents and the probiotic consortium secondary metabolites. These metabolites exerted positive effects on colorectal cell lines, in particular in protection from reactive oxygen species.
Collapse
|
18
|
Peng Y, Yan Y, Wan P, Chen C, Chen D, Zeng X, Cao Y. Prebiotic effects in vitro of anthocyanins from the fruits of Lycium ruthenicum Murray on gut microbiota compositions of feces from healthy human and patients with inflammatory bowel disease. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Butnariu M. Meet the Editorial Board Member. Curr Drug Deliv 2021. [DOI: 10.2174/156720181805210806155120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Monica Butnariu
- Banat’s University of Agricultural Sciences and Veterinary Medicine King Michael I of Romania Timisoara, Romania
| |
Collapse
|
20
|
Tsivileva O, Pozdnyakov A, Ivanova A. Polymer Nanocomposites of Selenium Biofabricated Using Fungi. Molecules 2021; 26:3657. [PMID: 34203966 PMCID: PMC8232642 DOI: 10.3390/molecules26123657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Nanoparticle-reinforced polymer-based materials effectively combine the functional properties of polymers and unique characteristic features of NPs. Biopolymers have attained great attention, with perspective multifunctional and high-performance nanocomposites exhibiting a low environmental impact with unique properties, being abundantly available, renewable, and eco-friendly. Nanocomposites of biopolymers are termed green biocomposites. Different biocomposites are reported with numerous inorganic nanofillers, which include selenium. Selenium is a micronutrient that can potentially be used in the prevention and treatment of diseases and has been extensively studied for its biological activity. SeNPs have attracted increasing attention due to their high bioavailability, low toxicity, and novel therapeutic properties. One of the best routes to take advantage of SeNPs' properties is by mixing these NPs with polymers to obtain nanocomposites with functionalities associated with the NPs together with the main characteristics of the polymer matrix. These nanocomposite materials have markedly improved properties achieved at low SeNP concentrations. Composites based on polysaccharides, including fungal beta-glucans, are bioactive, biocompatible, biodegradable, and have exhibited an innovative potential. Mushrooms meet certain obvious requirements for the green entity applied to the SeNP manufacturing. Fungal-matrixed selenium nanoparticles are a new promising biocomposite material. This review aims to give a summary of what is known by now about the mycosynthesized selenium polymeric nanocomposites with the impact on fungal-assisted manufactured ones, the mechanisms of the involved processes at the chemical reaction level, and problems and challenges posed in this area.
Collapse
Affiliation(s)
- Olga Tsivileva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Alexander Pozdnyakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia; (A.P.); (A.I.)
| | - Anastasiya Ivanova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia; (A.P.); (A.I.)
| |
Collapse
|
21
|
Salehi B, Rodrigues CF, Peron G, Dall'Acqua S, Sharifi-Rad J, Azmi L, Shukla I, Singh Baghel U, Prakash Mishra A, Elissawy AM, Singab AN, Pezzani R, Redaelli M, Patra JK, Kulandaisamy Venil C, Das G, Singh D, Kriplani P, Venditti A, Fokou PVT, Iriti M, Amarowicz R, Martorell M, Cruz-Martins N. Curcumin nanoformulations for antimicrobial and wound healing purposes. Phytother Res 2021; 35:2487-2499. [PMID: 33587320 DOI: 10.1002/ptr.6976] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/02/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022]
Abstract
The development and spread of resistance to antimicrobial drugs is hampering the management of microbial infectious and wound healing processes. Curcumin is the most active and effective constituent of Curcuma longa L., also known as turmeric, and has a very long and strong history of medicinal value for human health and skincare. Curcumin has been proposed as strong antimicrobial potentialities and many attempts have been made to determine its ability to conjointly control bacterial growth and promote wound healing. However, low aqueous solubility, poor tissue absorption and short plasma half-life due its rapid metabolism needs to be solved for made curcumin formulations as suitable treatment for wound healing. New curcumin nanoformulations have been designed to solve the low bioavailability problem of curcumin. Thus, in the present review, the therapeutic applications of curcumin nanoformulations for antimicrobial and wound healing purposes is described.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Célia F Rodrigues
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Lubna Azmi
- CSIR-National Botanical Research Institute, Lucknow, India
| | - Ila Shukla
- CSIR-National Botanical Research Institute, Lucknow, India
| | | | - Abhay Prakash Mishra
- Adarsh Vijendra Institute of Pharmaceutical Sciences, School of Pharmacy, Shobhit University, Gangoh, India
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Ahmed M Elissawy
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Abdel Nasser Singab
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| | - Marco Redaelli
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET, Liettoli di Campolongo Maggiore (VE), Italy
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyang-si, South Korea
| | | | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyang-si, South Korea
| | - Deeksha Singh
- E.S.I. Hospital, Kota, Medical, Health and Family Welfare Department, Government of Rajasthan, Rajasthan, India
| | | | | | | | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Ryszard Amarowicz
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| |
Collapse
|