1
|
Wang Y, Han Q, Zhang S, Xing X, Sun X. New perspective on the immunomodulatory activity of ginsenosides: Focus on effective therapies for post-COVID-19. Biomed Pharmacother 2023; 165:115154. [PMID: 37454595 DOI: 10.1016/j.biopha.2023.115154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
More than 700 million confirmed cases of Coronavirus Disease-2019 (COVID-19) have been reported globally, and 10-60% of patients are expected to exhibit "post-COVID-19 symptoms," which will continue to affect human life and health. In the absence of safer, more specific drugs, current multiple immunotherapies have failed to achieve satisfactory efficacy. Ginseng, a traditional Chinese medicine, is often used as an immunomodulator and has been used in COVID-19 treatment as a tonic to increase blood oxygen saturation. Ginsenosides are the main active components of ginseng. In this review, we summarize the multiple ways in which ginsenosides affect post-COVID-19 symptoms, including inhibition of lipopolysaccharide, tumor necrosis factor signaling, modulation of chemokine receptors and inflammasome activation, induction of macrophage polarization, effects on Toll-like receptors, nuclear factor kappa-B, the mitogen-activated protein kinase pathway, lymphocytes, intestinal flora, and epigenetic regulation. Ginsenosides affect virus-mediated tissue damage, local or systemic inflammation, immune modulation, and other links, thus alleviating respiratory and pulmonary symptoms, reducing the cardiac burden, protecting the nervous system, and providing new ideas for the rehabilitation of patients with post-COVID-19 symptoms. Furthermore, we analyzed its role in strengthening body resistance to eliminate pathogenic factors from the perspective of ginseng-epidemic disease and highlighted the challenges in clinical applications. However, the benefit of ginsenosides in modulating organismal imbalance post-COVID-19 needs to be further evaluated to better validate the pharmacological mechanisms associated with their traditional efficacy and to determine their role in individualized therapy.
Collapse
Affiliation(s)
- Yixin Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Qin Han
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Shuxia Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Xiaoyan Xing
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| |
Collapse
|
2
|
Chaudhary R, Meher A, Krishnamoorthy P, Kumar H. Interplay of host and viral factors in inflammatory pathway mediated cytokine storm during RNA virus infection. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100062. [PMID: 37273890 PMCID: PMC10238879 DOI: 10.1016/j.crimmu.2023.100062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023] Open
Abstract
RNA viruses always have been a serious concern for human health by causing several outbreaks, often pandemics. The excessive mortality and deaths associated with the outbreaks caused by these viruses were due to the excessive induction of pro-inflammatory cytokines leading to cytokine storm. Cytokines are important for cell-to-cell communication to maintain cell homeostasis. Disturbances of this homeostasis can lead to intricate chain reactions resulting in a massive release of cytokines. This could lead to a severe self-reinforcement of several feedback processes, which could eventually cause systemic harm, multiple organ failure, or death. Multiple inflammation-associated pathways were involved in the cytokine production and its regulation. Different RNA viruses induce these pathways through the interplay with their viral factors and host proteins and miRNAs regulating these pathways. This review will discuss the interplay of host proteins and miRNAs that can play an important role in the regulation of cytokine storm and the possible therapeutic potential of these molecules for the treatment and the challenges associated with the clinical translation.
Collapse
Affiliation(s)
- Riya Chaudhary
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India
| | - Aparna Meher
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India
| | - Pandikannan Krishnamoorthy
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India
| | - Himanshu Kumar
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India
- Laboratory of Host Defense, WPI Immunology, Frontier Research Centre, Osaka University, Osaka, 5650871, Japan
| |
Collapse
|
3
|
Xie X, Jin X, Huang J, Yi J, Li X, Huang Z, Lin Q, Guo B. High resveratrol-loaded microcapsules with trehalose and OSA starch as the wall materials: Fabrication, characterization, and evaluation. Int J Biol Macromol 2023; 242:124825. [PMID: 37196714 DOI: 10.1016/j.ijbiomac.2023.124825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
To improve the solubility and stability of resveratrol (Res), Res nanocrystals (Res-ncs) as the capsule core were prepared by wet milling using hydroxypropyl methyl cellulose (HPMCE5), sodium dodecyl sulfate (SDS), and polyvinylpyrrolidone (PVPK30) as stabilizers, along with trehalose and octenyl succinic anhydride (OSA) modified starch were used as the wall material to produce Res microcapsules (Res-mcs) via spray drying. The fresh-prepared Res-ncs and rehydrated Res-mcs had mean particle sizes of 190.30 ± 3.43 and 204.70 ± 3.60 nm, zeta potentials of -13.90 ± 0.28 and - 11.20 ± 0.34 mV, and the loading capacities (LC) were as high as 73.03 % and 28.83 %. Particle morphology showed that Res-mcs had more regular and smooth spherical structures. FTIR indicated that Res may have hydrogen bonding with the walls. XRD and DSC exhibited that Res in nanocrystals and microcapsules existed mostly as amorphous structures. The solubility of Res-mcs and Res-ncs was increased, with excellent redispersibility and rapid dissolution of Res in vitro. The antioxidant properties of Res-mcs were protected and improved. With the walls acting as a physical barrier, Res-mcs have better photothermal stability than raw Res. Res-mcs have a relative bioavailability of 171.25 %, which is higher than that of raw Res.
Collapse
Affiliation(s)
- Xiaodong Xie
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaowei Jin
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingjun Huang
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jun Yi
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaofang Li
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhigang Huang
- Huizhou Jiuhui Pharmaceutical Co., Ltd, Huizhou 516001, China
| | - Qiuxiao Lin
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Bohong Guo
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Arman K, Dalloul Z, Bozgeyik E. Emerging role of microRNAs and long non-coding RNAs in COVID-19 with implications to therapeutics. Gene 2023; 861:147232. [PMID: 36736508 PMCID: PMC9892334 DOI: 10.1016/j.gene.2023.147232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection which is commonly known as COVID-19 (COronaVIrus Disease 2019) has creeped into the human population taking tolls of life and causing tremendous economic crisis. It is indeed crucial to gain knowledge about their characteristics and interactions with human host cells. It has been shown that the majority of our genome consists of non-coding RNAs. Non-coding RNAs including micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs) display significant roles in regulating gene expression in almost all cancers and viral diseases. It is intriguing that miRNAs and lncRNAs remarkably regulate the function and expression of major immune components of SARS-CoV-2. MiRNAs act via RNA interference mechanism in which they bind to the complementary sequences of the viral RNA strand, inducing the formation of silencing complex that eventually degrades or inhibits the viral RNA and viral protein expression. LncRNAs have been extensively shown to regulate gene expression in cytokine storm and thus emerges as a critical target for COVID-19 treatment. These lncRNAs also act as competing endogenous RNAs (ceRNAs) by sponging miRNAs and thus affecting the expression of downstream targets during SARS-CoV-2 infection. In this review, we extensively discuss the role of miRNAs and lncRNAs, describe their mechanism of action and their different interacting human targets cells during SARS-CoV-2 infection. Finally, we discuss possible ways how an interference with their molecular function could be exploited for new therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Kaifee Arman
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada.
| | - Zeinab Dalloul
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
5
|
Izzo C, Visco V, Gambardella J, Ferruzzi GJ, Rispoli A, Rusciano MR, Toni AL, Virtuoso N, Carrizzo A, Di Pietro P, Iaccarino G, Vecchione C, Ciccarelli M. Cardiovascular Implications of microRNAs in Coronavirus Disease 2019. J Pharmacol Exp Ther 2023; 384:102-108. [PMID: 35779946 DOI: 10.1124/jpet.122.001210] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/13/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to be a global challenge due to resulting morbidity and mortality. Cardiovascular (CV) involvement is a crucial complication in coronavirus disease 2019 (COVID-19), and no strategies are available to prevent or specifically address CV events in COVID-19 patients. The identification of molecular partners contributing to CV manifestations in COVID-19 patients is crucial for providing early biomarkers, prognostic predictors, and new therapeutic targets. The current report will focus on the role of microRNAs (miRNAs) in CV complications associated with COVID-19. Indeed, miRNAs have been proposed as valuable biomarkers and predictors of both cardiac and vascular damage occurring in SARS-CoV-2 infection. SIGNIFICANCE STATEMENT: It is essential to identify the molecular mediators of coronavirus disease 2019 (COVID-19) cardiovascular (CV) complications. This report focused on the role of microRNAs in CV complications associated with COVID-19, discussing their potential use as biomarkers, prognostic predictors, and therapeutic targets.
Collapse
Affiliation(s)
- Carmine Izzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Jessica Gambardella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Germano Junior Ferruzzi
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Antonella Rispoli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Anna Laura Toni
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Nicola Virtuoso
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Guido Iaccarino
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| |
Collapse
|
6
|
Liposome encapsulated clodronate mediated elimination of pathogenic macrophages and microglia: A promising pharmacological regime to defuse cytokine storm in COVID-19. MEDICINE IN DRUG DISCOVERY 2022; 15:100136. [PMID: 35721801 PMCID: PMC9190184 DOI: 10.1016/j.medidd.2022.100136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022] Open
Abstract
The emergence of new SARS-CoV-2 variants continues to pose an enormous public health concern. The SARS-CoV-2 infection disrupted host immune response accounting for cytokine storm has been linked to multiorgan failure and mortality in a significant portion of positive cases. Abruptly activated macrophages have been identified as the key pathogenic determinant of cytokine storm in COVID-19. Besides, reactive microglia have been known to discharge a surplus amount of proinflammatory factors leading to neuropathogenic events in the brains of SARS-CoV-2 infected individuals. Considering the fact, depletion of activated macrophages and microglia could be proposed to eradicate the life-threatening cytokine storm in COVID-19. Clodronate, a non-nitrogenous bisphosphonate drug has been identified as a potent macrophage and microglial depleting agent. While recent advancement in the field of liposome encapsulation technology offers the most promising biological tool for drug delivery, liposome encapsulated clodronate has been reported to effectively target and induce prominent phagocytic cell death in activated macrophages and microglia compared to free clodronate molecules. Thus, in this review article, we emphasize that depletion of activated macrophages and microglial cells by administration of liposome encapsulated clodronate can be a potential therapeutic strategy to diminish the pathogenic cytokine storm and alleviate multiorgan failure in COVID-19. Moreover, recently developed COVID-19 vaccines appear to render the chronic activation of macrophages accounting for immunological dysregulation in some cases. Therefore, the use of liposome encapsulated clodronate can also be extended to the clinical management of unforeseen immunogenic reactions resulting from activated macrophages associated adverse effects of COVID-19 vaccines.
Collapse
|
7
|
Wang Z, Xu C, Zhang Y, Huo X, Su J. Dietary supplementation with nanoparticle CMCS-20a enhances the resistance to GCRV infection in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2022; 127:572-584. [PMID: 35798246 DOI: 10.1016/j.fsi.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Combination of antimicrobial proteins and nanomaterials provides a platform for the development of immunopotentiators. Oral administration of immunopotentiators can significantly enhance the immunity of organisms, which provides ideas for disease prevention. In this study, we confirmed that nanoparticles CMCS-20a can efficiently prevent grass carp reovirus (GCRV) infection. Firstly, we verified that CiCXCL20a is involved in the immune responses post GCRV challenge in vivo and alleviates the cell death post GCRV challenge in CIK cells. Then, we prepared nanoparticles CMCS-20a using carboxymethyl chitosan (CMCS) loaded with grass carp (Ctenopharyngodon idella) CXCL20a (CiCXCL20a). Meanwhile, we confirmed nanoparticles CMCS-20a can alleviate the degradation in intestine. Subsequently, we added it to the feed by low temperature vacuum drying method and high temperature spray drying method, respectively. Grass carp were oral administration for 28 days and challenged by GCRV. Low temperature vacuum drying group (LD-CMCS-20a) significantly improve grass carp survival rate, but not high temperature spray drying group (HD-CMCS-20a). To reveal the mechanisms, we investigated the serum biochemical indexes, intestinal mucus barrier, immune gene regulation and tissue damage. The complement component 3 content, lysozyme and total superoxide dismutase activities are highest in LD-CMCS-20a group. LD-CMCS-20a effectively attenuates the damage of GCRV to the number of intestinal villous goblet cells and mucin thickness. LD-CMCS-20a effectively regulates mRNA expressions of immune genes (IFN1, Mx2, Gig1 and IgM) in spleen and head kidney tissues. In addition, LD-CMCS-20a obviously alleviate tissue lesions and viral load in spleen. These results indicated that the nanoparticles CMCS-20a can enhance the disease resistance of fish by improving their immunity, which provides a new perspective for fish to prevent viral infections.
Collapse
Affiliation(s)
- Zhensheng Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Chuang Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanqi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
8
|
Abusalah MAH, Khalifa M, Al-Hatamleh MAI, Jarrar M, Mohamud R, Chan YY. Nucleic Acid-Based COVID-19 Therapy Targeting Cytokine Storms: Strategies to Quell the Storm. J Pers Med 2022; 12:386. [PMID: 35330388 PMCID: PMC8948998 DOI: 10.3390/jpm12030386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has shaken the world and triggered drastic changes in our lifestyle to control it. Despite the non-typical efforts, COVID-19 still thrives and plagues humanity worldwide. The unparalleled degree of infection has been met with an exceptional degree of research to counteract it. Many drugs and therapeutic technologies have been repurposed and discovered, but no groundbreaking antiviral agent has been introduced yet to eradicate COVID-19 and restore normalcy. As lethality is directly correlated with the severity of disease, hospitalized severe cases are of the greatest importance to reduce, especially the cytokine storm phenomenon. This severe inflammatory phenomenon characterized by elevated levels of inflammatory mediators can be targeted to relieve symptoms and save the infected patients. One of the promising therapeutic strategies to combat COVID-19 is nucleic acid-based therapeutic approaches, including microRNAs (miRNAs). This work is an up-to-date review aimed to comprehensively discuss the current nucleic acid-based therapeutics against COVID-19 and their mechanisms of action, taking into consideration the emerging SARS-CoV-2 variants of concern, as well as providing potential future directions. miRNAs can be used to run interference with the expression of viral proteins, while endogenous miRNAs can be targeted as well, offering a versatile platform to control SARS-CoV-2 infection. By targeting these miRNAs, the COVID-19-induced cytokine storm can be suppressed. Therefore, nucleic acid-based therapeutics (miRNAs included) have a latent ability to break the COVID-19 infection in general and quell the cytokine storm in particular.
Collapse
Affiliation(s)
- Mai Abdel Haleem Abusalah
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| | - Moad Khalifa
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Mu’taman Jarrar
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
- Medical Education Department, King Fahd Hospital of the University, Al-Khobar 34445, Saudi Arabia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Yean Yean Chan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| |
Collapse
|
9
|
Choi JH, Lee YH, Kwon TW, Ko SG, Nah SY, Cho IH. Can Panax ginseng help control cytokine storm in COVID-19? J Ginseng Res 2022; 46:337-347. [PMID: 35233163 PMCID: PMC8876050 DOI: 10.1016/j.jgr.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/05/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is currently a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 are directly associated with hyper-activation of innate immune response that excessively produce pro-inflammatory cytokines and induce cytokine storm, leading to multi-organ-failure and significant morbidity/mortality. Currently, several antiviral drugs such as Paxlovid (nirmatrelvir and ritonavir) and molnupiravir are authorized to treat mild to moderate COVID-19, however, there are still no drugs that can specifically fight against challenges of SARS-CoV-2 variants. Panax ginseng, a medicinal plant widely used for treating various conditions, might be appropriate for this need due to its anti-inflammatory/cytokine/viral activities, fewer side effects, and cost efficiency. To review Panax ginseng and its pharmacologically active-ingredients as potential phytopharmaceuticals for treating cytokine storm of COVID-19, articles that reporting its positive effects on the cytokine production were searched from academic databases. Experimental/clinical evidences for the effectiveness of Panax ginseng and its active-ingredients in preventing or mitigating cytokine storm, especially for the cascade of cytokine storm, suggest that they might be beneficial as an adjunct treatment for cytokine storm of COVID-19. This review may provide a new approach to discover specific medications using Panax ginseng to control cytokine storm of COVID-19.
Collapse
|
10
|
Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Mol Cell Biochem 2022; 477:1155-1193. [PMID: 35084674 PMCID: PMC8793096 DOI: 10.1007/s11010-022-04356-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
A growing amount of epidemiological data from multiple countries indicate an increased prevalence of obesity, more importantly central obesity, among hospitalized subjects with COVID-19. This suggests that obesity is a major factor contributing to adverse outcome of the disease. As it is a metabolic disorder with dysregulated immune and endocrine function, it is logical that dysfunctional metabolism contributes to the mechanisms behind obesity being a risk factor for adverse outcome in COVID-19. Emerging data suggest that in obese subjects, (a) the molecular mechanisms of viral entry and spread mediated through ACE2 receptor, a multifunctional host cell protein which links to cellular homeostasis mechanisms, are affected. This includes perturbation of the physiological renin-angiotensin system pathway causing pro-inflammatory and pro-thrombotic challenges (b) existent metabolic overload and ER stress-induced UPR pathway make obese subjects vulnerable to severe COVID-19, (c) host cell response is altered involving reprogramming of metabolism and epigenetic mechanisms involving microRNAs in line with changes in obesity, and (d) adiposopathy with altered endocrine, adipokine, and cytokine profile contributes to altered immune cell metabolism, systemic inflammation, and vascular endothelial dysfunction, exacerbating COVID-19 pathology. In this review, we have examined the available literature on the underlying mechanisms contributing to obesity being a risk for adverse outcome in COVID-19.
Collapse
|
11
|
Bautista-Becerril B, Pérez-Dimas G, Sommerhalder-Nava PC, Hanono A, Martínez-Cisneros JA, Zarate-Maldonado B, Muñoz-Soria E, Aquino-Gálvez A, Castillejos-López M, Juárez-Cisneros A, Lopez-Gonzalez JS, Camarena A. miRNAs, from Evolutionary Junk to Possible Prognostic Markers and Therapeutic Targets in COVID-19. Viruses 2021; 14:41. [PMID: 35062245 PMCID: PMC8781105 DOI: 10.3390/v14010041] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has been a public health issue around the world in the last few years. Currently, there is no specific antiviral treatment to fight the disease. Thus, it is essential to highlight possible prognostic predictors that could identify patients with a high risk of developing complications. Within this framework, miRNA biomolecules play a vital role in the genetic regulation of various genes, principally, those related to the pathophysiology of the disease. Here, we review the interaction of host and viral microRNAs with molecular and cellular elements that could potentiate the main pulmonary, cardiac, renal, circulatory, and neuronal complications in COVID-19 patients. miR-26a, miR-29b, miR-21, miR-372, and miR-2392, among others, have been associated with exacerbation of the inflammatory process, increasing the risk of a cytokine storm. In addition, increased expression of miR-15b, -199a, and -491 are related to the prognosis of the disease, and miR-192 and miR-323a were identified as clinical predictors of mortality in patients admitted to the intensive care unit. Finally, we address miR-29, miR-122, miR-155, and miR-200, among others, as possible therapeutic targets. However, more studies are required to confirm these findings.
Collapse
Affiliation(s)
- Brandon Bautista-Becerril
- Laboratorio HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (B.B.-B.); (A.J.-C.)
- Escuela Superior de Medicina, Departamento de Posgrado, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.P.-D.); (E.M.-S.)
| | - Guillermo Pérez-Dimas
- Escuela Superior de Medicina, Departamento de Posgrado, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.P.-D.); (E.M.-S.)
| | - Paola C. Sommerhalder-Nava
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Mexico City 52786, Mexico; (P.C.S.-N.); (A.H.); (B.Z.-M.)
| | - Alejandro Hanono
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Mexico City 52786, Mexico; (P.C.S.-N.); (A.H.); (B.Z.-M.)
| | | | - Bárbara Zarate-Maldonado
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Mexico City 52786, Mexico; (P.C.S.-N.); (A.H.); (B.Z.-M.)
| | - Evangelina Muñoz-Soria
- Escuela Superior de Medicina, Departamento de Posgrado, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.P.-D.); (E.M.-S.)
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Manuel Castillejos-López
- Departamento de Epidemiología Hospitalaria e Infectología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Armida Juárez-Cisneros
- Laboratorio HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (B.B.-B.); (A.J.-C.)
| | - Jose S. Lopez-Gonzalez
- Laboratorio de Cáncer Pulmonar, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Angel Camarena
- Laboratorio HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (B.B.-B.); (A.J.-C.)
| |
Collapse
|
12
|
Narożna M, Rubiś B. Anti-SARS-CoV-2 Strategies and the Potential Role of miRNA in the Assessment of COVID-19 Morbidity, Recurrence, and Therapy. Int J Mol Sci 2021; 22:8663. [PMID: 34445368 PMCID: PMC8395427 DOI: 10.3390/ijms22168663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, we have experienced a serious pandemic. Despite significant technological advances in molecular technologies, it is very challenging to slow down the infection spread. It appeared that due to globalization, SARS-CoV-2 spread easily and adapted to new environments or geographical or weather zones. Additionally, new variants are emerging that show different infection potential and clinical outcomes. On the other hand, we have some experience with other pandemics and some solutions in virus elimination that could be adapted. This is of high importance since, as the latest reports demonstrate, vaccine technology might not follow the new, mutated virus outbreaks. Thus, identification of novel strategies and markers or diagnostic methods is highly necessary. For this reason, we present some of the latest views on SARS-CoV-2/COVID-19 therapeutic strategies and raise a solution based on miRNA. We believe that in the face of the rapidly increasing global situation and based on analogical studies of other viruses, the possibility of using the biological potential of miRNA technology is very promising. It could be used as a promising diagnostic and prognostic factor, as well as a therapeutic target and tool.
Collapse
Affiliation(s)
- Maria Narożna
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4 Święcickiego St., 60-781 Poznan, Poland;
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland
| |
Collapse
|
13
|
Hassan AE. An observational cohort study to assess N-acetylglucosamine for COVID-19 treatment in the inpatient setting. Ann Med Surg (Lond) 2021; 68:102574. [PMID: 34306677 PMCID: PMC8282940 DOI: 10.1016/j.amsu.2021.102574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has affected millions globally, with a continued need for effective treatments. N-acetylglucosamine has anti-inflammatory activities and modulates immune response. This study evaluated whether N-acetylglucosamine administered orally improves clinical outcomes for patients admitted to the hospital due to COVID-19. MATERIALS AND METHODS This single-center, prospective, observational cohort study used a retrospective control group for comparison. Multivariate analyses evaluated whether N-acetylglucosamine was an independent predictor of primary outcomes (rate of intubation, hospital length-of-stay, and mortality) and select secondary outcomes (intensive care unit [ICU] admission, ICU length-of-stay, supplemental oxygen use duration, hospice initiation, and poor clinical outcome [defined as combined hospice initiation/death]). RESULTS Of the 50 patients enrolled in the N-acetylglucosamine treatment group, 48 patients had follow-up data (50.0% [24/48] male; median age 63 years, range: 29-88). Multivariate analysis showed the treatment group had improved hospital length-of-stay (β: 4.27 [95% confidence interval (CI) -5.67; -2.85], p < 0.001), ICU admission (odds ratio [OR] 0.32 [95% CI 0.10; 0.96], p = 0.049), and poor clinical outcome (OR 0.30 [95% CI 0.09; 0.86], p = 0.034). Mortality was significantly lower for treatment versus control on univariate analysis (12.5% vs. 28.0%, respectively; p = 0.039) and approached significance on multivariate analysis (p = 0.081). CONCLUSIONS N-acetylglucosamine administration was associated with reduced hospital length-of-stay, ICU admission rates, and death/hospice rates in adults with COVID-19 compared to those who received standard care alone. An upcoming trial will further investigate N-acetylglucosamine's effects. TRIAL REGISTRATION NCT04706416.
Collapse
Affiliation(s)
- Ameer E. Hassan
- Valley Baptist Medical Center, 2101 Pease St, Harlingen, TX, 78550, USA
| |
Collapse
|
14
|
Zimecki M, Actor JK, Kruzel ML. The potential for Lactoferrin to reduce SARS-CoV-2 induced cytokine storm. Int Immunopharmacol 2021; 95:107571. [PMID: 33765614 PMCID: PMC7953442 DOI: 10.1016/j.intimp.2021.107571] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic is a serious global health threat caused by severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2). Symptoms of COVID-19 are highly variable with common hyperactivity of immune responses known as a "cytokine storm". In fact, this massive release of inflammatory cytokines into in the pulmonary alveolar structure is a main cause of mortality during COVID-19 infection. Current management of COVID-19 is supportive and there is no common clinical protocol applied to suppress this pathological state. Lactoferrin (LF), an iron binding protein, is a first line defense protein that is present in neutrophils and excretory fluids of all mammals, and is well recognized for its role in maturation and regulation of immune system function. Also, due to its ability to sequester free iron, LF is known to protect against insult-induced oxidative stress and subsequent "cytokine storm" that results in dramatic necrosis within the affected tissue. Review of the literature strongly suggests utility of LF to silence the "cytokine storm", giving credence to both prophylactic and therapeutic approaches towards combating COVID-19 infection.
Collapse
Affiliation(s)
- Michał Zimecki
- The Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jeffrey K Actor
- University of Texas, Health Science Center Houston, Texas, USA.
| | - Marian L Kruzel
- University of Texas, Health Science Center Houston, Texas, USA
| |
Collapse
|
15
|
Gligorijević N, Stanić-Vučinić D, Radomirović M, Stojadinović M, Khulal U, Nedić O, Ćirković Veličković T. Role of Resveratrol in Prevention and Control of Cardiovascular Disorders and Cardiovascular Complications Related to COVID-19 Disease: Mode of Action and Approaches Explored to Increase Its Bioavailability. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26102834. [PMID: 34064568 PMCID: PMC8151233 DOI: 10.3390/molecules26102834] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Resveratrol is a phytoalexin produced by many plants as a defense mechanism against stress-inducing conditions. The richest dietary sources of resveratrol are berries and grapes, their juices and wines. Good bioavailability of resveratrol is not reflected in its high biological activity in vivo because of resveratrol isomerization and its poor solubility in aqueous solutions. Proteins, cyclodextrins and nanomaterials have been explored as innovative delivery vehicles for resveratrol to overcome this limitation. Numerous in vitro and in vivo studies demonstrated beneficial effects of resveratrol in cardiovascular diseases (CVD). Main beneficial effects of resveratrol intake are cardioprotective, anti-hypertensive, vasodilatory, anti-diabetic, and improvement of lipid status. As resveratrol can alleviate the numerous factors associated with CVD, it has potential as a functional supplement to reduce COVID-19 illness severity in patients displaying poor prognosis due to cardio-vascular complications. Resveratrol was shown to mitigate the major pathways involved in the pathogenesis of SARS-CoV-2 including regulation of the renin-angiotensin system and expression of angiotensin-converting enzyme 2, stimulation of immune system and downregulation of pro-inflammatory cytokine release. Therefore, several studies already have anticipated potential implementation of resveratrol in COVID-19 treatment. Regular intake of a resveratrol rich diet, or resveratrol-based complementary medicaments, may contribute to a healthier cardio-vascular system, prevention and control of CVD, including COVID-19 disease related complications of CVD.
Collapse
Affiliation(s)
- Nikola Gligorijević
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (N.G.); (O.N.)
| | - Dragana Stanić-Vučinić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
| | - Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
| | - Marija Stojadinović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
| | - Urmila Khulal
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Global Campus, Ghent University, Yeonsu-gu, Incheon 406-840, Korea
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (N.G.); (O.N.)
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Global Campus, Ghent University, Yeonsu-gu, Incheon 406-840, Korea
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-333-6608
| |
Collapse
|