1
|
Peterson IL, Liktor-Busa E, Karlage KL, Young SJ, Scholpa NE, Schnellmann RG, Largent-Milnes TM. Formoterol dynamically alters endocannabinoid tone in the periaqueductal gray inducing headache. J Headache Pain 2024; 25:200. [PMID: 39563240 PMCID: PMC11575070 DOI: 10.1186/s10194-024-01907-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Headache is a pain disorder present in populations world-wide with a higher incidence in females. Specifically, the incidences of medication overuse headache (MOH) have increased worldwide. Comorbidities of MOH include photosensitivity, anxiety, "brain fog", and decreased physical activity. The FDA-approved long-lasting selective β2-adrenergic receptor agonist, formoterol, is currently approved for use in severe asthma and chronic obstructive pulmonary disease. Recently, interest in repurposing formoterol for use in other disorders including Alzheimer's disease, and neuropathic pain after spinal cord injury and traumatic brain injury has gained traction. Thus, revisiting known side-effects of formoterol, like headache and anxiety, could inform treatment paradigms. The endocannabinoid (eCB) system is implicated in the etiology of preclinical headache, with observed decreases in the circulating levels of endogenous cannabinoids, referred to as Clinical Endocannabinoid Deficiency. As cross-talk between the eCB system and adrenergic receptors has been reported, this study investigated the role of the eCB system and ability of formoterol to induce headache-like periorbital allodynic behavior. METHODS Female 8-week-old C57Bl/6J mice were treated daily with formoterol (0.3 mg/kg, i.p.) for up to 42-days, during which they were assessed for periorbital allodynia, open field/novel object recognition, and photosensitivity. At the end of the study, the periaqueductal grey (PAG), a brain region known to contribute to both headache induction and maintenance, was collected and subjected to LC-MS to quantify endocannabinoid levels. RESULTS Mice exhibited periorbital allodynia at nearly all time points tested and photosensitivity from 28-days onward. Levels of endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), along with cannabinoid receptor 1 (CB1R) expression were altered by both age and upon treatment with formoterol. Administration of FAAH/MAGL inhibitors, to target the eCB system, and a non-selective cannabinoid receptor agonist, WIN 55,212 reversed the formoterol-induced periorbital allodynia. CONCLUSIONS These results suggest that formoterol is dysregulates eCB tone to drive headache-like periorbital allodynic behaviors. These results could help inform preventative treatment options for individuals receiving formoterol, as well as provide information on the interaction between the eCB and adrenergic system.
Collapse
Affiliation(s)
- Ingrid L Peterson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Erika Liktor-Busa
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Kelly L Karlage
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Sally J Young
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
- Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States
- Department of Neuroscience, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Tally M Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
2
|
Levine AA, Liktor-Busa E, Balasubramanian S, Palomino SM, Burtman AM, Couture SA, Lipinski AA, Langlais PR, Largent-Milnes TM. Depletion of Endothelial-Derived 2-AG Reduces Blood-Endothelial Barrier Integrity via Alteration of VE-Cadherin and the Phospho-Proteome. Int J Mol Sci 2023; 25:531. [PMID: 38203706 PMCID: PMC10778805 DOI: 10.3390/ijms25010531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Mounting evidence supports the role of the endocannabinoid system in neurophysiology, including blood-brain barrier (BBB) function. Recent work has demonstrated that activation of endocannabinoid receptors can mitigate insults to the BBB during neurological disorders like traumatic brain injury, cortical spreading depression, and stroke. As alterations to the BBB are associated with worsening clinical outcomes in these conditions, studies herein sought to examine the impact of endocannabinoid depletion on BBB integrity. Barrier integrity was investigated in vitro via bEnd.3 cell monolayers to assess endocannabinoid synthesis, barrier function, calcium influx, junctional protein expression, and proteome-wide changes. Inhibition of 2-AG synthesis using DAGLα inhibition and siRNA inhibition of DAGLα led to loss of barrier integrity via altered expression of VE-cadherin, which could be partially rescued by exogenous application of 2-AG. Moreover, the deleterious effects of DAGLα inhibition on BBB integrity showed both calcium and PKC (protein kinase C)-dependency. These data indicate that disruption of 2-AG homeostasis in brain endothelial cells, in the absence of insult, is sufficient to disrupt BBB integrity thus supporting the role of the endocannabinoid system in neurovascular disorders.
Collapse
Affiliation(s)
- Aidan A. Levine
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| | - Erika Liktor-Busa
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| | - Shreya Balasubramanian
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| | - Seph M. Palomino
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| | - Anya M. Burtman
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| | - Sarah A. Couture
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| | - Austin A. Lipinski
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (P.R.L.)
| | - Paul R. Langlais
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (P.R.L.)
| | - Tally M. Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (A.A.L.); (E.L.-B.); (S.B.); (S.M.P.); (A.M.B.); (S.A.C.)
| |
Collapse
|
3
|
Wang Y, Dong L, Zhang Y, Zhang Y, Qin G, Zhang D, Chen L, He W, Zhou J. Activation of the microglial P2X7R/NLRP3 inflammasome mediates central sensitization in a mouse model of medication overuse headache. Front Mol Neurosci 2023; 16:1177171. [PMID: 37377770 PMCID: PMC10291138 DOI: 10.3389/fnmol.2023.1177171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Background Excessive use of headache treatments often leads to the development, progression and exacerbation of primary headache, which is defined as medication overuse headache (MOH). A significant pathophysiological mechanism of MOH is central sensitization. Recent evidence suggests that central sensitization in chronic headache is a result of inflammatory responses mediated by microglial activation in the trigeminal nucleus caudalis (TNC). However, it is unknown whether microglial activation has an impact on the central sensitization of MOH. Accordingly, the goal of this research was to determine how microglial activation and the P2X7R/NLRP3 inflammasome signaling pathway in the TNC contribute to the pathogenesis of MOH. Methods Repeated intraperitoneal injection of sumatriptan (SUMA) was used to establish a mouse model of MOH. Basal mechanical hyperalgesia was evaluated using von Frey filaments. As central sensitization biomarkers, the c-Fos and CGRP expression levels were measured by immunofluorescence analysis. We estimated the expression of microglial biomarkers (Iba1 and iNOS) within the TNC by qRT-PCR, western blotting and immunofluorescence analysis. To elucidate the effect of microglial activation and the P2X7/NLRP3 signaling pathway on central sensitization in MOH, we evaluated whether the microglia-specific inhibitor minocycline, the P2X7R-specific antagonist BBG and the NLRP3-specific inhibitor MCC950 altered SUMA-caused mechanical hyperalgesia. Furthermore, we examined c-Fos and CGRP expression within the TNC following individual injections of these inhibitors. Results Repeated SUMA injection induced basal mechanical hyperalgesia, increased c-Fos and CGRP levels, and activated microglia within the TNC. Inhibiting microglial activation with minocycline prevented the emergence of mechanical hyperalgesia and cut down c-Fos and CGRP expression. Immunofluorescence colocalization analysis revealed that P2X7R was predominantly co-localized with microglia. The levels of P2X7R and the NLRP3 inflammasome were elevated by repeated SUMA injection, and blocking P2X7R and NLRP3 inhibited mechanical hyperalgesia and cut down c-Fos and CGRP expression within the TNC. Conclusion Based on the current findings, inhibiting microglial activation could reduce central sensitization caused by chronic SUMA treatment via the P2X7R/NLRP3 signaling pathway. The clinical management of MOH may benefit from a novel strategy that inhibits microglial activation.
Collapse
Affiliation(s)
- Yanyun Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Dong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixin Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei He
- Department of Neurology, The First Branch of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Liktor-Busa E, Levine AA, Palomino SM, Singh S, Wahl J, Vanderah TW, Stella N, Largent-Milnes TM. ABHD6 and MAGL control 2-AG levels in the PAG and allodynia in a CSD-induced periorbital model of headache. FRONTIERS IN PAIN RESEARCH 2023; 4:1171188. [PMID: 37287623 PMCID: PMC10242073 DOI: 10.3389/fpain.2023.1171188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/05/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction The high prevalence and severe symptoms of migraines in humans emphasizes the need to identify underlying mechanisms that can be targeted for therapeutic benefit. Clinical Endocannabinoid Deficiency (CED) posits that reduced endocannabinoid tone may contribute to migraine development and other neuropathic pain conditions. While strategies that increase levels of the endocannabinoid n-arachidonoylethanolamide have been tested, few studies have investigated targeting the levels of the more abundant endocannabinoid, 2-arachidonoylgycerol, as an effective migraine intervention. Methods Cortical spreading depression was induced in female Sprague Dawley rats via KCl (potassium chloride) administration, followed by measures of endocannabinoid levels, enzyme activity, and neuroinflammatory markers. Efficacy of inhibiting 2-arachidonoylglycerol hydrolysis to mitigate periorbital allodynia was then tested using reversal and prevention paradigms. Results We discovered reduced 2-arachidonoylglycerol levels in the periaqueductal grey associated with increased hydrolysis following headache induction. Pharmacological inhibition of the 2-arachidonoylglycerol hydrolyzing enzymes, α/β-hydrolase domain-containing 6 and monoacylglycerol lipase reversed and prevented induced periorbital allodynia in a cannabinoid receptor-dependent manner. Discussion Our study unravels a mechanistic link between 2-arachidonoylglycerol hydrolysis activity in the periaqueductal grey in a preclinical, rat model of migraine. Thus, 2-arachidonoylglycerol hydrolysis inhibitors represent a potential new therapeutic avenue for the treatment of headache.
Collapse
Affiliation(s)
- Erika Liktor-Busa
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Aidan A. Levine
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Seph M. Palomino
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Simar Singh
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Jared Wahl
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Todd W. Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
5
|
Tanaka M, Zhang Y. Preclinical Studies of Posttraumatic Headache and the Potential Therapeutics. Cells 2022; 12:cells12010155. [PMID: 36611947 PMCID: PMC9818317 DOI: 10.3390/cells12010155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Posttraumatic headache (PTH) attributed to traumatic brain injury (TBI) is a secondary headache developed within 7 days after head injury, and in a substantial number of patients PTH becomes chronic and lasts for more than 3 months. Current medications are almost entirely relied on the treatment of primary headache such as migraine, due to its migraine-like phenotype and the limited understanding on the PTH pathogenic mechanisms. To this end, increasing preclinical studies have been conducted in the last decade. We focus in this review on the trigeminovascular system from the animal studies since it provides the primary nociceptive sensory afferents innervating the head and face region, and the pathological changes in the trigeminal pathway are thought to play a key role in the development of PTH. In addition to the pathologies, PTH-like behaviors induced by TBI and further exacerbated by nitroglycerin, a general headache inducer through vasodilation are reviewed. We will overview the current pharmacotherapies including calcitonin gene-related peptide (CGRP) monoclonal antibody and sumatriptan in the PTH animal models. Given that modulation of the endocannabinoid (eCB) system has been well-documented in the treatment of migraine and TBI, the therapeutic potential of eCB in PTH will also be discussed.
Collapse
|
6
|
Zubrzycki M, Zubrzycka M, Wysiadecki G, Szemraj J, Jerczynska H, Stasiolek M. Release of Endocannabinoids into the Cerebrospinal Fluid during the Induction of the Trigemino-Hypoglossal Reflex in Rats. Curr Issues Mol Biol 2022; 44:2401-2416. [PMID: 35678693 PMCID: PMC9164053 DOI: 10.3390/cimb44050164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
The endocannabinoid system (ECS) plays an important role in pain processing and modulation. Since the specific effects of endocannabinoids within the orofacial area are largely unknown, we aimed to determine whether an increase in the endocannabinoid concentration in the cerebrospinal fluid (CSF) caused by the peripheral administration of the FAAH inhibitor URB597 and tooth pulp stimulation would affect the transmission of impulses between the sensory and motor centers localized in the vicinity of the third and fourth cerebral ventricles. The study objectives were evaluated on rats using a method that allowed the recording of the amplitude of evoked tongue jerks (ETJ) in response to noxious tooth pulp stimulation and URB597 treatment. The amplitude of ETJ was a measure of the effect of endocannabinoids on the neural structures. The concentrations of the endocannabinoids tested (AEA and 2-AG) were determined in the CSF, along with the expression of the cannabinoid receptors (CB1 and CB2) in the tissues of the mesencephalon, thalamus, and hypothalamus. We demonstrated that anandamide (AEA), but not 2-arachidonoylglycerol (2-AG), was significantly increased in the CSF after treatment with a FAAH inhibitor, while tooth pulp stimulation had no effect on the AEA and 2-AG concentrations in the CSF. We also found positive correlations between the CSF AEA concentration and cannabinoid receptor type 1 (CB1R) expression in the brain, and between 2-AG and cannabinoid receptor type 2 (CB2R), and negative correlations between the CSF concentration of AEA and brain CB2R expression, and between 2-AG and CB1R. Our study shows that endogenous AEA, which diffuses through the cerebroventricular ependyma into CSF and exerts a modulatory effect mediated by CB1Rs, alters the properties of neurons in the trigeminal sensory nuclei, interneurons, and motoneurons of the hypoglossal nerve. In addition, our findings may be consistent with the emerging concept that AEA and 2-AG have different regulatory mechanisms because they are involved differently in orofacial pain. We also suggest that FAAH inhibition may offer a therapeutic approach to the treatment of orofacial pain.
Collapse
Affiliation(s)
- Marek Zubrzycki
- Department of Cardiac Surgery and Transplantology, The Cardinal Stefan Wyszynski Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland
| | - Maria Zubrzycka
- Department of Clinical Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Grzegorz Wysiadecki
- Department of Normal and Clinical Anatomy, Chair of Anatomy and Histology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Hanna Jerczynska
- Central Scientific Laboratory (CoreLab), Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Mariusz Stasiolek
- Department of Neurology, Medical University of Lodz, Kopcinskiego 22, 90-153 Lodz, Poland;
| |
Collapse
|
7
|
Zubrzycki M, Zubrzycka M, Wysiadecki G, Szemraj J, Jerczynska H, Stasiolek M. Effect of Fatty Acid Amide Hydrolase Inhibitor URB597 on Orofacial Pain Perception in Rats. Int J Mol Sci 2022; 23:4665. [PMID: 35563056 PMCID: PMC9100922 DOI: 10.3390/ijms23094665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
Endocannabinoids act as analgesic agents in a number of headache models. However, their effectiveness varies with the route of administration and the type of pain. In this study, we assessed the role of the fatty acid amide hydrolase inhibitor URB597 in an animal model of orofacial pain based on tooth pulp stimulation. More specifically, we assessed the effects of intracerbroventricular (i.c.v.) and intraperitoneal (i.p.) administration of URB597 on the amplitude of evoked tongue jerks (ETJ) in rats. The levels of the investigated mediators anandamide (AEA), 2-arachidonyl glycerol (2-AG), Substance P (SP), calcitonin-gene-related peptide (CGRP), endomorphin-2 (EM-2) and fatty acid amide hydrolase (FAAH) inhibitor by URB597 and receptors cannabinoid type-1 receptors (CB1R), cannabinoid type-2 receptors (CB2R) and µ-opioid receptors (MOR) were determined in the mesencephalon, thalamus and hypothalamus tissues. We have shown that increasing endocannabinoid AEA levels by both central and peripheral inhibition of FAAH inhibitor by URB597 has an antinociceptive effect on the trigemino-hypoglossal reflex mediated by CB1R and influences the activation of the brain areas studied. On the other hand, URB597 had no effect on the concentration of 2-AG in the examined brain structures and caused a significant decrease in CB2R mRNA expression in the hypothalamus only. Tooth pulp stimulation caused in a significant increase in SP, CGRP and EM-2 gene expression in the midbrain, thalamus and hypothalamus. In contrast, URB597 administered peripherally one hour before stimulation decreased the mRNA level of these endogenous neuropeptides in comparison with the control and stimulation in all examined brain structures. Our results show that centrally and peripherally administered URB597 is effective at preventing orofacial pain by inhibiting AEA catabolism and reducing the level of CGRP, SP and EM-2 gene expression and that AEA and 2-AG have different species and model-specific regulatory mechanisms. The data presented in this study may represent a new promising therapeutic target in the treatment of orofacial pain.
Collapse
Affiliation(s)
- Marek Zubrzycki
- Department of Cardiac Surgery and Transplantology, The Cardinal Stefan Wyszynski Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland
| | - Maria Zubrzycka
- Department of Clinical Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Grzegorz Wysiadecki
- Department of Normal and Clinical Anatomy, Chair of Anatomy and Histology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Hanna Jerczynska
- Central Scientific Laboratory (CoreLab), Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Mariusz Stasiolek
- Department of Neurology, Medical University of Lodz, Kopcinskiego 22, 90-153 Lodz, Poland;
| |
Collapse
|
8
|
Levine A, Liktor-Busa E, Lipinski AA, Couture S, Balasubramanian S, Aicher SA, Langlais PR, Vanderah TW, Largent-Milnes TM. Sex differences in the expression of the endocannabinoid system within V1M cortex and PAG of Sprague Dawley rats. Biol Sex Differ 2021; 12:60. [PMID: 34749819 PMCID: PMC8577021 DOI: 10.1186/s13293-021-00402-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/25/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Several chronic pain disorders, such as migraine and fibromyalgia, have an increased prevalence in the female population. The underlying mechanisms of this sex-biased prevalence have yet to be thoroughly documented, but could be related to endogenous differences in neuromodulators in pain networks, including the endocannabinoid system. The cellular endocannabinoid system comprises the endogenous lipid signals 2-AG (2-arachidonoylglycerol) and AEA (anandamide); the enzymes that synthesize and degrade them; and the cannabinoid receptors. The relative prevalence of different components of the endocannabinoid system in specific brain regions may alter responses to endogenous and exogenous ligands. METHODS Brain tissue from naïve male and estrous staged female Sprague Dawley rats was harvested from V1M cortex, periaqueductal gray, trigeminal nerve, and trigeminal nucleus caudalis. Tissue was analyzed for relative levels of endocannabinoid enzymes, ligands, and receptors via mass spectrometry, unlabeled quantitative proteomic analysis, and immunohistochemistry. RESULTS Mass spectrometry revealed significant differences in 2-AG and AEA concentrations between males and females, as well as between female estrous cycle stages. Specifically, 2-AG concentration was lower within female PAG as compared to male PAG (*p = 0.0077); female 2-AG concentration within the PAG did not demonstrate estrous stage dependence. Immunohistochemistry followed by proteomics confirmed the prevalence of 2-AG-endocannabinoid system enzymes in the female PAG. CONCLUSIONS Our results suggest that sex differences exist in the endocannabinoid system in two CNS regions relevant to cortical spreading depression (V1M cortex) and descending modulatory networks in pain/anxiety (PAG). These basal differences in endogenous endocannabinoid mechanisms may facilitate the development of chronic pain conditions and may also underlie sex differences in response to therapeutic intervention.
Collapse
Affiliation(s)
- Aidan Levine
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Erika Liktor-Busa
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Austin A Lipinski
- Endocrinology Division, Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Sarah Couture
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Shreya Balasubramanian
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Paul R Langlais
- Endocrinology Division, Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Tally M Largent-Milnes
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA.
| |
Collapse
|
9
|
Freitag FG. Headache Medicine Grand Challenge: Headache: A New Frontier, A New Challenge. FRONTIERS IN PAIN RESEARCH 2021; 2:690683. [PMID: 35295521 PMCID: PMC8915632 DOI: 10.3389/fpain.2021.690683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/04/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Frederick G. Freitag
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|