1
|
Sakiyama T, Miyake T, Furuta K, Kabashima K. A case of toxic epidermal necrolysis with hand-foot syndrome-like rash following tirabrutinib treatment. J Dermatol 2024. [PMID: 39526609 DOI: 10.1111/1346-8138.17541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Tomoki Sakiyama
- Department of Dermatology, Japanese Red Cross Otsu Hospital, Otsu, Shiga, Japan
| | - Toshiya Miyake
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kodai Furuta
- Department of Dermatology, Japanese Red Cross Otsu Hospital, Otsu, Shiga, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Travers RJ, Stepanian A, Jaffe I. Endothelium as a Source of Cardiovascular Toxicity From Antitumor Kinase Inhibitors. Arterioscler Thromb Vasc Biol 2024; 44:2143-2153. [PMID: 39145393 PMCID: PMC11424247 DOI: 10.1161/atvbaha.124.319864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Kinase inhibitors (KIs) targeting oncogenic molecular pathways have revolutionized cancer therapy. By directly targeting specific tumor-driving kinases, targeted therapies have fewer side effects compared with chemotherapy. Despite the enhanced specificity, cardiovascular side effects have emerged with many targeted cancer therapies that limit long-term outcomes in patients with cancer. Endothelial cells lining all blood vessels are critical to cardiovascular health and are also exposed to circulating levels of systemic anticancer therapies. Both on- and off-target perturbation of signaling pathways from KIs can cause endothelial dysfunction, resulting in cardiovascular toxicity. As such, the endothelium is a potential source, and also a therapeutic target for prevention, of cardiovascular toxicity. In this review, we examine the evidence for KI-induced endothelial cell dysfunction as a mechanism for the cardiovascular toxicities of vascular endothelial growth factor inhibitors, BCR-Abl (breakpoint cluster region-Abelson proto-oncogene) KIs, Bruton tyrosine inhibitors, and emerging information regarding endothelial toxicity of newer classes of KIs.
Collapse
Affiliation(s)
- Richard J Travers
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston MA
- Division of Hematology and Oncology, Tufts Medical Center, Boston MA
| | - Alec Stepanian
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston MA
| | - Iris Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston MA
| |
Collapse
|
3
|
Dailah HG, Hommdi AA, Koriri MD, Algathlan EM, Mohan S. Potential role of immunotherapy and targeted therapy in the treatment of cancer: A contemporary nursing practice. Heliyon 2024; 10:e24559. [PMID: 38298714 PMCID: PMC10828696 DOI: 10.1016/j.heliyon.2024.e24559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Immunotherapy and targeted therapy have emerged as promising therapeutic options for cancer patients. Immunotherapies induce a host immune response that mediates long-lived tumor destruction, while targeted therapies suppress molecular mechanisms that are important for tumor maintenance and growth. In addition, cytotoxic agents and targeted therapies regulate immune responses, which increases the chances that these therapeutic approaches may be efficiently combined with immunotherapy to ameliorate clinical outcomes. Various studies have suggested that combinations of therapies that target different stages of anti-tumor immunity may be synergistic, which can lead to potent and more prolonged responses that can achieve long-lasting tumor destruction. Nurses associated with cancer patients should have a better understanding of the immunotherapies and targeted therapies, such as their efficacy profiles, mechanisms of action, as well as management and prophylaxis of adverse events. Indeed, this knowledge will be important in establishing care for cancer patients receiving immunotherapies and targeted therapies for cancer treatment. Moreover, nurses need a better understanding regarding targeted therapies and immunotherapies to ameliorate outcomes in patients receiving these therapies, as well as management and early detection of possible adverse effects, especially adverse events associated with checkpoint inhibitors and various other therapies that control T-cell activation causing autoimmune toxicity. Nurses practice in numerous settings, such as hospitals, home healthcare agencies, radiation therapy facilities, ambulatory care clinics, and community agencies. Therefore, as compared to other members of the healthcare team, nurses often have better opportunities to develop the essential rapport in providing effective nurse-led patient education, which is important for effective therapeutic outcomes and continuance of therapy. In this article, we have particularly focused on providing a detailed overview on targeted therapies and immunotherapies used in cancer treatment, management of their associated adverse events, and the impact as well as strategies of nurse-led patient education.
Collapse
Affiliation(s)
- Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdullah Abdu Hommdi
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mahdi Dafer Koriri
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, 45142, Saudi Arabia
| | - Essa Mohammed Algathlan
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
4
|
Lu J, Wang W, Zhang C, Xu W, Chen W, Tao L, Li Z, Cheng J, Zhang Y. Characterization of glyphosate-induced cardiovascular toxicity and apoptosis in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158308. [PMID: 36030873 DOI: 10.1016/j.scitotenv.2022.158308] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate, the most widely used herbicide, presents new hazards to human health. The developmental toxicity of glyphosate, especially its cardiovascular toxicity, needs to be closely monitored. To understand how glyphosate affects development, we performed toxicity tests on zebrafish embryos that were continuously exposed to glyphosate. The results indicated that glyphosate affected the overall development of zebrafish embryos, including mortality, hatching abnormalities, and decreased body length. At the same time, zebrafish embryos exposed to glyphosate exhibited cardiac malformations, including enlarged chambers, thinned ventricular walls, and rhythm disturbances. In addition, defective intersegmental vasculature occurred after glyphosate exposure, indicating impaired angiogenesis. Mechanistically, apoptosis clustered in the heart and vascular regions and levels of ATP and apoptosis-related genes including caspase-3, caspase-9, bax, and bcl-2 were altered. In summary, the data showed that cardiovascular toxicity caused by glyphosate exposure may be related to apoptosis. Our study provides evidence for a link between glyphosate exposure and cardiovascular developmental toxicity. This raises concerns regarding the health risks of the glyphosate.
Collapse
Affiliation(s)
- Jian Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weiguo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Zhang
- Department of Pathology, UT southwestern Medical Center, Dallas, TX 75390, United States
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weidong Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
5
|
Xu PP, Shi ZY, Qian Y, Cheng S, Zhu Y, Jiang L, Li JF, Fang H, Huang HY, Yi HM, Ouyang BS, Wang L, Zhao WL. Ibrutinib, rituximab, and lenalidomide in unfit or frail patients aged 75 years or older with de novo diffuse large B-cell lymphoma: a phase 2, single-arm study. THE LANCET. HEALTHY LONGEVITY 2022; 3:e481-e490. [PMID: 36102758 DOI: 10.1016/s2666-7568(22)00123-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The optimal treatment for older adults with diffuse large B-cell lymphoma (DLBCL) needs to be further explored due to patient comorbidities, standard immunochemotherapy intolerance, and unfavourable genetic features. We did a phase 2 trial of ibrutinib, rituximab, and lenalidomide (iR2) to evaluate the efficacy and safety in older adult patients with de novo DLBCL. METHODS In this phase 2, single-arm study, unfit or frail patients with de novo DLBCL aged 75 years or older were enrolled at Shanghai Ruijin Hospital, Shanghai, China. During the induction phase from cycle 1 to 6, 560 mg ibrutinib was given orally daily throughout each 21-day treatment cycle, 375 mg/m2 rituximab was given intravenously on day 1, and 25 mg lenalidomide was given orally daily from day 1 to 10 in each cycle. Patients who had a complete response after induction were given another 6 cycles of lenalidomide maintenance (25 mg orally daily from day 1 to 10 every 21 days from cycle 7 to 12). The primary endpoint was complete response rate after 6 cycles or at the end of the induction treatment. This trial is registered with ClinicalTrials.gov, NCT03949062. FINDINGS Between May 15, 2019, and May 8, 2020, a total of 30 patients were enrolled. The end of induction complete response rate was 56·7% (95% CI 37·4-74·5), and overall response rate was 66·7% (95% CI 47·2-82·7). With a median follow-up of 27·6 months (IQR 23·9-29·6), the 2-year progression-free survival rate was 53·3% (95% CI 34·3-69·1) and the 2-year overall survival rate was 66·7% (95% CI 46·9-80·5). The main grade 3-4 haematological adverse events were neutropenia (seven patients [23%]), thrombocytopenia (three patients [10%]), and anaemia (two patients [7%]). The most common grade 3-4 non-haematological adverse event was pulmonary infection (seven patients [23%]). Atrial fibrillation was observed in three (10%) patients, including one grade 2 and two grade 3. INTERPRETATION A chemotherapy-free iR2 regimen is clinically effective and safe and warrants further investigation in phase 3 trials as first-line treatment in older adult patients with DLBCL. FUNDING National Natural Science Foundation of China, Shanghai Municipal Education Commission Gaofeng Clinical Medicine Grant Support, Clinical Research Plan of Shanghai Hospital Development Center, and Multicenter Clinical Research Project by Shanghai Jiao Tong University School of Medicine.
Collapse
Affiliation(s)
- Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai
| | - Zi-Yang Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai
| | - Ying Qian
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai
| | - Yue Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai
| | - Jian-Feng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai
| | - Heng-Ye Huang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Mei Yi
- Department of Pathology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin-Sheng Ouyang
- Department of Pathology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
6
|
Cheng S, Jin P, Li H, Pei D, Shu X. Evaluation of CML TKI Induced Cardiovascular Toxicity and Development of Potential Rescue Strategies in a Zebrafish Model. Front Pharmacol 2021; 12:740529. [PMID: 34733159 PMCID: PMC8558359 DOI: 10.3389/fphar.2021.740529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/04/2021] [Indexed: 01/20/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) to BCR-ABL1 have been successfully used to treat chronic myeloid leukemia (CML), however, multiple TKI-associated adverse events have been reported and become an emerging problem in patients. The mechanisms of TKI-induced toxicity are not fully understood and it remains challenging to predict potential cardiovascular toxicity of a compound. In this study, we established a zebrafish model to evaluate potential in vivo cardiovascular toxicity of TKIs. We treated the endothelium labeled Tg(kdrl:EGFP) transgenic zebrafish embryos with TKIs then performed confocal imaging to evaluate their vascular structure and function. We found that among FDA approved CML TKIs, ponatinib (the only approved TKI that is efficacious to T315I mutation) is the most toxic one. We then evaluated safety profiles of several clinical stage kinase inhibitors that can target T315I and found that HQP1351 treatment leads to vasculopathies similar to those induced by ponatinib while the allosteric ABL inhibitor asciminib does not induce noticeable cardiovascular defects, indicating it could be a promising therapeutic reagent for patients with T315I mutation. We then performed proof-of-principle study to rescue those TKI-induced cardiovascular toxicities and found that, among commonly used anti-hypertensive drugs, angiotensin receptor blockers such as azilsartan and valsartan are able to reduce ponatinib or HQP1351 induced cardiovascular toxicities. Together, this study establishes a zebrafish model that can be useful to evaluate cardiovascular toxicity of TKIs as well as to develop strategies to minimize TKI-induced adverse events.
Collapse
Affiliation(s)
- Shan Cheng
- School of Life Science, Westlake University, Hangzhou, China.,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Pan Jin
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Heying Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Duanqing Pei
- School of Life Science, Westlake University, Hangzhou, China.,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong, SAR China
| | - Xiaodong Shu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China
| |
Collapse
|