1
|
Ferdouse A, Clugston RD. Modest effect of differential dietary vitamin A intake on the pathogenesis of alcohol-associated liver disease. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1036-1049. [PMID: 38649284 DOI: 10.1111/acer.15329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Chronic alcohol consumption is a major public health issue. The primary organ damaged by alcohol abuse is the liver, leading to alcohol-associated liver disease (ALD). ALD begins with hepatic steatosis and can progress to fibrosis and cirrhosis; however, we have an incomplete understanding of ALD pathogenesis. Interestingly, the liver is also the major organ for vitamin A metabolism and storage, and ALD has previously been linked with altered hepatic vitamin A homeostasis. We hypothesize that alcohol-induced vitamin A depletion disrupts its normal function in the liver, contributing to the pathogenesis of ALD. To test this hypothesis, we postulated that adding copious vitamin A to the diet might alleviate ALD, and conversely, that a vitamin A deficient diet would worsen ALD. METHODS We conducted two dietary intervention studies in mice comparing deficient (0 IU/g diet) and copious (25 IU/g diet) dietary vitamin A intake versus control (4 IU/g diet), using the NIAAA chronic-binge model of ALD. Hepatic steatosis was assessed using histopathological and biochemical approaches. Tissue Vitamin A levels were measured using high-performance liquid chromatography. Markers of ALD, hepatic inflammation and lipid metabolism were analyzed by the quantitative polymerase chain reaction and western blotting. RESULTS As expected, a 0 IU/g Vitamin A diet decreased, and a 25 IU/g Vitamin A diet increased hepatic Vitamin A stores. However, alcohol induced changes in hepatic triglyceride levels, markers of hepatic lipid metabolism, inflammation and fibrosis were not significantly different in mice consuming a copious or deficient vitamin A diet compared to control. CONCLUSIONS Altered vitamin A intake and hepatic vitamin A storage have a minor effect on the pathogenesis of ALD. Thus, given the known link between altered retinoic acid signaling and ALD, future studies that further explore this linkage are warranted.
Collapse
Affiliation(s)
- Afroza Ferdouse
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- The Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Robin D Clugston
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- The Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Wang H, Juhasz AL, Zhang Y, Zhang L, Ma LQ, Zhou D, Li H. Alcohol consumption promotes arsenic absorption but reduces tissue arsenic accumulation in mice. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:107-116. [PMID: 38074988 PMCID: PMC10702898 DOI: 10.1016/j.eehl.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/11/2023] [Accepted: 06/25/2023] [Indexed: 01/12/2024]
Abstract
Alcohol consumption alters gut microflora and damages intestinal tight junction barriers, which may affect arsenic (As) oral bioavailability. In this study, mice were exposed to arsenate in the diet (6 μg/g) over a 3-week period and gavaged daily with Chinese liquor (0.05 or 0.10 mL per mouse per day). Following ingestion, 78.0% and 72.9% of the total As intake was absorbed and excreted via urine when co-exposed with liquor at daily doses of 0.05 or 0.10 mL, significantly greater than when As was supplied alone (44.7%). Alcohol co-exposure significantly altered gut microbiota but did not significantly alter As biotransformation in the intestinal tract or tissue. Significantly lower relative mRNA expression was observed for genes encoding for tight junctions in the ileum of liquor co-exposed mice, contributing to greater As bioavailability attributable to enhanced As absorption via the intestinal paracellular pathway. However, As concentration in the liver, kidney, and intestinal tissue of liquor-treated mice was decreased by 24.4%-42.6%, 27.5%-38.1%, and 28.1%-48.9% compared to control mice. This was likely due to greater renal glomerular filtration rate induced by alcohol, as suggested by significantly lower expression of genes encoding for renal tight junctions. In addition, in mice gavaged daily with 0.05 mL liquor, the serum antidiuretic hormone level was significantly lower than control mice (2.83 ± 0.59 vs. 5.40 ± 1.10 pg/mL), suggesting the diuretic function of alcohol consumption, which may facilitate As elimination via urine. These results highlight that alcohol consumption has a significant impact on the bioavailability and accumulation of As.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert L. Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Yaosheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lizhu Zhang
- Department of Nanxin Pharm, Nanjing 210000, China
| | - Lena Q. Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Wang HY, Chen S, Xue RY, Lin XY, Yang JL, Zhang YS, Li SW, Juhasz AL, Ma LQ, Zhou D, Li HB. Arsenic Ingested Early in Life Is More Readily Absorbed: Mechanistic Insights from Gut Microbiota, Gut Metabolites, and Intestinal Morphology and Functions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1017-1027. [PMID: 36580282 DOI: 10.1021/acs.est.2c04584] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Early-life arsenic (As) exposure is a particular health concern. However, it is unknown if As ingested early in life is more readily absorbed from the gastrointestinal (GI) tract, i.e., higher in oral bioavailability. Here, weanling (3-week) and adult (6-week-old) female mice were exposed to arsenate in the diet (10 μg g-1) over a 3-week period with As oral bioavailability estimated using As urinary excretion as the bioavailability endpoint. The As urinary excretion factor was 1.54-fold higher in weanling mice compared to adult mice (82.2 ± 7.29 versus 53.1 ± 3.73%), while weanling mice also showed 2.28-, 1.50-, 1.48-, and 1.89-fold higher As concentration in small intestine tissue, blood, liver, and kidneys, demonstrating significantly higher As oral bioavailability of early-life exposure. Compared to adult mice, weanling mice significantly differed in gut microbiota, but the difference did not lead to remarkable differences in As biotransformation in the GI tract or tissue and in overall gut metabolite composition. Although the expression of several metabolites (e.g., atrolactic acid, hydroxyphenyllactic acid, and xanthine) was up-regulated in weanling mice, they had limited ability to elevate As solubility in the intestinal tract. Compared to adult mice, the intestinal barrier function and intestinal expression of phosphate transporters responsible for arsenate absorption were similar in weanling mice. However, the small intestine of weanling mice was characterized by more defined intestinal villi with greater length and smaller width, providing a greater surface area for As to be absorbed across the GI barrier. The results highlight that early-life As exposure can be more readily absorbed, advancing the understanding of its health risk.
Collapse
Affiliation(s)
- Hong-Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jin-Lei Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yao-Sheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Xue Y, Li X, Tian Y, Huang X, Zhang L, Li J, Hou H, Dong P, Wang J. Salmon sperm DNA prevents acute liver injury by regulating alcohol‐induced steatosis and restores chronic hepatosis via alleviating inflammation and apoptosis. J Food Biochem 2022; 46:e14346. [DOI: 10.1111/jfbc.14346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/22/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Yuhan Xue
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Xiaojing Li
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Yingying Tian
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Xinyi Huang
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Lei Zhang
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Jing Li
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Hu Hou
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Ping Dong
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Jingfeng Wang
- School of Food Science and Engineering Ocean University of China Qingdao China
| |
Collapse
|
5
|
Melis M, Tang XH, Mai K, Gudas LJ, Trasino SE. Fenretinide Reduces Intestinal Mucin-2-Positive Goblet Cells in Chronic Alcohol Abuse. Pharmacology 2022; 107:406-416. [PMID: 35551126 DOI: 10.1159/000524386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/27/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Alcohol-induced thickening of the gut mucosal layer and increased expression of goblet cell gel-forming mucins, such as mucin-2 (MUC2) are associated with disruptions to the gut barrier in alcoholic liver disease (ALD). Interest in drugs that can target gut mucins in ALD has grown; however to date, no studies have examined the properties of drugs on expression of gut mucins in models of ALD. We previously demonstrated that at 10 mg/kg/day, the drug fenretinide (N-[4-hydroxyphenyl] retinamide [Fen]), a synthetic retinoid, mitigates alcohol-associated damage to the gut barrier and liver injury in a murine model of ALD. METHODS In this study, we specifically sought to examine the effects of Fen on gut goblet cells, and expression of mucins, including MUC2 using a 25-day Lieber-DeCarli model of chronic alcohol intake. RESULTS Our results show that chronic alcohol intake increased gut-mucosal thickening, goblet cell numbers, and mRNA and protein expression of MUC2 in both the ileum and colon. Alcohol intake was associated with marked decreases in ileal and colonic Notch signaling, levels of Notch ligands Dll1 and Dll4, and increases in the expression of Notch-associated genes indispensable for goblet cell specification, including Math1 and Spdef. Interestingly, ileal and colonic expression of KLF4, which is involved in terminal differentiation of goblet cells, was reduced in mice chronically fed alcohol. Coadministration of alcohol with Fen at 10 mg/kg/day significantly reduced alcohol-associated increases in ileal and colonic mucosal thickening, ileal Muc2, colonic Muc2, Muc5ac and Muc6 mRNAs, and goblet cell numbers. We also found that Fen strongly prevented alcohol-mediated suppression of the Notch ligand Dll1, Notch signaling, and alcohol-induced increases in expression of Notch-associated goblet cell specification genes in both the ileum and colon. In the absence of alcohol, Fen treatments alone at 10 mg/kg/day had no effects on any of the goblet cell-related endpoints. CONCLUSION These data show for the first time that the drug Fen possesses mucosal layer-modulating properties in response to chronic alcohol abuse. These data warrant further preclinical examination of Fen given the need for anti-ALD drugs and emerging evidence of a role for intestinal goblet cell mucins in the progression of ALD.
Collapse
Affiliation(s)
- Marta Melis
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Karen Mai
- Nutrition Program, Hunter College, City University of New York, New York, New York, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Steven E Trasino
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York, USA.,Nutrition Program, Hunter College, City University of New York, New York, New York, USA
| |
Collapse
|
6
|
Exercise Affects the Formation and Recovery of Alcoholic Liver Disease through the IL-6-p47 phox Oxidative-Stress Axis. Cells 2022; 11:cells11081305. [PMID: 35455983 PMCID: PMC9026480 DOI: 10.3390/cells11081305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
(1) Background: To explore the effect of exercise on the formation and recovery of alcoholic liver disease (ALD) and whether the IL-6−p47phox oxidative−stress axis is involved in that process. (2) Methods: Firstly, 23 six-week-old male C57BL/6J mice were randomly divided into the Con group, ALD group, ALD + NOXI group, ALD + Ex group, and ALD + Ex + NOXI group. The Liber−DeCarli alcoholic liquid diet was used for 6 weeks to establish the ALD mice model, and the Con group was given the TP4030C control diet. The remaining groups were fed with the TP4030B alcoholic diet, and exercise intervention was started after the ALD model establishment and lasted for another 6 weeks, with or without administration of the NOX inhibitor apocynin by intraperitoneal injection on every exercise training day. Secondly, 28 mice were randomly divided into the Sed group, Eth group, Eth + Ex group and Eth + Ex + NOXI group. The Sed group was given the TP4030C control diet. The remaining groups were fed with the TP4030B alcoholic diet and exercise intervention was started synchronously combined with or without administration of intraperitoneal apocynin injections on every exercise training day for 5 weeks. After each individual experiment was accomplished, physiological assessment and biochemical analysis of blood and tissue samples were examined. (3) Results: The levels of TG in serum and IL-6 protein content in liver tissue in the ALD group were significantly increased compared to the Con group (p < 0.05); compared with ALD, p47phox expression in muscle was increased significantly in the ALD + NOXI group (p < 0.05), and TG in serum decreased in the ALD + Ex group (p < 0.05). TG in serum, AST/ALT ratio, and IL-6 content in both liver and muscle decreased (p < 0.05) in the ALD + Ex + NOXI group with MDA in muscle significantly increased (p < 0.01). The AST/ALT ratio, TG in serum, SOD in liver, and p47phox in both liver and muscle in the ALD + Ex + NOXI group were significantly decreased compared with the ALD + NOXI group (p < 0.01). Compared with the ALD + Ex group, the liver index and HDL-C levels in serum were decreased (p < 0.05) in the ALD + Ex + NOXI group. The degree of hepatocyte steatosis and inflammatory infiltration were ameliorated after exercise intervention. In the Eth group, the relative epididymal fat content, HDL-C level, and AST/ALT ratio were significantly decreased, and TG and gp91phox in liver were significantly higher than in the Sed group (p < 0.05, p < 0.01). Compared with the Eth group, the AST/ALT ratio, MDA in the liver, and NOX4 and p47phox protein expression in the liver were significantly increased, and body weight decreased significantly in the Eth + Ex group (p < 0.05, p < 0.01), as did TG in the liver and MDA in muscle. In the th + Ex + NOXI group, gp91phox expression in the liver and body weight were significantly decreased (p < 0.05, p < 0.01). In the Eth + Ex + NOXI group, the ratio of AST/ALT and MDA in muscle were increased when compared with the Eth + Ex group, and the protein expression of gp91phox and p47phox were much lower (p < 0.01). (4) Conclusions: 6 weeks of exercise intervention during the recovery phase of ALD ameliorates hepatocyte damage and dyslipidemia through the IL-6−p47phox oxidative−stress axis, and applying a NOX inhibitor in combination could optimize this. However, drinking alcohol during exercise exacerbates dyslipidemia and oxidative stress, with hepatocyte IL-6−p47phox downregulated.
Collapse
|
7
|
Melis M, Tang XH, Trasino SE, Gudas LJ. Retinoids in the Pathogenesis and Treatment of Liver Diseases. Nutrients 2022; 14:1456. [PMID: 35406069 PMCID: PMC9002467 DOI: 10.3390/nu14071456] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A (VA), all-trans-retinol (ROL), and its analogs are collectively called retinoids. Acting through the retinoic acid receptors RARα, RARβ, and RARγ, all-trans-retinoic acid, an active metabolite of VA, is a potent regulator of numerous biological pathways, including embryonic and somatic cellular differentiation, immune functions, and energy metabolism. The liver is the primary organ for retinoid storage and metabolism in humans. For reasons that remain incompletely understood, a body of evidence shows that reductions in liver retinoids, aberrant retinoid metabolism, and reductions in RAR signaling are implicated in numerous diseases of the liver, including hepatocellular carcinoma, non-alcohol-associated fatty liver diseases, and alcohol-associated liver diseases. Conversely, restoration of retinoid signaling, pharmacological treatments with natural and synthetic retinoids, and newer agonists for specific RARs show promising benefits for treatment of a number of these liver diseases. Here we provide a comprehensive review of the literature demonstrating a role for retinoids in limiting the pathogenesis of these diseases and in the treatment of liver diseases.
Collapse
Affiliation(s)
- Marta Melis
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| | - Steven E. Trasino
- Nutrition Program, Hunter College, City University of New York, New York, NY 10065, USA;
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| |
Collapse
|