1
|
Shi A, Yun F, Shi L, Liu X, Jia Y. Research progress on the mechanism of common inflammatory pathways in the pathogenesis and development of lymphoma. Ann Med 2024; 56:2329130. [PMID: 38489405 PMCID: PMC10946270 DOI: 10.1080/07853890.2024.2329130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/25/2024] [Indexed: 03/17/2024] Open
Abstract
In recent years, the incidence and mortality rates of lymphoma have gradually increased worldwide. Tumorigenesis and drug resistance are closely related to intracellular inflammatory pathways in lymphoma. Therefore, understanding the biological role of inflammatory pathways and their abnormal activation in relation to the development of lymphoma and their selective modulation may open new avenues for targeted therapy of lymphoma. The biological functions of inflammatory pathways are extensive, and they are central hubs for regulating inflammatory responses, immune responses, and the tumour immune microenvironment. However, limited studies have investigated the role of inflammatory pathways in lymphoma development. This review summarizes the relationship between abnormal activation of common inflammatory pathways and lymphoma development to identify precise and efficient targeted therapeutic options for patients with advanced, drug-resistant lymphoma.
Collapse
Affiliation(s)
- Aorong Shi
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
| | - Fen Yun
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Lin Shi
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Xia Liu
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Yongfeng Jia
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| |
Collapse
|
2
|
Wu Y, Guo F, Li J, Shi W, Song L, Liu J. Curcumin ameliorates heatstroke-induced lung injury by activating the PI3K/AKT pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03572-z. [PMID: 39521756 DOI: 10.1007/s00210-024-03572-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Heatstroke (HS) poses a significant threat to public health. Curcumin, a polyphenolic compound, has been reported to possess anti-inflammatory and antioxidant properties. This study aimed to investigate the potential therapeutic effects of curcumin on HS-induced lung injury and to elucidate its underlying molecular mechanisms. We utilized network pharmacology to predict the potential targets of curcumin and determine its possible protective effects against HS. Molecular docking was performed to assess the affinity of curcumin to proteins. Forty mice were used for in vivo experiments to evaluate the therapeutic effects of curcumin, divided into four groups (n = 10 per group): normal control (NC), high-temperature control (HTC), low-dose curcumin heatstroke (H100c, 100 mg/kg/day), and high-dose curcumin heatstroke (H200c, 200 mg/kg/day). Furthermore, we evaluated lung pathology, ultrastructural alterations, and protein expression levels of key molecules. Molecular docking indicated a high binding affinity between curcumin and PIK3R1, AKT, and CASP3. In vivo experiments confirm that curcumin pretreatment significantly mitigates HS-induced lung tissue pathology and ultrastructural damage, with the H200c group showing notably greater improvement. Furthermore, curcumin pretreatment markedly enhances the activation of the PI3K/AKT pathway and suppresses the expression of cleaved caspase3, particularly in the H200c group. Our study suggests curcumin may alleviate HS-induced lung injury via the PI3K/AKT pathway, but limitations exist. We did not test key protein knockdown/overexpression, and PI3K/AKT may not be the only pathway. Human and mouse pharmacokinetic differences could affect clinical translation.
Collapse
Affiliation(s)
- Yizhan Wu
- Department of Graduate School, Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Fei Guo
- Department of Emergency Trauma Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang Uygur Autonomous Region, China
| | - Jiajia Li
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command of the PLA, No. 359 Youhao North Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Wenhui Shi
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command of the PLA, No. 359 Youhao North Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Laiyang Song
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command of the PLA, No. 359 Youhao North Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Jiangwei Liu
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command of the PLA, No. 359 Youhao North Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
3
|
Ryu JY, Chang YJ, Lee JS, Choi KY, Yang JD, Lee SJ, Lee J, Huh S, Kim JY, Chung HY. Extracranial Vascular Malformations Increase Cardiovascular Disease Risk: A Nationwide Population-Based Cohort Study. Plast Reconstr Surg 2024; 154:1047e-1058e. [PMID: 38232222 PMCID: PMC11512613 DOI: 10.1097/prs.0000000000011297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND Extracranial vascular malformations affect vessel inflammation, clotting, and ischemia. However, the relationship between extracranial vascular malformations and myocardial infarction (MI) or stroke has not been fully elucidated. Limited studies have investigated the association between extracranial vascular malformations and cardiovascular diseases. METHODS A total of 48,701 patients with extracranial vascular malformations and a control cohort of 487,010 age- and sex-matched participants from the Korean National Health Insurance database were included. The incidence and risk of MI, ischemic stroke (IS), and hemorrhagic stroke (HS) between participants with extracranial vascular malformations and the control cohort was compared. RESULTS After adjusting for other cardiovascular disease risk factors, the adjusted hazard ratios (aHRs) for venous malformations, capillary malformations (CMs), arteriovenous malformations (AVMs), and lymphatic malformations in patients with acute MI were 1.25 (CI, 1.04 to 1.50), 1.41 (CI, 1.24 to 1.61), 1.68 (CI, 1.18 to 2.37), and 1.40 (CI, 1.31 to 1.48), respectively. For IS, the aHRs were 1.55 (CI, 1.35 to 1.77), 1.92 (CI, 1.74 to 2.11), 1.13 (CI, 0.78 to 1.64), and 1.51 (CI, 1.44 to 1.58), respectively. For HS, the aHRs were 1.51 (CI, 1.12 to 2.05), 5.63 (CI, 4.97 to 6.38), 2.93 (CI, 1.82 to 4.72), and 1.34 (CI, 1.20 to 1.50), respectively. CONCLUSIONS Independent of cardiovascular risk factors, extracranial vascular malformations were associated with an increased risk of MI, IS, and HS. For patients with CMs and AVMs, intracerebral hemorrhage risk was particularly high, accounting for 563% and 293%, respectively. Therefore, even in patients with extracranial CMs or AVMs, performing diagnostic evaluations for cerebral AVMs and using measures to prevent intracerebral hemorrhage are crucial. CLINICAL QUESTION/LEVEL OF EVIDENCE Risk, II.
Collapse
Affiliation(s)
- Jeong Yeop Ryu
- From the Departments of Plastic and Reconstructive Surgery
| | | | - Joon Seok Lee
- From the Departments of Plastic and Reconstructive Surgery
| | | | - Jung Dug Yang
- From the Departments of Plastic and Reconstructive Surgery
| | | | | | | | | | - Ho Yun Chung
- From the Departments of Plastic and Reconstructive Surgery
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University
| |
Collapse
|
4
|
Lee MS, Lee HY, Oh SH, Kim CB, Kim JH, Yoo SH, Yoo YJ, Lee SY, Lee BC. Salvia miltiorrhiza and Its Compounds as Complementary Therapy for Dyslipidemia: A Meta-Analysis of Clinical Efficacy and In Silico Mechanistic Insights. Pharmaceuticals (Basel) 2024; 17:1426. [PMID: 39598338 PMCID: PMC11597782 DOI: 10.3390/ph17111426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Dyslipidemia is a significant risk factor for atherosclerotic cardiovascular disease (ASCVD), a leading cause of death worldwide. Salvia miltiorrhiza Burge is widely used in East Asia for cardiovascular health, showing potential benefits in lowering cholesterol and reducing inflammation. Methods: This study systematically reviewed and conducted a meta-analysis of randomized controlled trials (RCTs) to assess the clinical effectiveness of Salvia miltiorrhiza in treating dyslipidemia. Moreover, network pharmacology and molecular docking analyses were performed to explore the mechanisms underlying the effects of Salvia miltiorrhiza. Results: The meta-analysis revealed that when Salvia miltiorrhiza is combined with statin therapy, it significantly enhances lipid profiles, including reductions in total cholesterol, low-density lipoprotein cholesterol (LDL-C), and triglycerides and improvements in high-density lipoprotein cholesterol (HDL-C), compared to statin therapy alone. The in silico analyses indicated that Salvia miltiorrhiza may influence key biological pathways, such as the PI3K/Akt, JAK/STAT, and HMGCR pathways, which are involved in inflammation, lipid metabolism, and the development of atherosclerosis. Conclusions:Salvia miltiorrhiza shows potential as a complementary therapy for dyslipidemia, offering additional lipid-lowering and anti-inflammatory benefits.
Collapse
Affiliation(s)
- Min-Seong Lee
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (M.-S.L.); (H.-Y.L.); (S.-H.O.); (C.-B.K.); (J.-H.K.); (S.-H.Y.); (Y.-J.Y.)
| | - Han-Young Lee
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (M.-S.L.); (H.-Y.L.); (S.-H.O.); (C.-B.K.); (J.-H.K.); (S.-H.Y.); (Y.-J.Y.)
| | - Seung-Hyun Oh
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (M.-S.L.); (H.-Y.L.); (S.-H.O.); (C.-B.K.); (J.-H.K.); (S.-H.Y.); (Y.-J.Y.)
| | - Chang-Bum Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (M.-S.L.); (H.-Y.L.); (S.-H.O.); (C.-B.K.); (J.-H.K.); (S.-H.Y.); (Y.-J.Y.)
| | - Ji-Han Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (M.-S.L.); (H.-Y.L.); (S.-H.O.); (C.-B.K.); (J.-H.K.); (S.-H.Y.); (Y.-J.Y.)
| | - Seung-Hoon Yoo
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (M.-S.L.); (H.-Y.L.); (S.-H.O.); (C.-B.K.); (J.-H.K.); (S.-H.Y.); (Y.-J.Y.)
| | - Yeon-Joo Yoo
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (M.-S.L.); (H.-Y.L.); (S.-H.O.); (C.-B.K.); (J.-H.K.); (S.-H.Y.); (Y.-J.Y.)
| | - Su-Yeon Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Byung-Cheol Lee
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (M.-S.L.); (H.-Y.L.); (S.-H.O.); (C.-B.K.); (J.-H.K.); (S.-H.Y.); (Y.-J.Y.)
| |
Collapse
|
5
|
Jiang X, Tian L, Ren W, Li C, Hu X, Ge Y, Cheng L, Shi X, Jia Z. Cloning and Identification of Common Carp ( Cyprinus carpio) PI3KC3 and Its Expression in Response to CyHV-3 Infection. Curr Issues Mol Biol 2024; 46:11714-11728. [PMID: 39451576 PMCID: PMC11506267 DOI: 10.3390/cimb46100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are a class of key regulatory factors in eukaryotes that can inhibit viral replication by influencing autophagy. Currently, cyprinid herpesvirus 3 (CyHV-3) poses a serious threat to common carp culture. However, PI3K has not yet been identified in common carp. In this study, full-length PI3KC3 from common carp (CcPI3KC3), consisting of an open reading frame (ORF) of 2664 bp encoding a polypeptide of 887 amino acids, with a predicted molecular mass of 101.19 kDa and a theoretical isoelectric point (pI) of 5.97, was cloned. The amino acid and nucleotide sequences of CcPI3KC3 displayed high similarity to yellow catfish's (Tachysurus fulvidraco) PI3KC3. The tissue expression profile revealed that the mRNA levels of CcPI3KC3 in the liver, spleen, and head kidney were significantly greater than those in the brain, heart, intestines, gills, eyes, testes, and ovaries of common carp. We compared the expression patterns of CcPI3KC3 between "Longke-11" mirror carp (CyHV-3-resistant carp) and German mirror carp (non-resistant to CyHV-3) at different times (0, 48, 96, 144 h, 192, 240, 288 h post-infection (hpi)) after CyHV-3 infection. The results revealed that CcPI3KC3 mRNA expression significantly increased in the early infection stage. In the CyHV-3-resistant mirror carp variety, the relative expression of CcPI3KC3 was significantly greater at 48, 96, and 144 hpi compared with the nonbreeding strain groups after infection (p < 0.001). These results indicate that the full-length CcPI3KC3 sequence was successfully cloned from common carp for the first time, and it might play an important role in the immune system of common carp against CyHV-3 infection. This study provides a theoretical basis for the molecular mechanism of CyHV-3 resistance.
Collapse
Affiliation(s)
- Xiaona Jiang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Lijing Tian
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Wanying Ren
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Chitao Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Xuesong Hu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Yanlong Ge
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Lei Cheng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Xiaodan Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Zhiying Jia
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| |
Collapse
|
6
|
Kumar M, Patel K, Chinnapparaj S, Sharma T, Aggarwal A, Singla N, Karthigeyan M, Singh A, Sahoo SK, Tripathi M, Takkar A, Gupta T, Pal A, Attri SV, Bansal YS, Ratho RK, Gupta SK, Khullar M, Vashishta RK, Mukherjee KK, Grover VK, Prasad R, Chatterjee A, Gowda H, Bhagat H. Dysregulated Genes and Signaling Pathways in the Formation and Rupture of Intracranial Aneurysm. Transl Stroke Res 2024; 15:865-879. [PMID: 37644376 DOI: 10.1007/s12975-023-01178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/21/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023]
Abstract
Intracranial aneurysm (IA) has the potential to rupture. Despite scientific advances, we are still not in a position to screen patients for IA and identify those at risk of rupture. It is critical to comprehend the molecular basis of disease to facilitate the development of novel diagnostic strategies. We used transcriptomics to identify the dysregulated genes and understand their role in the disease biology. In particular, RNA-Seq was performed in tissue samples of controls, unruptured IA, and ruptured IA. Dysregulated genes (DGs) were identified and analyzed to understand the functional aspects of molecules. Subsequently, candidate genes were validated at both transcript and protein level. There were 314 DGs in patients with unruptured IA when compared to control samples. Out of these, SPARC and OSM were validated as candidate molecules in unruptured IA. PI3K-AKT signaling pathway was found to be an important pathway for the formation of IA. Similarly, 301 DGs were identified in the samples of ruptured IA when compared with unruptured IAs. CTSL was found to be a key candidate molecule which along with Hippo signaling pathway may be involved in the rupture of IA. We conclude that activation of PI3K-AKT signaling pathway by OSM along with up-regulation of SPARC is important for the formation of IA. Further, regulation of Hippo pathway through PI3K-AKT signaling results in the down-regulation of YAP1 gene. This along with up-regulation of CTSL leads to further weakening of aneurysm wall and its subsequent rupture.
Collapse
Affiliation(s)
- Munish Kumar
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Krishna Patel
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Shobia Chinnapparaj
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tanavi Sharma
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Aggarwal
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Navneet Singla
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhivanan Karthigeyan
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Apinderpreet Singh
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sushanta Kumar Sahoo
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manjul Tripathi
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aastha Takkar
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tulika Gupta
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Savita Verma Attri
- Pediatric Biochemistry, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yogender Singh Bansal
- Department of Forensic Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Radha Kanta Ratho
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil K Gupta
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kumar Vashishta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanchan Kumar Mukherjee
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vinod Kumar Grover
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajendra Prasad
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Hemant Bhagat
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
7
|
Ashayeri Ahmadabad H, Mohammadi Panah S, Ghasemnejad-Berenji H, Ghojavand S, Ghasemnejad-Berenji M, Khezri MR. Metformin and the PI3K/AKT signaling pathway: implications for cancer, cardiovascular, and central nervous system diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03358-3. [PMID: 39225830 DOI: 10.1007/s00210-024-03358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Recent findings have brought our understanding of diseases at the molecular level, highlighting upstream intracellular pathways as potential therapeutic targets. The PI3K/AKT pathway, a key regulator of cellular responses to environmental changes, is frequently altered in various diseases, making it a promising target for intervention. Metformin is the most known anti-diabetic agent that is known due to its effects on cancer, inflammatory-related diseases, oxidative stress, and other human diseases. It is clearly understood that metformin modulates the activity of the PI3K/AKT pathway leading to a wide variety of outcomes. This interaction has been well-studied in various diseases. Therefore, this review aims to examine PI3K/AKT-modulating properties of metformin in cancer, cardiovascular, and central nervous system diseases. Our findings indicate that metformin is effective in treating cancer and CNS diseases, and plays a role in both the prevention and treatment of cardiovascular diseases. These insights support the potential of metformin in comprehensive strategies for disease management.
Collapse
Affiliation(s)
| | | | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shabnam Ghojavand
- Faculty of Pharmacy, Islamic Azad University of Tehran, Tehran, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mohammad Rafi Khezri
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
8
|
Diallo A, Abbas M, Goodney G, Price E, Gaye A. Relationship between LDL-cholesterol, small and dense LDL particles, and mRNA expression in a cohort of African Americans. Am J Physiol Heart Circ Physiol 2024; 327:H690-H700. [PMID: 39028281 DOI: 10.1152/ajpheart.00332.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Understanding the characteristics and behavior of low-density lipoprotein (LDL) particles provides insights into the atherogenic risk of elevated LDL cholesterol in hypercholesterolemia, cardiovascular disease risks. Studying LDL particles helps identify specific LDL subtypes [e.g., small dense LDL particles (sdLDL)] that may be atherogenic and, consequently, potential targets for therapeutics. This study cohort consists of African Americans (AAs), a population disproportionately affected by cardiovascular diseases, thereby accentuating the importance of the investigation. Differential expression (DE) analysis was undertaken using a dataset comprising 17,947 protein-coding mRNAs from the whole blood transcriptomes of 416 samples to identify mRNAs associated with low-density lipoprotein cholesterol (LDL-C) and sdLDL plasma levels. Subsequently, mediation analyses were used to investigate the mediating role of sdLDL particles on the relationship between LDL-C levels and mRNA expression. Finally, pathway enrichment analysis was conducted to identify pathways involving mRNAs whose relationship with LDL-C is mediated by sdLDL. DE analysis revealed 1,048 and 284 mRNA transcripts differentially expressed by LDL-C and sdLDL levels, respectively. Mediation analysis revealed that the associations between LDL-C and 33 mRNAs were mediated by sdLDL. Of the 33 mRNAs mediated by sdLDL, 18 were mediated in both males and females. Nine mRNAs were mediated only in females, and six were mediated only in males. Pathway analysis showed that 33 mRNAs are involved in pathways associated with the immune system, inflammatory response, metabolism, and cardiovascular disease (CVD) risk. In conclusion, our study provides valuable insights into the complex interplay between LDL-C, sdLDL, and mRNA expression in a large sample of AAs. The results underscore the importance of incorporating sdLDL measurement alongside LDL-C levels to improve the accuracy of managing hypercholesterolemia and effectively stratify the risk of CVD. This is essential as differences in sdLDL modulate atherogenic properties at the transcriptome level.NEW & NOTEWORTHY The study investigated the interplay between LDL-C and mRNA expression, focusing on the role of small dense LDL (sdLDL) particles and sex differences. Differential expression analysis identified 1,048 and 284 mRNAs associated with LDL-C and sdLDL levels, respectively. Mediation analysis revealed that sdLDL mediates the relationship between LDL-C and 33 mRNAs involved in immune, inflammatory, and metabolic pathways. These findings highlight the significance of sdLDL in cardiovascular disease risk assessment and underscore sex-specific differences in lipid metabolism.
Collapse
Affiliation(s)
- Ana Diallo
- School of Nursing, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Malak Abbas
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Gabriel Goodney
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Elvin Price
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| |
Collapse
|
9
|
Ai J, Tang X, Mao B, Zhang Q, Zhao J, Chen W, Cui S. Gut microbiota: a superior operator for dietary phytochemicals to improve atherosclerosis. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38940319 DOI: 10.1080/10408398.2024.2369169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Mounting evidence implicates the gut microbiota as a possible key susceptibility factor for atherosclerosis (AS). The employment of dietary phytochemicals that strive to target the gut microbiota has gained scientific support for treating AS. This study conducted a general overview of the links between the gut microbiota and AS, and summarized available evidence that dietary phytochemicals improve AS via manipulating gut microbiota. Then, the microbial metabolism of several dietary phytochemicals was summarized, along with a discussion on the metabolites formed and the biotransformation pathways involving key gut bacteria and enzymes. This study additionally focused on the anti-atherosclerotic potential of representative metabolites from dietary phytochemicals, and investigated their underlying molecular mechanisms. In summary, microbiota-dependent dietary phytochemical therapy is a promising strategy for AS management, and knowledge of "phytochemical-microbiota-biotransformation" may be a breakthrough in the search for novel anti-atherogenic agents.
Collapse
Affiliation(s)
- Jian Ai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Alawdi SH, Al-Dholae M, Al-Shawky S. Metabolic syndrome and pharmacotherapy outcomes in patients with type 2 diabetes mellitus. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2024; 5:1380244. [PMID: 38846018 PMCID: PMC11154905 DOI: 10.3389/fcdhc.2024.1380244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024]
Abstract
Background Metabolic syndrome is a group of metabolic abnormalities that increase predisposition to several diseases including ischemic heart disease and diabetes mellitus. The study aimed to investigate metabolic syndrome among patients with type-2 diabetes mellitus (DM), and its impact on pharmacotherapy outcomes. Methods An observational cross-sectional study was performed on 910 patients with type-2 DM between June and December 2023. Fasting blood sugar, triglycerides, high-density lipoproteins (HDL), blood pressure, and abdominal obesity were measured. Metabolic syndrome was identified according to the National Cholesterol Education Program Adult Treatment Panel III criteria. Pharmacotherapy outcomes were assessed according to American Association of Clinical Endocrinologists and American Diabetes Association guidelines using the ability to achieve adequate glycemic control and normal levels of blood pressure and fasting plasma lipoproteins. Results In total, 87.5% of type-2 DM patients had metabolic syndrome; the prevalence increased with age and was higher among females. Metabolic syndrome showed the following distribution of risk factors: insulin resistance (100%), low HDL (95.3%), elevated blood pressure (83%), triglycerides dyslipidemia (80.1%), and abdominal obesity (62.5%). Majority of the patients had either 5 or 4 risk factors of metabolic syndrome. The most common comorbidities were dyslipidemia (97.7%) and hypertension (83%). Treatment outcomes were insufficient where adequate glycemic control was only achieved in 12% of type-2 DM patients, and proper management of comorbid dyslipidemia and hypertension was achieved in 29% and 40.9% of patients, respectively. Adequate blood pressure control was less achieved in patients with metabolic syndrome (34.4%) than those without metabolic syndrome (77.2%). Similarly, dyslipidemia was less controlled in patients with metabolic syndrome (26.9%) than in those without metabolic syndrome (47.3%). Conclusion Pharmacotherapy outcomes were inadequate for most patients with type-2 diabetes mellitus. Adopting early preventive and therapeutic interventions for metabolic syndrome is advised to improve treatment outcomes of the comorbid dyslipidemia and hypertension.
Collapse
Affiliation(s)
- Shawqi H. Alawdi
- Department of Pharmacology, Faculty of Pharmacy, Syrian Private University (SPU), Damascus, Syria
- Department of Pharmacology, Faculty of Medicine, Thamar University, Dhamar, Yemen
| | - Mohammed Al-Dholae
- Department of Medicine, Faculty of Medicine, Thamar University, Dhamar, Yemen
| | - Salah Al-Shawky
- Department of Medicine, Faculty of Medicine, Thamar University, Dhamar, Yemen
| |
Collapse
|
11
|
Zhou R, Li R, Ding Q, Zhang Y, Yang H, Han Y, Liu C, Liu J, Wang S. OPN silencing reduces hypoxic pulmonary hypertension via PI3K-AKT-induced protective autophagy. Sci Rep 2024; 14:8670. [PMID: 38622371 PMCID: PMC11018812 DOI: 10.1038/s41598-024-59367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.
Collapse
Affiliation(s)
- Rui Zhou
- Qinghai University Medical Department, Xining, 810016, China
| | - Ran Li
- Zhengzhou Medical and Health Vocational College, Zhengzhou, 452385, China
| | - Qi Ding
- Pathology Department of Tianjin Huanghe Hospital, Tianjin, 300110, China
| | - Yuwei Zhang
- Department of Public Health, School of Medical, Qinghai University, Xining, 810016, China
| | - Hui Yang
- Qinghai University Medical Department, Xining, 810016, China
| | - Ying Han
- Qinghai University Medical Department, Xining, 810016, China
| | - Chuanchuan Liu
- Key Laboratory of Hydatid Disease, Qinghai University, Xining, 810001, China
| | - Jie Liu
- Qinghai University Medical Department, Xining, 810016, China
| | - Shenglan Wang
- Qinghai University Medical Department, Xining, 810016, China.
| |
Collapse
|
12
|
Wijesekara T, Luo J, Xu B. Critical review on anti-inflammation effects of saponins and their molecular mechanisms. Phytother Res 2024; 38:2007-2022. [PMID: 38372176 DOI: 10.1002/ptr.8164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
This review highlights the increasing interest in one of the natural compounds called saponins, for their potential therapeutic applications in addressing inflammation which is a key factor in various chronic diseases. It delves into the molecular mechanisms responsible for the anti-inflammatory effects of these amphiphilic compounds, prevalent in plant-based foods and marine organisms. Their structures vary with soap-like properties influencing historical uses in traditional medicine and sparking renewed scientific interest. Recent research focuses on their potential in chronic inflammatory diseases, unveiling molecular actions such as NF-κB and MAPK pathway regulation and COX/LOX enzyme inhibition. Saponin-containing sources like Panax ginseng and soybeans suggest novel anti-inflammatory therapies. The review explores their emerging role in shaping the gut microbiome, influencing composition and activity, and contributing to anti-inflammatory effects. Specific examples, such as Panax notoginseng and Gynostemma pentaphyllum, illustrate the intricate relationship between saponins, the gut microbiome, and their collective impact on immune regulation and metabolic health. Despite promising findings, the review emphasizes the need for further research to comprehend the mechanisms behind anti-inflammatory effects and their interactions with the gut microbiome, underscoring the crucial role of a balanced gut microbiome for optimal health and positioning saponins as potential dietary interventions for managing chronic inflammatory conditions.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong, China
- Department of Food Science and Technology, University of Peradeniya, Peradeniya, Sri Lanka
| | - Jinhai Luo
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong, China
| |
Collapse
|
13
|
Scotti MM, Wilson BK, Bubenik JL, Yu F, Swanson MS, Allen JB. Spaceflight effects on human vascular smooth muscle cell phenotype and function. NPJ Microgravity 2024; 10:41. [PMID: 38548798 PMCID: PMC10979029 DOI: 10.1038/s41526-024-00380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
The cardiovascular system is strongly impacted by the hazards of spaceflight. Astronauts spending steadily increasing lengths of time in microgravity are subject to cardiovascular deconditioning resulting in loss of vascular tone, reduced total blood volume, and diminished cardiac output. Appreciating the mechanisms by which the cells of the vasculature are altered during spaceflight will be integral to understanding and combating these deleterious effects as the human presence in space advances. In this study, we performed RNA-Seq analysis coupled with review by QIAGEN Ingenuity Pathway Analysis software on human aortic smooth muscle cells (HASMCs) cultured for 3 days in microgravity and aboard the International Space Station to assess the transcriptomic changes that occur during spaceflight. The results of our RNA-Seq analysis show that SMCs undergo a wide range of transcriptional alteration while in space, significantly affecting 4422 genes. SMCs largely down-regulate markers of the contractile, synthetic, and osteogenic phenotypes including smooth muscle alpha actin (αSMA), matrix metalloproteinases (MMPs), and bone morphogenic proteins (BMPs). Additionally, components of several cellular signaling pathways were strongly impacted including the STAT3, NFκB, PI3K/AKT, HIF1α, and Endothelin pathways. This study highlights the significant changes in transcriptional behavior SMCs exhibit during spaceflight and puts these changes in context to better understand vascular function in space.
Collapse
Affiliation(s)
- Marina M Scotti
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Brandon K Wilson
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jodi L Bubenik
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, University of Florida, Gainesville, FL, USA
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, University of Florida, Gainesville, FL, USA
| | - Josephine B Allen
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Bhole RP, Patil S, Kapare HS, Chikhale RV, Gurav SS. PROTAC Beyond Cancer- Exploring the New Therapeutic Potential of Proteolysis Targeting Chimeras. Curr Top Med Chem 2024; 24:2050-2073. [PMID: 38963108 DOI: 10.2174/0115680266309968240621072550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024]
Abstract
In the realm of oncology, the transformative impact of PROTAC (PROteolysis TAgeting Chimeras) technology has been particularly pronounced since its introduction in the 21st century. Initially conceived for cancer treatment, PROTACs have evolved beyond their primary scope, attracting increasing interest in addressing a diverse array of medical conditions. This expanded focus includes not only oncological disorders but also viral infections, bacterial ailments, immune dysregulation, neurodegenerative conditions, and metabolic disorders. This comprehensive review explores the broadening landscape of PROTAC application, highlighting ongoing developments and innovations aimed at deploying these molecules across a spectrum of diseases. Careful consideration of the design challenges associated with PROTACs reveals that, when appropriately addressed, these compounds present significant advantages over traditional therapeutic approaches, positioning them as promising alternatives. To evaluate the efficacy of PROTAC molecules, a diverse array of assays is employed, ranging from High-Throughput Imaging (HTI) assays to Cell Painting assays, CRBN engagement assays, Fluorescence Polarization assays, amplified luminescent proximity homogeneous assays, Timeresolved fluorescence energy transfer assays, and Isothermal Titration Calorimetry assays. These assessments collectively contribute to a nuanced understanding of PROTAC performance. Looking ahead, the trajectory of PROTAC technology suggests its potential recognition as a versatile therapeutic strategy for an expansive range of medical conditions. Ongoing progress in this field sets the stage for PROTACs to emerge as valuable tools in the multifaceted landscape of medical treatments.
Collapse
Affiliation(s)
- Ritesh P Bhole
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
- Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyappeth, Pimpri, Pune, 411018, India
| | - Sapana Patil
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
| | - Harshad S Kapare
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
| | | | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panjim, Goa, India
| |
Collapse
|
15
|
Walczak J, Iwaszkiewicz-Grześ D, Cholewiński G. Approaches Towards Better Immunosuppressive Agents. Curr Top Med Chem 2024; 24:1230-1263. [PMID: 38561615 DOI: 10.2174/0115680266292661240322072908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
Several classes of compounds are applied in clinics due to their immunosuppressive properties in transplantology and the treatment of autoimmune diseases. Derivatives of mycophenolic acid, corticosteroids and chemotherapeutics bearing heterocyclic moieties like methotrexate, azathioprine, mizoribine, and ruxolitinib are active substances with investigated mechanisms of action. However, improved synthetic approaches of known drugs and novel derivatives are still being reported to attempt better accessibility and therapeutic properties. In this review article, we present the synthesis of the designed chemical structures based on recent literature reports concerning novel compounds as promising immunosuppressive drugs. Moreover, some of the discussed derivers revealed also other types of activities with prospective medicinal potential.
Collapse
Affiliation(s)
- Juliusz Walczak
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Dorota Iwaszkiewicz-Grześ
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdansk, ul. Dębinki 7, 80-210, Gdańsk, Poland
| | - Grzegorz Cholewiński
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
16
|
Qu X, Zhang L, Wang L. Pterostilbene as a Therapeutic Alternative for Central Nervous System Disorders: A Review of the Current Status and Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14432-14457. [PMID: 37786984 DOI: 10.1021/acs.jafc.3c06238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Neurological disorders are diverse, have complex causes, and often result in disability; yet, effective treatments remain scarce. The resveratrol derivative pterostilbene possesses numerous physiological activities that hold promise as a novel therapy for the central nervous system (CNS) disorders. This review aimed to summarize the protective mechanisms of pterostilbene in in vitro and in vivo models of CNS disorders and the pharmacokinetics and safety to assess its possible effects on CNS disorders. Available evidence supports the protective effects of pterostilbene in CNS disorders involving mechanisms such as antioxidant and anti-inflammatory activity, regulation of lipid metabolism and vascular smooth muscle cell proliferation, improvement of synaptic function and neurogenesis, induction of glioma cell cycle arrest, and inhibition of glioma cell migration and invasion. Studies have identified possible molecular targets and pathways for the protective actions of pterostilbene in CNS disorders including the AMPK/STAT3, Akt, NF-κB, MAPK, and ERK signaling pathways. The possible pharmacological effects and molecular pathways of pterostilbene in CNS disorders are critically discussed in this review. Future studies should aim to increase our understanding of pterostilbene in animal models and humans to further evaluate its role in CNS disorders and the detailed mechanisms.
Collapse
Affiliation(s)
- Xin Qu
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, P.R. China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning, P.R. China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning, P.R. China
| |
Collapse
|
17
|
Wang D, Brady T, Santhanam L, Gerecht S. The extracellular matrix mechanics in the vasculature. NATURE CARDIOVASCULAR RESEARCH 2023; 2:718-732. [PMID: 39195965 DOI: 10.1038/s44161-023-00311-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/20/2023] [Indexed: 08/29/2024]
Abstract
Mechanical stimuli from the extracellular matrix (ECM) modulate vascular differentiation, morphogenesis and dysfunction of the vasculature. With innovation in measurements, we can better characterize vascular microenvironment mechanics in health and disease. Recent advances in material sciences and stem cell biology enable us to accurately recapitulate the complex and dynamic ECM mechanical microenvironment for in vitro studies. These biomimetic approaches help us understand the signaling pathways in disease pathologies, identify therapeutic targets, build tissue replacement and activate tissue regeneration. This Review analyzes how ECM mechanics regulate vascular homeostasis and dysfunction. We highlight approaches to examine ECM mechanics at tissue and cellular levels, focusing on how mechanical interactions between cells and the ECM regulate vascular phenotype, especially under certain pathological conditions. Finally, we explore the development of biomaterials to emulate, measure and alter the physical microenvironment of pathological ECM to understand cell-ECM mechanical interactions toward the development of therapeutics.
Collapse
Affiliation(s)
- Dafu Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Travis Brady
- Department of Anesthesiology and Critical Care Medicine and Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine and Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
18
|
Chen B, Jin W. A comprehensive review of stroke-related signaling pathways and treatment in western medicine and traditional Chinese medicine. Front Neurosci 2023; 17:1200061. [PMID: 37351420 PMCID: PMC10282194 DOI: 10.3389/fnins.2023.1200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
This review provides insight into the complex network of signaling pathways and mechanisms involved in stroke pathophysiology. It summarizes the historical progress of stroke-related signaling pathways, identifying potential interactions between them and emphasizing that stroke is a complex network disease. Of particular interest are the Hippo signaling pathway and ferroptosis signaling pathway, which remain understudied areas of research, and are therefore a focus of the review. The involvement of multiple signaling pathways, including Sonic Hedgehog (SHH), nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE), hypoxia-inducible factor-1α (HIF-1α), PI3K/AKT, JAK/STAT, and AMPK in pathophysiological mechanisms such as oxidative stress and apoptosis, highlights the complexity of stroke. The review also delves into the details of traditional Chinese medicine (TCM) therapies such as Rehmanniae and Astragalus, providing an analysis of the recent status of western medicine in the treatment of stroke and the advantages and disadvantages of TCM and western medicine in stroke treatment. The review proposes that since stroke is a network disease, TCM has the potential and advantages of a multi-target and multi-pathway mechanism of action in the treatment of stroke. Therefore, it is suggested that future research should explore more treasures of TCM and develop new therapies from the perspective of stroke as a network disease.
Collapse
Affiliation(s)
- Binhao Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weifeng Jin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
19
|
Fei X, Pan L, Yuan W, Zhao Y, Jiang L, Huang Q, Wu Y, Ru G. Papain Exerts an Anti-atherosclerosis Effect with Suppressed MPA-mediated Foam Cell Formation by Regulating the MAPK and PI3K/Akt-NF-κB Pathways. Expert Opin Ther Targets 2023; 27:239-250. [PMID: 36947095 DOI: 10.1080/14728222.2023.2194531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND Papain possesses a potential anti-atherosclerosis (AS) effect. This study aimed to explore the inhibitory effects of papain on the monocyte-platelet aggregates (MPAs)-mediated production of foam cells in vitro and AS in vivo. RESEARCH DESIGN AND METHODS THP-1 cells were induced or treated by platelet, papain, nuclear factor-κB (NF-κB, p65) inhibitor, or NF-κB activator. An AS rat model was established and treated with papain. The THP-1 cells, macrophages, and foam cells were detected, and CD36, CD11b and CCR2 (macrophages) and CD14 and CD41 (MPAs) were measured. The levels of inflammatory factors, lipoprotein, and mitogen-activated protein kinase (MAPK, p38) and phosphoInositide-3 Kinase (PI3K)/Akt(protein kinase B, PKB)-NF-κB pathways proteins were determined. Finally, injury of the thoracic aorta of AS rats was observed. RESULTS Papain reduced macrophage production, lipid accumulation, and foam cell formation in vitro and downregulated the expression of monocyte chemoattractant protein 1 (MCP-1), prostaglandin E2 (PGE2), and cyclooxygenase 2 (COX2), and that of p38, c-Jun N-terminal protein kinase (JNK), Akt, and p65. Moreover, the inhibitory effects of papain were reversed by the NF-κB activator. Similarly, papain alleviated aortic smooth muscle hyperplasia, lipid droplet accumulation, and collagen diffusion and inhibited the secretion of inflammatory factors and the expression of p38, JNK, Akt, and p65 in vivo. CONCLUSIONS Papain inhibited MPA-induced foam cell formation by inactivating the MAPK and PI3K/Akt-NF-κB pathways, thereby exerting an anti-AS effect.
Collapse
Affiliation(s)
- Xianming Fei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
| | - Lianlian Pan
- Department of Laboratory Medicine, Sanmen People's Hospital of Taizhou, Zhejiang, China 317100
| | - Wufen Yuan
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
| | - Yan Zhao
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
| | - Lei Jiang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
| | - Qinghua Huang
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
| | - Yan Wu
- Department of Laboratory Medicine, Lin'an First People's Hospital of Hangzhou, Hangzhou, Zhejiang, China 311300
| | - Guoqing Ru
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
| |
Collapse
|
20
|
Elenbaas JS, Pudupakkam U, Ashworth KJ, Kang CJ, Patel V, Santana K, Jung IH, Lee PC, Burks KH, Amrute JM, Mecham RP, Halabi CM, Alisio A, Di Paola J, Stitziel NO. SVEP1 is an endogenous ligand for the orphan receptor PEAR1. Nat Commun 2023; 14:850. [PMID: 36792666 PMCID: PMC9932102 DOI: 10.1038/s41467-023-36486-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Sushi, von Willebrand factor type A, EGF and pentraxin domain containing 1 (SVEP1) is an extracellular matrix protein that causally promotes vascular disease and associates with platelet reactivity in humans. Here, using a human genomic and proteomic approach, we identify a high affinity, disease-relevant, and potentially targetable interaction between SVEP1 and the orphan receptor Platelet and Endothelial Aggregation Receptor 1 (PEAR1). This interaction promotes PEAR1 phosphorylation and disease associated AKT/mTOR signaling in vascular cells and platelets. Mice lacking SVEP1 have reduced platelet activation, and exogenous SVEP1 induces PEAR1-dependent activation of platelets. SVEP1 and PEAR1 causally and concordantly relate to platelet phenotypes and cardiovascular disease in humans, as determined by Mendelian Randomization. Targeting this receptor-ligand interaction may be a viable therapeutic strategy to treat or prevent cardiovascular and thrombotic disease.
Collapse
Affiliation(s)
- Jared S Elenbaas
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| | - Upasana Pudupakkam
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Katrina J Ashworth
- Division of Pediatric Hematology Oncology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Chul Joo Kang
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Ved Patel
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Katherine Santana
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - In-Hyuk Jung
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Paul C Lee
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Kendall H Burks
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Junedh M Amrute
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Carmen M Halabi
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Arturo Alisio
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jorge Di Paola
- Division of Pediatric Hematology Oncology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Nathan O Stitziel
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, 63108, USA.
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
21
|
Dong CX, Malecki C, Robertson E, Hambly B, Jeremy R. Molecular Mechanisms in Genetic Aortopathy-Signaling Pathways and Potential Interventions. Int J Mol Sci 2023; 24:ijms24021795. [PMID: 36675309 PMCID: PMC9865322 DOI: 10.3390/ijms24021795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Thoracic aortic disease affects people of all ages and the majority of those aged <60 years have an underlying genetic cause. There is presently no effective medical therapy for thoracic aneurysm and surgery remains the principal intervention. Unlike abdominal aortic aneurysm, for which the inflammatory/atherosclerotic pathogenesis is well established, the mechanism of thoracic aneurysm is less understood. This paper examines the key cell signaling systems responsible for the growth and development of the aorta, homeostasis of endothelial and vascular smooth muscle cells and interactions between pathways. The evidence supporting a role for individual signaling pathways in pathogenesis of thoracic aortic aneurysm is examined and potential novel therapeutic approaches are reviewed. Several key signaling pathways, notably TGF-β, WNT, NOTCH, PI3K/AKT and ANGII contribute to growth, proliferation, cell phenotype and survival for both vascular smooth muscle and endothelial cells. There is crosstalk between pathways, and between vascular smooth muscle and endothelial cells, with both synergistic and antagonistic interactions. A common feature of the activation of each is response to injury or abnormal cell stress. Considerable experimental evidence supports a contribution of each of these pathways to aneurysm formation. Although human information is less, there is sufficient data to implicate each pathway in the pathogenesis of human thoracic aneurysm. As some pathways i.e., WNT and NOTCH, play key roles in tissue growth and organogenesis in early life, it is possible that dysregulation of these pathways results in an abnormal aortic architecture even in infancy, thereby setting the stage for aneurysm development in later life. Given the fine tuning of these signaling systems, functional polymorphisms in key signaling elements may set up a future risk of thoracic aneurysm. Multiple novel therapeutic agents have been developed, targeting cell signaling pathways, predominantly in cancer medicine. Future investigations addressing cell specific targeting, reduced toxicity and also less intense treatment effects may hold promise for effective new medical treatments of thoracic aortic aneurysm.
Collapse
Affiliation(s)
- Charlotte Xue Dong
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Cassandra Malecki
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
| | - Elizabeth Robertson
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Brett Hambly
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Richmond Jeremy
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
- Correspondence:
| |
Collapse
|
22
|
Role of Collagen in Vascular Calcification. J Cardiovasc Pharmacol 2022; 80:769-778. [PMID: 35998017 DOI: 10.1097/fjc.0000000000001359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022]
Abstract
ABSTRACT Vascular calcification is a pathological process characterized by ectopic calcification of the vascular wall. Medial calcifications are most often associated with kidney disease, diabetes, hypertension, and advanced age. Intimal calcifications are associated with atherosclerosis. Collagen can regulate mineralization by binding to apatite minerals and promoting their deposition, binding to collagen receptors to initiate signal transduction, and inducing cell transdifferentiation. In the process of vascular calcification, type I collagen is not only the scaffold for mineral deposition but also a signal entity, guiding the distribution, aggregation, and nucleation of vesicles and promoting the transformation of vascular smooth muscle cells into osteochondral-like cells. In recent years, collagen has been shown to affect vascular calcification through collagen disc-domain receptors, matrix vesicles, and transdifferentiation of vascular smooth muscle cells.
Collapse
|
23
|
Chen H, Chew G, Devapragash N, Loh JZ, Huang KY, Guo J, Liu S, Tan ELS, Chen S, Tee NGZ, Mia MM, Singh MK, Zhang A, Behmoaras J, Petretto E. The E3 ubiquitin ligase WWP2 regulates pro-fibrogenic monocyte infiltration and activity in heart fibrosis. Nat Commun 2022; 13:7375. [PMID: 36450710 PMCID: PMC9712659 DOI: 10.1038/s41467-022-34971-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Non-ischemic cardiomyopathy (NICM) can cause left ventricular dysfunction through interstitial fibrosis, which corresponds to the failure of cardiac tissue remodeling. Recent evidence implicates monocytes/macrophages in the etiopathology of cardiac fibrosis, but giving their heterogeneity and the antagonizing roles of macrophage subtypes in fibrosis, targeting these cells has been challenging. Here we focus on WWP2, an E3 ubiquitin ligase that acts as a positive genetic regulator of human and murine cardiac fibrosis, and show that myeloid specific deletion of WWP2 reduces cardiac fibrosis in hypertension-induced NICM. By using single cell RNA sequencing analysis of immune cells in the same model, we establish the functional heterogeneity of macrophages and define an early pro-fibrogenic phase of NICM that is driven by Ccl5-expressing Ly6chigh monocytes. Among cardiac macrophage subtypes, WWP2 dysfunction primarily affects Ly6chigh monocytes via modulating Ccl5, and consequentially macrophage infiltration and activation, which contributes to reduced myofibroblast trans-differentiation. WWP2 interacts with transcription factor IRF7, promoting its non-degradative mono-ubiquitination, nuclear translocation and transcriptional activity, leading to upregulation of Ccl5 at transcriptional level. We identify a pro-fibrogenic macrophage subtype in non-ischemic cardiomyopathy, and demonstrate that WWP2 is a key regulator of IRF7-mediated Ccl5/Ly6chigh monocyte axis in heart fibrosis.
Collapse
Affiliation(s)
- Huimei Chen
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore ,grid.254147.10000 0000 9776 7793Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, 210009 China
| | - Gabriel Chew
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Nithya Devapragash
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Jui Zhi Loh
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Kevin Y. Huang
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Jing Guo
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Shiyang Liu
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Elisabeth Li Sa Tan
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Shuang Chen
- grid.254147.10000 0000 9776 7793Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, 210009 China ,grid.452511.6Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, 210008 China
| | - Nicole Gui Zhen Tee
- grid.419385.20000 0004 0620 9905National Heart Centre Singapore, Singapore, 169609 Singapore
| | - Masum M. Mia
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Manvendra K. Singh
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Aihua Zhang
- grid.452511.6Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, 210008 China
| | - Jacques Behmoaras
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore ,grid.413629.b0000 0001 0705 4923Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, W12 0NN UK
| | - Enrico Petretto
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore ,grid.254147.10000 0000 9776 7793Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
24
|
Boyang C, Yuexing L, Yiping Y, Haiyang Y, Lingjie Z, Liancheng G, Xufei Z, Jie Z, Yunzhi C. Mechanism of Epimedium intervention in heart failure based on network pharmacology and molecular docking technology. Medicine (Baltimore) 2022; 101:e32059. [PMID: 36451478 PMCID: PMC9704970 DOI: 10.1097/md.0000000000032059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
To analyze the pharmacological mechanism of Epimedium in regulating heart failure (HF) based on the network pharmacology method, and to provide a reference for the clinical application of Epimedium in treating HF. Obtaining the main active ingredients and their targets of Epimedium through TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) database. Access to major HF targets through Genecards, OMIM, PharmGKB, Therapeutic Target Database, Drug Bank database. Protein interaction analysis using String platform and construction of PPI network. Subsequently, Cytoscape software was used to construct the "Epimedium active ingredient-heart failure target" network. Finally, the molecular docking is verified through the Systems Dock Web Site. The core active ingredients of Epimedium to regulate HF are quercetin, luteolin, kaempferol, etc. The core targets are JUN, MYC, TP53, HIF1A, ESR1, RELA, MAPK1, etc. Molecular docking validation showed better binding activity of the major targets of HF to the core components of Epimedium. The biological pathways that Epimedium regulates HF mainly act on lipid and atherosclerotic pathways, PI3K-Akt signaling pathway, and chemoattractant-receptor activation. And its molecular functions are mainly DNA-binding transcription factor binding, RNA polymerase II-specific DNA-binding transcription factor binding, and neurotransmitter receptor activity. This study reveals the multi-component, multi-target and multi-pathway mechanism of action of Epimedium in regulating mental failure, and provides a basis for the clinical development and utilization of Epimedium to intervene in HF.
Collapse
Affiliation(s)
- Chen Boyang
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Li Yuexing
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yan Yiping
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yu Haiyang
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhao Lingjie
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Guan Liancheng
- Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhang Xufei
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhao Jie
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chen Yunzhi
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- *Correspondence: Yunzhi Chen, School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China (e-mail: )
| |
Collapse
|
25
|
Wherry TLT, Dassanayake RP, Bannantine JP, Mooyottu S, Stabel JR. Vitamin D3 alters macrophage phenotype and endosomal trafficking markers in dairy cattle naturally infected with Mycobacterium avium subsp. paratuberculosis. Front Cell Infect Microbiol 2022; 12:1021657. [PMID: 36275033 PMCID: PMC9579537 DOI: 10.3389/fcimb.2022.1021657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Macrophages are important host defense cells in ruminant paratuberculosis (Johne’s Disease; JD), a chronic enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP). Classical macrophage functions of pathogen trafficking, degradation, and antigen presentation are interrupted in mycobacterial infection. Immunologic stimulation by 25-hydroxyvitamin D3 (25(OH)D3) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) enhances bovine macrophage function. The present study aimed to investigate the role of vitamin D3 on macrophage phenotype and endosomal trafficking of MAP in monocyte-derived macrophages (MDMs) cultured from JD-, JD+ subclinical, and JD+ clinically infected cattle. MDMs were pre-treated 100 ng/ml 25(OH)D3 or 4 ng/ml 1,25(OH)2D3 and incubated 24 hrs with MAP at 10:1 multiplicity of infection (MOI). In vitro MAP infection upregulated pro-inflammatory (M1) CD80 and downregulated resolution/repair (M2) CD163. Vitamin D3 generally decreased CD80 and increased CD163 expression. Furthermore, early endosomal marker Rab5 was upregulated 140× across all stages of paratuberculosis infection following in vitro MAP infection; however, Rab5 was reduced in MAP-activated MDMs from JD+ subclinical and JD+ clinical cows compared to healthy controls. Rab7 expression decreased in control and clinical cows following MDM infection with MAP. Both forms of vitamin D3 reduced Rab5 expression in infected MDMs from JD- control cows, while 1,25(OH)2D3 decreased Rab7 expression in JD- and JD+ subclinical animals regardless of MAP infection in vitro. Vitamin D3 promoted phagocytosis in MDMs from JD- and JD+ clinical cows treated with either vitamin D3 analog. Results from this study show exogenous vitamin D3 influences macrophage M1/M2 polarization and Rab GTPase expression within MDM culture.
Collapse
Affiliation(s)
- Taylor L. T. Wherry
- Infectious Bacterial Diseases, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, IA, United States
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Rohana P. Dassanayake
- Ruminant Diseases and Immunology, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, IA, United States
| | - John P. Bannantine
- Infectious Bacterial Diseases, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, IA, United States
| | - Shankumar Mooyottu
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Judith R. Stabel
- Infectious Bacterial Diseases, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, IA, United States
- *Correspondence: Judith R. Stabel,
| |
Collapse
|
26
|
Ahmed YM, Orfali R, Abdelwahab NS, Hassan HM, Rateb ME, AboulMagd AM. Partial Synthetic PPARƳ Derivative Ameliorates Aorta Injury in Experimental Diabetic Rats Mediated by Activation of miR-126-5p Pi3k/AKT/PDK 1/mTOR Expression. Pharmaceuticals (Basel) 2022; 15:1175. [PMID: 36297290 PMCID: PMC9607084 DOI: 10.3390/ph15101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is a world wild health care issue marked by insulin resistance, a risk factor for the metabolic disorder that exaggerates endothelial dysfunction, increasing the risk of cardiovascular complications. Peroxisome proliferator-activated receptor PPAR) agonists have therapeutically mitigated hyperlipidemia and hyperglycemia in T2D patients. Therefore, we aimed to experimentally investigate the efficacy of newly designed synthetic PPARα/Ƴ partial agonists on a High-Fat Diet (HFD)/streptozotocin (STZ)-induced T2D. Female Wistar rats (200 ± 25 g body weight) were divided into four groups. The experimental groups were fed the HFD for three consecutive weeks before STZ injection (45 mg/kg/i.p) to induce T2D. Standard reference PPARƳ agonist pioglitazone and the partial synthetic PPARƳ (PIO; 20 mg/kg/BW, orally) were administered orally for 2 weeks after 72 h of STZ injection. The aorta tissue was isolated for biological ELISA, qRT-PCR, and Western blotting investigations for vascular inflammatory endothelial mediators endothelin-1 (ET-1), intracellular adhesion molecule 1 (ICAM-1), E-selectin, and anti-inflammatory vasoactive intestinal polypeptide (VIP), as well as microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR, endothelial Nitric Oxide Synthase (eNOS) immunohistochemical staining all are coupled with and histopathological examination. Our results revealed that HFD/STZ-induced T2D increased fasting blood glucose, ET-1, ICAM-1, E-selectin, and VIP levels, while decreasing the expression of both microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR phosphorylation. In contrast, the partial synthetic PPARƳ derivative evidenced a vascular alteration significantly more than reference PIO via decreasing (ET-1), ICAM-1, E-selectin, and VIP, along with increased expression of microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR. In conclusion, the partial synthetic PPARƳ derivative significantly affected HFD/STZ-induced T2D with vascular complications in the rat aorta.
Collapse
Affiliation(s)
- Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nada S. Abdelwahab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Asmaa M. AboulMagd
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| |
Collapse
|
27
|
Palshikar MG, Palli R, Tyrell A, Maggirwar S, Schifitto G, Singh MV, Thakar J. Executable models of immune signaling pathways in HIV-associated atherosclerosis. NPJ Syst Biol Appl 2022; 8:35. [PMID: 36131068 PMCID: PMC9492768 DOI: 10.1038/s41540-022-00246-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Abstract
Atherosclerosis (AS)-associated cardiovascular disease is an important cause of mortality in an aging population of people living with HIV (PLWH). This elevated risk has been attributed to viral infection, anti-retroviral therapy, chronic inflammation, and lifestyle factors. However, the rates at which PLWH develop AS vary even after controlling for length of infection, treatment duration, and for lifestyle factors. To investigate the molecular signaling underlying this variation, we sequenced 9368 peripheral blood mononuclear cells (PBMCs) from eight PLWH, four of whom have atherosclerosis (AS+). Additionally, a publicly available dataset of PBMCs from persons before and after HIV infection was used to investigate the effect of acute HIV infection. To characterize dysregulation of pathways rather than just measuring enrichment, we developed the single-cell Boolean Omics Network Invariant Time Analysis (scBONITA) algorithm. scBONITA infers executable dynamic pathway models and performs a perturbation analysis to identify high impact genes. These dynamic models are used for pathway analysis and to map sequenced cells to characteristic signaling states (attractor analysis). scBONITA revealed that lipid signaling regulates cell migration into the vascular endothelium in AS+ PLWH. Pathways implicated included AGE-RAGE and PI3K-AKT signaling in CD8+ T cells, and glucagon and cAMP signaling pathways in monocytes. Attractor analysis with scBONITA facilitated the pathway-based characterization of cellular states in CD8+ T cells and monocytes. In this manner, we identify critical cell-type specific molecular mechanisms underlying HIV-associated atherosclerosis using a novel computational method.
Collapse
Affiliation(s)
- Mukta G Palshikar
- Biophysics, Structural, and Computational Biology Program, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Rohith Palli
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Alicia Tyrell
- University of Rochester Clinical & Translational Science Institute, Rochester, USA
| | - Sanjay Maggirwar
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, USA
- Department of Imaging Sciences, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Meera V Singh
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Juilee Thakar
- Biophysics, Structural, and Computational Biology Program, University of Rochester School of Medicine and Dentistry, Rochester, USA.
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, USA.
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, USA.
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, USA.
| |
Collapse
|
28
|
Wang S, Xiao F, Li J, Fan X, He Z, Yan T, Yang M, Yang D. Circular RNAs Involved in the Regulation of the Age-Related Pathways. Int J Mol Sci 2022; 23:ijms231810443. [PMID: 36142352 PMCID: PMC9500598 DOI: 10.3390/ijms231810443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 12/04/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently circular noncoding RNAs that have been extensively studied in recent years. Aging is a process related to functional decline that is regulated by signal transduction. An increasing number of studies suggest that circRNAs can regulate aging and multiple age-related diseases through their involvement in age-related signaling pathways. CircRNAs perform several biological functions, such as acting as miRNA sponges, directly interacting with proteins, and regulating transcription and translation to proteins or peptides. Herein, we summarize research progress on the biological functions of circRNAs in seven main age-related signaling pathways, namely, the insulin-insulin-like, PI3K-AKT, mTOR, AMPK, FOXO, p53, and NF-κB signaling pathways. In these pathways, circRNAs mainly function as miRNA sponges. In this review, we suggest that circRNAs are widely involved in the regulation of the main age-related pathways and are potential biomarkers for aging and age-related diseases.
Collapse
Affiliation(s)
- Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (M.Y.); (D.Y.); Tel.: +86-28-86290991 (M.Y.)
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (M.Y.); (D.Y.); Tel.: +86-28-86290991 (M.Y.)
| |
Collapse
|
29
|
Xu R, Yuan W, Wang Z. Advances in Glycolysis Metabolism of Atherosclerosis. J Cardiovasc Transl Res 2022; 16:476-490. [PMID: 36068370 DOI: 10.1007/s12265-022-10311-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Glycolysis is an important way for various cells such as vascular wall endothelial cells, smooth muscle cells, macrophages, and other cells to obtain energy. In pathological conditions, it can participate in the process of AS by regulating lipid deposition, calcification, angiogenesis in plaques, etc., together with its metabolite lactic acid. Recent studies have shown that lactate-related lactylation modifications are ubiquitous in the human proteome and are involved in the regulation of various inflammatory diseases. Combined with the distribution and metabolic characteristics of cells in the plaque in the process of AS, glycolysis-lactate-lactylation modification may be a new entry point for targeted intervention in atherosclerosis in the future. Therefore, this article intends to elaborate on the role and mechanism of glycolysis-lactate-lactylation modification in AS, as well as the opportunities and challenges in targeted therapy, hoping to bring some help to relevant scholars in this field. In atherosclerosis, glycolysis, lactate, and lactylation modification as a metabolic sequence affect the functions of macrophages, smooth muscle cells, endothelial cells, lymphocytes, and other cells and interfere with processes such as vascular calcification and intraplaque neovascularization to influence the progression of atherosclerosis.
Collapse
Affiliation(s)
- Ruhan Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
30
|
Lee IS, Ko SJ, Lee YN, Lee G, Rahman MH, Kim B. The Effect of Laminaria japonica on Metabolic Syndrome: A Systematic Review of Its Efficacy and Mechanism of Action. Nutrients 2022; 14:3046. [PMID: 35893900 PMCID: PMC9370431 DOI: 10.3390/nu14153046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Metabolic syndrome (MetS) is a medical condition characterized by abdominal obesity, insulin resistance, high blood pressure, and hyperlipidemia. An increase in the incidence of MetS provokes an escalation in health care costs and a downturn in quality of life. However, there is currently no cure for MetS, and the absence of immediate treatment for MetS has prompted the development of novel therapies. In accordance with recent studies, the brown seaweed Laminaria japonica (LJP) has anti-inflammatory and antioxidant properties, and so forth. LJP contains bioactive compounds used as food globally, and it has been used as a medicine in East Asian countries. We conducted a systematic review to examine whether LJP could potentially be a useful therapeutic drug for MetS. The following databases were searched from initiation to September 2021: PubMed, Web of Science, EMBASE, and Cochrane Central Register of Controlled Trials Library. Clinical trials and in vivo studies evaluating the effects of LJP on MetS were included. LJP reduces the oxidative stress-related lipid mechanisms, inflammatory cytokines and macrophage-related chemokines, muscle cell proliferation, and migration. Bioactive-glucosidase inhibitors reduce diabetic complications, a therapeutic target in obesity and type 2 diabetes. In obesity, LJP increases AMP-activated protein kinase and decreases acetyl-CoA carboxylase. Based on our findings, we suggest that LJP could treat MetS, as it has pharmacological effects on MetS.
Collapse
Affiliation(s)
- In-Seon Lee
- Department of Meridians and Acupoints, College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea;
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea
| | - Seok-Jae Ko
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea;
| | - Yu Na Lee
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| | - Gahyun Lee
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| | - Md. Hasanur Rahman
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| |
Collapse
|
31
|
Jędrzejewski T, Sobocińska J, Pawlikowska M, Dzialuk A, Wrotek S. Dual Effect of the Extract from the Fungus Coriolus versicolor on Lipopolysaccharide-Induced Cytokine Production in RAW 264.7 Macrophages Depending on the Lipopolysaccharide Concentration. J Inflamm Res 2022; 15:3599-3611. [PMID: 35757459 PMCID: PMC9231549 DOI: 10.2147/jir.s364945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose Extract from the fungus Coriolus versicolor (CV) is classified as an immunological response modifier. Previously, we have shown that this extract induces interleukin 6 (IL-6)-related extension of lipopolysaccharide (LPS)-induced fever. This study investigated the effect of CV extract on the production of pro-inflammatory cytokines and the expression of components of signal transduction pathways leading to the secretion of cytokines from RAW 264.7 macrophages stimulated with different doses of LPS. Methods RAW 264.7 cells were stimulated with CV extract alone or co-treated with CV extract and LPS. The level of IL-6 and tumour necrosis factor α (TNF-α) in the culture media was measured using ELISA. Protein expression of Toll-like receptor (TLR) 4, phosphorylated IκB (p-IκB), CD14 glycoprotein and phospho-phosphatidylinositol 3-kinase (p-PI3K) was evaluated using Western blot. The effects of TLR4, nuclear factor κB (NF-κB) and p-PI3K on cytokine secretion were estimated using inhibitors: TAK-242, JSH-23 and LY294002. Results CV extract itself stimulates the secretion of IL-6 and TNF-α and increases the expression of TLR4, p-IκB and p-PI3K. The presence of CV extract during the treatment of cells with lower concentrations of LPS (10 and 100 ng/mL) increases the cytokine production. Co-stimulation of cells with CV extract and LPS at a higher dose (500 ng/mL) decreases the secretion of cytokines. This effect is related to the changes in the expression of TLR4, CD14 glycoprotein, p-IκB and p-PI3K. Conclusion This is the first report showing that the CV extract-induced production of cytokines is mediated by the PI3K signalling pathway. This extract acts antagonistically or additively with LPS on the production of IL-6 and TNF-α, depending on the LPS concentration. Our results are helpful for illustrating the mechanisms for the immunostimulatory effect of CV extract in inflammatory processes.
Collapse
Affiliation(s)
- Tomasz Jędrzejewski
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Justyna Sobocińska
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Małgorzata Pawlikowska
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Artur Dzialuk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, 85-090, Poland
| | - Sylwia Wrotek
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, 87-100, Poland
| |
Collapse
|
32
|
Krga I, Corral-Jara KF, Barber-Chamoux N, Dubray C, Morand C, Milenkovic D. Grapefruit Juice Flavanones Modulate the Expression of Genes Regulating Inflammation, Cell Interactions and Vascular Function in Peripheral Blood Mononuclear Cells of Postmenopausal Women. Front Nutr 2022; 9:907595. [PMID: 35694160 PMCID: PMC9178201 DOI: 10.3389/fnut.2022.907595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Grapefruit is a rich source of flavanones, phytochemicals suggested excreting vasculoprotective effects. We previously showed that flavanones in grapefruit juice (GFJ) reduced postmenopausal women’s pulse-wave velocity (PWV), a measure of arterial stiffness. However, mechanisms of flavanone action in humans are largely unknown. This study aimed to decipher molecular mechanisms of flavanones by multi-omics analysis in PBMCs of volunteers consuming GFJ and flavanone-free control drink for 6 months. Modulated genes and microRNAs (miRNAs) were identified using microarrays. Bioinformatics analyses assessed their functions, interactions and correlations with previously observed changes in PWV. GFJ modified gene and miRNA expressions. Integrated analysis of modulated genes and miRNA-target genes suggests regulation of inflammation, immune response, cell interaction and mobility. Bioinformatics identified putative mediators of the observed nutrigenomic effect (STAT3, NF-κB) and molecular docking demonstrated potential binding of flavanone metabolites to transcription factors and cell-signaling proteins. We also observed 34 significant correlations between changes in gene expression and PWV. Moreover, global gene expression was negatively correlated with gene expression profiles in arterial stiffness and hypertension. This study revealed molecular mechanisms underlying vasculoprotective effects of flavanones, including interactions with transcription factors and gene and miRNA expression changes that inversely correlate with gene expression profiles associated with cardiovascular risk factors.
Collapse
Affiliation(s)
- Irena Krga
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | | | - Claude Dubray
- Institut National de la Santé et de la Recherche Médicale (INSERM), CIC 501, UMR 766, Clermont-Ferrand, France
| | - Christine Morand
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
- Department of Nutrition, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
- *Correspondence: Dragan Milenkovic,
| |
Collapse
|
33
|
Cheng CY, Chen YH, Thuy Tien Vo T, Chui Hong Y, Wang CS, Canh Vo Q, Chou HC, Huang TW, Lee IT. CORM-2 prevents human gingival fibroblasts from lipoteichoic acid-induced VCAM-1 and ICAM-1 expression by inhibiting TLR2/MyD88/TRAF6/PI3K/Akt/ROS/NF-κB signaling pathway. Biochem Pharmacol 2022; 201:115099. [PMID: 35617999 DOI: 10.1016/j.bcp.2022.115099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
Periodontal diseases are prevalent worldwide. Lipoteichoic acid (LTA), a major component of gram-positive bacteria, may play a key role in periodontally inflammatory diseases. Carbon monoxide (CO) is a critical messenger in many biological processes. It can elicit various biological properties, especially anti-inflammatory effects. As the straight administration of CO remains difficult, CO-releasing molecules (CO-RMs) are emerging as promising alternatives. To explore the pharmacological actions and signaling pathways of CO battling LTA-induced periodontal inflammation, this study investigated the cytoprotective effects of CORM-2 against the adhesion of THP-1 monocytes to human gingival fibroblasts (HGFs) and the underlying molecular mechanism. After exposing HGFs to LTA with or without CORM-2 pretreatment, monocyte adhesion was determined. VCAM-1 and ICAM-1 expression in HGFs was measured by real-time PCR. To identify the signaling pathways of CO involved in the cytoprotective effects of CORM-2, HGFs underwent pharmacological or genetical interventions before LTA incubation. The expression and/or activity of possible regulatory molecules were determined. The release of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, were measured using ELISA. The results showed that LTA increased cytokine production and upregulated VCAM-1 and ICAM-1 expression in HGFs, promoting monocyte adhesion. These events were dependent on TLR2/MyD88/TRAF6- and PI3K/Akt/NADPH oxidase/ROS-regulated NF-κB activation. CORM-2 inhibited LTA-induced inflammatory cascades in HGFs, in which CO seemed to be the hitman. To conclude, CO released from CORM-2 can prevent the LTA-stimulated HGFs from increasing VCAM-1 and ICAM-1 expression and promoting monocyte adhesion by inhibiting TLR2/MyD88/TRAF6 association and PI3K/Akt/NADPH oxidase/ROS signaling, both converge on the canonical NF-κB activation.
Collapse
Affiliation(s)
- Ching-Yi Cheng
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan; Department of Pulmonary Infection and Immunology, Chang Gung Memorial Hospital at Linkou, No. 5, Fuxing St., Guishan Dist., Taoyuan City 333, Taiwan
| | - Yu-Hsu Chen
- Department of Orthopedic surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan; Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying Chui Hong
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Quang Canh Vo
- Department of Dental Biomaterials Science, Dental Research Institute and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Han-Chin Chou
- Department of Chinese Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Ting-Wei Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
34
|
Kimura Y, Tsukui D, Kono H. Uric Acid in Inflammation and the Pathogenesis of Atherosclerosis. Int J Mol Sci 2021; 22:ijms222212394. [PMID: 34830282 PMCID: PMC8624633 DOI: 10.3390/ijms222212394] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Hyperuricemia is a common metabolic syndrome. Elevated uric acid levels are risk factors for gout, hypertension, and chronic kidney diseases. Furthermore, various epidemiological studies have also demonstrated an association between cardiovascular risks and hyperuricemia. In hyperuricemia, reactive oxygen species (ROS) are produced simultaneously with the formation of uric acid by xanthine oxidases. Intracellular uric acid has also been reported to promote the production of ROS. The ROS and the intracellular uric acid itself regulate several intracellular signaling pathways, and alterations in these pathways may result in the development of atherosclerotic lesions. In this review, we describe the effect of uric acid on various molecular signals and the potential mechanisms of atherosclerosis development in hyperuricemia. Furthermore, we discuss the efficacy of treatments for hyperuricemia to protect against the development of atherosclerosis.
Collapse
Affiliation(s)
- Yoshitaka Kimura
- Department of Internal Medicine, Faculty of Medicine, Teikyo University of Medicine, Tokyo 173-8605, Japan; (Y.K.); (D.T.)
- Department of Microbiology and Immunology, Faculty of Medicine, Teikyo University of Medicine, Tokyo 173-8605, Japan
| | - Daisuke Tsukui
- Department of Internal Medicine, Faculty of Medicine, Teikyo University of Medicine, Tokyo 173-8605, Japan; (Y.K.); (D.T.)
| | - Hajime Kono
- Department of Internal Medicine, Faculty of Medicine, Teikyo University of Medicine, Tokyo 173-8605, Japan; (Y.K.); (D.T.)
- Correspondence: ; Tel.: +81-3-3964-1211
| |
Collapse
|