1
|
De Brabander EY, Breddels E, van Amelsvoort T, van Westrhenen R. Clinical effects of CYP2D6 phenoconversion in patients with psychosis. J Psychopharmacol 2024; 38:1095-1110. [PMID: 39310932 PMCID: PMC11528948 DOI: 10.1177/02698811241278844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
BACKGROUND Pharmacogenetics is considered a promising avenue for improving treatment outcomes, yet evidence arguing for the use of pharmacogenetics in the treatment of psychotic disorders is mixed and clinical usefulness is under debate. Many patients with psychosis use multiple medications, which can alter the metabolic capacity of CYP enzymes, a process called phenoconversion. In clinical studies, treatment outcomes of drugs for psychosis management may have been influenced by phenoconversion. AIM Here we evaluate the impact and predictive value of CYP2D6 phenoconversion in patients with psychotic disorders under pharmacological treatment. METHOD Phenoconversion-corrected phenotype was determined by accounting for inhibitor strength. Phenoconversion-corrected and genotype-predicted phenotypes were compared in association with side effects, subjective well-being and symptom severity. RESULTS Phenoconversion led to a large increase in poor metabolizers (PMs; 17-82, 16% of sample), due to concomitant use of the serotonin reuptake inhibitors fluoxetine and paroxetine. Neither CYP2D6-predicted nor phenoconversion-corrected phenotype was robustly associated with outcome measures. Risperidone, however, was most affected by the CYP2D6 genotype. CONCLUSION Polypharmacy and phenoconversion were prevalent and accounted for a significant increase in PMs. CYP2D6 may play a limited role in side effects, symptoms and well-being measures. However, due to the high frequency of occurrence, phenoconversion should be considered in future clinical trials.
Collapse
Affiliation(s)
- Emma Y De Brabander
- Department of Psychiatry and Neuropsychology, Research Institute for Mental Health and Neuroscience, Maastricht University (Medical Center), Maastricht, The Netherlands
| | - Esmee Breddels
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Neuropsychology, Research Institute for Mental Health and Neuroscience, Maastricht University (Medical Center), Maastricht, The Netherlands
| | - Roos van Westrhenen
- Outpatient Clinic Pharmacogenetics, Parnassia Groep, Amsterdam, The Netherlands
- Institute of Psychiatry, Psychology, and Neurosciences, King’s College London, London, UK
- St. John’s National Academy of Health Sciences, Bangalore, India
| | | |
Collapse
|
2
|
Moondra P, Jimenez-Shahed J. Profiling deutetrabenazine extended-release tablets for tardive dyskinesia and chorea associated with Huntington's disease. Expert Rev Neurother 2024; 24:849-863. [PMID: 38982802 DOI: 10.1080/14737175.2024.2376107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION Tardive dyskinesia (TD) and Huntington's disease (HD)-associated chorea are persistent and disabling hyperkinetic disorders that can be treated with vesicular monoamine transporter type 2 (VMAT2) inhibitors, including the recently approved once-daily (QD) formulation of deutetrabenazine (DTBZ ER). While its efficacy and safety profile have not been directly investigated, currently available data confirms bioequivalence and similar bioavailability to the twice-daily formulation (DTBZ BID). AREAS COVERED The authors briefly review the pivotal trials establishing efficacy of DTBZ for TD and HD-associated chorea, the pharmacokinetic data for bioequivalence between QD and BID dosing of DTBZ, as well as dose proportionality evidence, titration recommendations, and safety profile for DTBZ ER. EXPERT OPINION Long-term data show that DTBZ is efficacious and well tolerated for the treatment of TD and HD-associated chorea. DTBZ ER likely demonstrates therapeutic equivalence with no new safety signals. Due to the lack of comparative clinical trial data, no evidence-based recommendation about choice of VMAT2 inhibitor or switching between VMAT2 inhibitors can be made about best practice. Ultimately, QD dosing may offer the chance of improved medication adherence, an important consideration in patients with complex treatment regimens and/or patients with cognitive decline.
Collapse
Affiliation(s)
- P Moondra
- Clinical Movement Disorders Fellow, The Mount Sinai Hospital, New York, NY, USA
| | - J Jimenez-Shahed
- Neurology and Neurosurgery, Movement Disorders Neuromodulation & Brain Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
de Brabander E, Kleine Schaars K, van Amelsvoort T, van Westrhenen R. Influence of CYP2C19 and CYP2D6 on side effects of aripiprazole and risperidone: A systematic review. J Psychiatr Res 2024; 174:137-152. [PMID: 38631139 DOI: 10.1016/j.jpsychires.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Variability in hepatic cytochrome P450 (CYP) enzymes such as 2C19 and 2D6 may influence side-effect and efficacy outcomes for antipsychotics. Aripiprazole and risperidone are two commonly prescribed antipsychotics, metabolized primarily through CYP2D6. Here, we aimed to provide an overview of the effect of CYP2C19 and CYP2D6 on side-effects of aripiprazole and risperidone, and expand on existing literature by critically examining methodological issues associated with pharmacogenetic studies. A PRISMA compliant search of six electronic databases (Pubmed, PsychInfo, Embase, Central, Web of Science, and Google Scholar) identified pharmacogenetic studies on aripiprazole and risperidone. 2007 publications were first identified, of which 34 were included. Quality of literature was estimated using Newcastle-Ottowa Quality Assessment Scale (NOS) and revised Cochrane Risk of Bias tool. The average NOS score was 5.8 (range: 3-8) for risperidone literature and 5 for aripiprazole (range: 4-6). All RCTs on aripiprazole were rated as high risk of bias, and four out of six for risperidone literature. Study populations ranged from healthy volunteers to inpatient individuals in psychiatric units and included adult and pediatric samples. All n = 34 studies examined CYP2D6. Only one study genotyped for CYP2C19 and found a positive association with neurological side-effects of risperidone. Most studies did not report any relationship between CYP2D6 and any side-effect outcome. Heterogeneity between and within studies limited the ability to synthesize data and draw definitive conclusions. Studies lacked statistical power due to small sample size, selective genotyping methods, and study design. Large-scale randomized trials with multiple measurements, providing robust evidence on this topic, are suggested.
Collapse
Affiliation(s)
- Emma de Brabander
- Mental Health and Neuroscience Research Institute, Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, the Netherlands.
| | | | - Therese van Amelsvoort
- Mental Health and Neuroscience Research Institute, Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, the Netherlands
| | - Roos van Westrhenen
- Department of Psychiatry, Parnassia Groep BV, the Netherlands; Institute of Psychiatry, Psychology & Neurosciences, King's College London, United Kingdom
| |
Collapse
|
4
|
Shnayder NA, Grechkina VV, Trefilova VV, Kissin MY, Narodova EA, Petrova MM, Al-Zamil M, Garganeeva NP, Nasyrova RF. Ethnic Aspects of Valproic Acid P-Oxidation. Biomedicines 2024; 12:1036. [PMID: 38790997 PMCID: PMC11117587 DOI: 10.3390/biomedicines12051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The safety of the use of psychotropic drugs, widely used in neurological and psychiatric practice, is an urgent problem in personalized medicine. This narrative review demonstrated the variability in allelic frequencies of low-functioning and non-functional single nucleotide variants in genes encoding key isoenzymes of valproic acid P-oxidation in the liver across different ethnic/racial groups. The sensitivity and specificity of pharmacogenetic testing panels for predicting the rate of metabolism of valproic acid by P-oxidation can be increased by prioritizing the inclusion of the most common risk allele characteristic of a particular population (country).
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.A.N.); (M.M.P.)
| | - Violetta V. Grechkina
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
| | - Vera V. Trefilova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
| | - Mikhail Ya. Kissin
- Department of Psychiatry and Addiction, I.P. Pavlov First St. Petersburg State Medical University, 197022 Saint Petersburg, Russia;
| | - Ekaterina A. Narodova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.A.N.); (M.M.P.)
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.A.N.); (M.M.P.)
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
5
|
Marasanapalle VP, Masimirembwa C, Sivasubramanian R, Sayyed S, Weinzierl-Hinum A, Mehta D, Kapungu NN, Kanji C, Thelingwani R, Zack J. Investigation of the Differences in the Pharmacokinetics of CYP2D6 Substrates, Desipramine, and Dextromethorphan in Healthy African Subjects Carrying the Allelic Variants CYP2D6*17 and CYP2D6*29, When Compared with Normal Metabolizers. J Clin Pharmacol 2024; 64:578-589. [PMID: 37803948 DOI: 10.1002/jcph.2366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
This study investigated the differences in the pharmacokinetics (PK) of dextromethorphan and desipramine in healthy African volunteers to understand the effect of allelic variants of the human cytochrome P450 2D6 (CYP2D6) enzyme, namely the diplotypes of CYP2D6*1/*2 (*1*1, *1*2, *2*2) and the genotypes of CYP2D6*17*17 and CYP2D6*29*29. Overall, 28 adults were included and split into 3 cohorts after genotype screening: CYP2D6*1/*2 (n = 12), CYP2D6*17*17 (n = 12), and CYP2D6*29*29 (n = 4). Each subject received a single oral dose of dextromethorphan 30 mg syrup on day 1 and desipramine 50 mg tablet on day 8. The PK parameters of area under the plasma concentration-time curve from time of dosing to time of last quantifiable concentration (AUClast), and extrapolated to infinity (AUCinf), and the maximum plasma concentration (Cmax) were determined. For both dextromethorphan and desipramine, AUCinf and Cmax were higher in subjects of the CYP2D6*29*29 and CYP2D6*17*17 cohorts, as compared with subjects in the CYP2D6*1/*2 diplotype cohort and with normal metabolizers from the literature. All PK parameters, including AUCinf, Cmax, and the elimination half-life, followed a similar trend: CYP2D6*17*17 > CYP2D6*29*29 > CYP2D6*1/*2. The plasma and urinary drug/metabolite exposure ratios of both drugs were higher in subjects of the CYP2D6*17*17 and CYP2D6*29*29 cohorts, when compared with subjects in the CYP2D6*1/*2 diplotype cohort. All adverse events were mild, except in 1 subject with CYP2D6*17*17 who had moderately severe headache with desipramine. These results indicate that subjects with CYP2D6*17*17 and CYP2D6*29*29 genotypes were 5-10 times slower metabolizers than those with CYP2D6*1/*2 diplotypes. These findings suggest that dose optimization may be required when administering CYP2D6 substrate drugs in African patients. Larger studies can further validate these findings.
Collapse
Affiliation(s)
| | - Collen Masimirembwa
- African Institute of Biomedical Science & Technology (AiBST), Harare, Zimbabwe
| | | | | | | | - Dheeraj Mehta
- Novartis Healthcare Private Limited, Hyderabad, India
| | | | - Comfort Kanji
- African Institute of Biomedical Science & Technology (AiBST), Harare, Zimbabwe
| | - Roslyn Thelingwani
- African Institute of Biomedical Science & Technology (AiBST), Harare, Zimbabwe
| | - Julia Zack
- Novartis Pharmaceutical Corporation, East Hanover, NJ, USA
| |
Collapse
|
6
|
Qian J, Xu T, Pan P, Sun W, Hu G, Cai J. Study on genotype and phenotype of novel CYP2D6 variants using pharmacokinetic and pharmacodynamic models with metoprolol as a substrate drug. THE PHARMACOGENOMICS JOURNAL 2024; 24:13. [PMID: 38637522 DOI: 10.1038/s41397-024-00332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
To investigate the pharmacokinetic and pharmacodynamic profiles of volunteers carrying CYP2D6 genotypes with unknow metabolic phenotypes, a total of 22 volunteers were recruited based on the sequencing results. Peripheral blood and urine samples were collected at specific time points after oral administration of metoprolol. A validated high-performance liquid chromatography (HPLC) method was used to determine the concentrations of metoprolol and α-hydroxymetoprolol. Blood pressure and electrocardiogram were also monitored. The results showed that the main pharmacokinetic parameters of metoprolol in CYP2D6*1/*34 carriers are similar to those in CYP2D6*1/*1 carriers. However, in individuals carrying the CYP2D6*10/*87, CYP2D6*10/*95, and CYP2D6*97/*97 genotypes, the area under the curve (AUC) and half-life (t1/2) of metoprolol increased by 2-3 times compared to wild type. The urinary metabolic ratio of metoprolol in these genotypes is consistent with the trends observed in plasma samples. Therefore, CYP2D6*1/*34 can be considered as normal metabolizers, while CYP2D6*10/*87, CYP2D6*10/*95, and CYP2D6*97/*97 are intermediate metabolizers. Although the blood concentration of metoprolol has been found to correlate with CYP2D6 genotype, its blood pressure-lowering effect reaches maximum effectiveness at a reduction of 25 mmHg. Furthermore, P-Q interval prolongation and heart rate reduction are not positively correlated with metoprolol blood exposure. Based on the pharmacokinetic-pharmacodynamic model, this study clarified the properties of metoprolol in subjects with novel CYP2D6 genotypes and provided important fundamental data for the translational medicine of this substrate drug.
Collapse
Affiliation(s)
- Jianchang Qian
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Tao Xu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peipei Pan
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Wei Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guoxin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jianping Cai
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, 100005, China.
| |
Collapse
|
7
|
Korošec Hudnik L, Blagus T, Redenšek Trampuž S, Dolžan V, Bon J, Pjevac M. Case report: Avoiding intolerance to antipsychotics through a personalized treatment approach based on pharmacogenetics. Front Psychiatry 2024; 15:1363051. [PMID: 38566958 PMCID: PMC10985247 DOI: 10.3389/fpsyt.2024.1363051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction The standard approach to treatment in psychiatry is known as "treatment as usual" (TAU), in which the same types of treatment are administered to a group of patients. TAU often requires numerous dose adjustments and medication changes due to ineffectiveness and/or the occurrence of adverse drug reactions (ADRs). This process is not only time-consuming but also costly. Antipsychotic medications are commonly used to treat various psychiatric disorders such as schizophrenia and mood disorders. Some of the inter-individual differences in efficacy and ADRs observed in psychopharmacotherapy can be explained by genetic variability in the pharmacokinetics and pharmacodynamics of antipsychotics. A better understanding of (in)efficacy and possible ADRs can be achieved by pharmacogenetic analysis of genes involved in the metabolism of antipsychotics. Most psychotropic drugs are metabolized by genetically variable CYP2D6, CYP1A2, CYP3A4, and CYP2C19 enzymes. To demonstrate the utility of pharmacogenetic testing for tailoring antipsychotic treatment, in this paper, we present the case of a patient in whom a pharmacogenetic approach remarkably altered an otherwise intolerant or ineffective conventional TAU with antipsychotics. Methods In this case report, we present a 60-year-old patient with psychotic symptoms who suffered from severe extrapyramidal symptoms and a malignant neuroleptic syndrome during treatment with risperidone, fluphenazine, aripiprazole, brexpiprazole, and olanzapine. Therefore, we performed a pharmacogenetic analysis by genotyping common functional variants in genes involved in the pharmacokinetic pathways of prescribed antipsychotics, namely, CYP2D6, CYP3A4, CYP3A5, CYP1A2, ABCB1, and ABCG2. Treatment recommendations for drug-gene pairs were made according to available evidence-based pharmacogenetic recommendations from the Dutch Pharmacogenetics Working Group (DPWG) or Clinical Pharmacogenetics Implementation Consortium (CPIC). Results Pharmacogenetic testing revealed a specific metabolic profile and pharmacokinetic phenotype of the patient, which in retrospect provided possible explanations for the observed ADRs. Based on the pharmacogenetic results, the choice of an effective and safe medication proved to be much easier. The psychotic symptoms disappeared after treatment, while the negative symptoms persisted to a lesser extent. Conclusion With the case presented, we have shown that taking into account the pharmacogenetic characteristics of the patient can explain the response to antipsychotic treatment and associated side effects. In addition, pharmacogenetic testing enabled an informed choice of the most appropriate drug and optimal dose adjustment. This approach makes it possible to avoid or minimize potentially serious dose-related ADRs and treatment ineffectiveness. However, due to the complexity of psychopathology and the polypharmacy used in this field, it is of great importance to conduct further pharmacokinetic and pharmacogenetic studies to better assess gene-drug and gene-gene-drug interactions.
Collapse
Affiliation(s)
- Liam Korošec Hudnik
- Centre for Clinical Psychiatry, University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
| | - Tanja Blagus
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Redenšek Trampuž
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jurij Bon
- Centre for Clinical Psychiatry, University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Milica Pjevac
- Centre for Clinical Psychiatry, University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Principi N, Petropulacos K, Esposito S. Impact of Pharmacogenomics in Clinical Practice. Pharmaceuticals (Basel) 2023; 16:1596. [PMID: 38004461 PMCID: PMC10675377 DOI: 10.3390/ph16111596] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Polymorphisms of genes encoding drug metabolizing enzymes and transporters can significantly modify pharmacokinetics, and this can be associated with significant differences in drug efficacy, safety, and tolerability. Moreover, genetic variants of some components of the immune system can explain clinically relevant drug-related adverse events. However, the implementation of drug dose individualization based on pharmacogenomics remains scarce. In this narrative review, the impact of genetic variations on the disposition, safety, and tolerability of the most commonly prescribed drugs is reported. Moreover, reasons for poor implementation of pharmacogenomics in everyday clinical settings are discussed. The literature analysis showed that knowledge of how genetic variations can modify the effectiveness, safety, and tolerability of a drug can lead to the adjustment of usually recommended drug dosages, improve effectiveness, and reduce drug-related adverse events. Despite some efforts to introduce pharmacogenomics in clinical practice, presently very few centers routinely use genetic tests as a guide for drug prescription. The education of health care professionals seems critical to keep pace with the rapidly evolving field of pharmacogenomics. Moreover, multimodal algorithms that incorporate both clinical and genetic factors in drug prescribing could significantly help in this regard. Obviously, further studies which definitively establish which genetic variations play a role in conditioning drug effectiveness and safety are needed. Many problems must be solved, but the advantages for human health fully justify all the efforts.
Collapse
Affiliation(s)
| | | | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
9
|
Gentile G, De Luca O, Del Casale A, Salerno G, Simmaco M, Borro M. Frequencies of Combined Dysfunction of Cytochromes P450 2C9, 2C19, and 2D6 in an Italian Cohort: Suggestions for a More Appropriate Medication Prescribing Process. Int J Mol Sci 2023; 24:12696. [PMID: 37628884 PMCID: PMC10454797 DOI: 10.3390/ijms241612696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Improper drug prescription is a main cause of both drug-related harms (inefficacy and toxicity) and ineffective spending and waste of the healthcare system's resources. Nowadays, strategies to support an improved, informed prescription process may benefit from the adequate use of pharmacogenomic testing. Using next-generation sequencing, we analyzed the genomic profile for three major cytochromes P450 (CYP2C9, CYP2C19, CYP2D6) and studied the frequencies of dysfunctional isozymes (e.g., poor, intermediate, or rapid/ultra-rapid metabolizers) in a cohort of 298 Italian subjects. We found just 14.8% of subjects with a fully normal set of cytochromes, whereas 26.5% of subjects had combined cytochrome dysfunction (more than one isozyme involved). As improper drug prescription is more frequent, and more burdening, in polytreated patients, since drug-drug interactions also cause patient harm, we discuss the potential benefits of a more comprehensive PGX testing approach to support informed drug selection in such patients.
Collapse
Affiliation(s)
- Giovanna Gentile
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (G.G.); (G.S.); (M.S.)
- Laboratory of Clinical Biochemistry, Advanced Molecular Diagnostic Unit, Sant’Andrea University Hospital, Via di Grottarossa 1035/1039, 00189 Rome, Italy
| | - Ottavia De Luca
- Laboratory of Clinical Biochemistry, Advanced Molecular Diagnostic Unit, Sant’Andrea University Hospital, Via di Grottarossa 1035/1039, 00189 Rome, Italy
| | - Antonio Del Casale
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Roma, Italy;
- Unit of Psychiatry, Sant’Andrea University Hospital, Via di Grottarossa 1035/1039, 00189 Rome, Italy
| | - Gerardo Salerno
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (G.G.); (G.S.); (M.S.)
- Laboratory of Clinical Biochemistry, Advanced Molecular Diagnostic Unit, Sant’Andrea University Hospital, Via di Grottarossa 1035/1039, 00189 Rome, Italy
| | - Maurizio Simmaco
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (G.G.); (G.S.); (M.S.)
- Laboratory of Clinical Biochemistry, Advanced Molecular Diagnostic Unit, Sant’Andrea University Hospital, Via di Grottarossa 1035/1039, 00189 Rome, Italy
| | - Marina Borro
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (G.G.); (G.S.); (M.S.)
- Laboratory of Clinical Biochemistry, Advanced Molecular Diagnostic Unit, Sant’Andrea University Hospital, Via di Grottarossa 1035/1039, 00189 Rome, Italy
| |
Collapse
|
10
|
Pjevac M, Redenšek Trampuž S, Blagus T, Dolžan V, Bon J. Case report: application of pharmacogenetics in the personalized treatment of an elderly patient with a major depressive episode. Front Psychiatry 2023; 14:1250253. [PMID: 37608991 PMCID: PMC10440381 DOI: 10.3389/fpsyt.2023.1250253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Background Pharmacogenetic analyses can predict interpersonal differences in response to psychopharmacotherapy, which greatly facilitates the selection of the most effective medication at optimal doses. By personalizing therapy in this way, we can minimize adverse drug reactions (ADR) and prevent polypharmacy. Most psychotropic medications are metabolized by the cytochrome P450 enzymes CYP2D6, CYP2C19, and CYPA3A4, which influence drug metabolism and concentration, affecting both efficacy and the occurrence of ADR. The relationships between genetic variations and enzymatic activity allow pharmacogenetic analysis to provide important data for optimal drug selection. The following case report illustrates the impact of pharmacogenetic analysis on the course of pharmacologic treatment in an elderly patient with a major depressive episode. Methods We present a case of a 79-year-old patient treated for severe depression with psychotic symptoms. We collected data on treatment selection and response to treatment before and after pharmacogenetic analysis. For pharmacogenetic analysis, common functional variants in CYP1A2, CYP3A4, CYP2B6, CYP2C19, and CYP2D6 were genotyped, and corresponding evidence-based treatment recommendations were prepared. Results The patient suffered from lack of efficacy and serious ADR of several medications, resulting in worsening depression and treatment resistance over the course of several months of treatment. Pharmacogenetic analysis provided important insights into the patient's pharmacokinetic phenotype and allowed us to personalize treatment and achieve remission of the depressive episode. Conclusion In the case presented, we have shown how consideration of pharmacogenetic characteristics in an individual patient can improve treatment outcome and patient well-being. Knowledge of the patient's pharmacogenetic characteristics helped us to personalize treatment, resulting in complete remission of psychopathology. Due to the complexity of psychiatric disorders, the efficacy of combinations of different medications, which are often required in individual patients, cannot be clearly explained. Therefore, it is of great importance to conduct further pharmacokinetic and pharmacogenetic studies to better assess gene-drug interactions in psychopharmacotherapy.
Collapse
Affiliation(s)
- Milica Pjevac
- Centre for Clinical Psychiatry, University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
| | - Sara Redenšek Trampuž
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Blagus
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jurij Bon
- Centre for Clinical Psychiatry, University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Frederiksen T, Areberg J, Raoufinia A, Schmidt E, Stage TB, Brøsen K. Estimating the In Vivo Function of CYP2D6 Alleles through Population Pharmacokinetic Modeling of Brexpiprazole. Clin Pharmacol Ther 2023; 113:360-369. [PMID: 36350097 PMCID: PMC10099095 DOI: 10.1002/cpt.2791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
Accurate prediction of CYP2D6 phenotype from genotype information is important to support safe and efficacious pharmacotherapy with CYP2D6 substrates. To facilitate accurate CYP2D6 genotype-phenotype translation, there remains a need to investigate the enzyme activity associated with individual CYP2D6 alleles using large clinical data sets. This study aimed to quantify and compare the in vivo function of different CYP2D6 alleles through population pharmacokinetic (PopPK) modeling of brexpiprazole using data from 13 clinical studies. A PopPK model of brexpiprazole and its two metabolites, DM-3411 and DM-3412, was developed based on plasma concentration samples from 826 individuals. As the minor metabolite, DM-3412, is formed via CYP2D6, the metabolic ratio of DM-3412:brexpiprazole calculated from the PopPK parameter estimates was used as a surrogate measure of CYP2D6 activity. A CYP2D6 genotype-phenotype analysis based on 496 subjects showed that the CYP2D6*2 allele (n = 183) was associated with only 10% enzyme activity relative to the wild-type allele (CYP2D6*1) and a low enzyme activity was consistently observed across genotypes containing CYP2D6*2. Among the decreased function alleles, the following enzyme activities relative to CYP2D6*1 were estimated: 23% for CYP2D6*9 (n = 20), 32% for CYP2D6*10 (n = 62), 64% for CYP2D6*14 (n = 1), 4% for CYP2D6*17 (n = 37), 4% for CYP2D6*29 (n = 13), and 9% for CYP2D6*41 (n = 64). These findings imply that a lower functional value would more accurately reflect the in vivo function of many reduced function CYP2D6 alleles in the metabolism of brexpiprazole. The low enzyme activity observed for CYP2D6*2, which has also been reported by others, suggests that the allele exhibits substrate-specific enzyme activity.
Collapse
Affiliation(s)
- Trine Frederiksen
- Department of Experimental Medicine, H. Lundbeck A/S, Valby, Denmark.,Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Johan Areberg
- Department of Experimental Medicine, H. Lundbeck A/S, Valby, Denmark
| | - Arash Raoufinia
- Otsuka Pharmaceutical Development & Commercialization, Inc, Rockville, Maryland, USA
| | - Ellen Schmidt
- Department of Experimental Medicine, H. Lundbeck A/S, Valby, Denmark
| | - Tore Bjerregaard Stage
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Kim Brøsen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
12
|
Pharmacokinetics of Tamoxifen and Its Major Metabolites and the Effect of the African Ancestry Specific CYP2D6*17 Variant on the Formation of the Active Metabolite, Endoxifen. J Pers Med 2023; 13:jpm13020272. [PMID: 36836506 PMCID: PMC9961245 DOI: 10.3390/jpm13020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Tamoxifen (TAM) is widely used in the treatment of hormone receptor-positive breast cancer. TAM is metabolized into the active secondary metabolite endoxifen (ENDO), primarily by CYP2D6. We aimed to investigate the effects of an African-specific CYP2D6 variant allele, CYP2D6*17, on the pharmacokinetics (PK) of TAM and its active metabolites in 42 healthy black Zimbabweans. Subjects were grouped based on CYP2D6 genotypes as CYP2D6*1/*1 or *1/*2 or *2/*2 (CYP2D6*1 or *2), CYP2D6*1/*17 or 2*/*17, and CYP2D6*17/*17. PK parameters for TAM and three metabolites were determined. The pharmacokinetics of ENDO showed statistically significant differences among the three groups. The mean ENDO AUC0-∞ in CYP2D6*17/*17 subjects was 452.01 (196.94) h·*ng/mL, and the AUC0-∞ in CYP2D6*1/*17 subjects was 889.74 h·ng/mL, which was 5-fold and 2.8-fold lower than in CYP2D6*1 or *2 subjects, respectively. Individuals who were heterozygous or homozygous for CYP2D6*17 alleles showed a 2- and 5-fold decrease in Cmax, respectively, compared to the CYP2D6*1 or *2 genotype. CYP2D6*17 gene carriers have significantly lower ENDO exposure levels than CYP2D6*1 or *2 gene carriers. Pharmacokinetic parameters of TAM and the two primary metabolites, N-desmethyl tamoxifen (NDT) and 4-hydroxy tamoxifen (4OHT), did not show any significant difference in the three genotype groups. The African-specific CYP2D6*17 variant had effects on ENDO exposure levels that could potentially have clinical implications for patients homozygous for this variant.
Collapse
|
13
|
Bai H, Zhang X, Bush WS. Pharmacogenomic and Statistical Analysis. Methods Mol Biol 2023; 2629:305-330. [PMID: 36929083 DOI: 10.1007/978-1-0716-2986-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Genetic variants can alter response to drugs and other therapeutic interventions. The study of this phenomenon, called pharmacogenomics, is similar in many ways to other types of genetic studies but has distinct methodological and statistical considerations. Genetic variants involved in the processing of exogenous compounds exhibit great diversity and complexity, and the phenotypes studied in pharmacogenomics are also more complex than typical genetic studies. In this chapter, we review basic concepts in pharmacogenomic study designs, data generation techniques, statistical analysis approaches, and commonly used methods and briefly discuss the ultimate translation of findings to clinical care.
Collapse
Affiliation(s)
- Haimeng Bai
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Xueyi Zhang
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
14
|
Chaichana J, Khamenkhetkarn M, Sastraruji T, Monum T, O’Brien TE, Amornlertwatana Y, Jaikang C. Categorization of Cytochrome P4502D6 Activity Score by Urinary Amphetamine/Methamphetamine Ratios. Metabolites 2022; 12:metabo12121174. [PMID: 36557212 PMCID: PMC9788588 DOI: 10.3390/metabo12121174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Methamphetamine (MA) level in urine has been used for judgment in MA consumption. Metabolism and intoxication of MA are correlated with the activity of cytochrome P450 2D6 (CYP2D6). The activity score (AS) is a potential tool for predicting exposure and personalized dose of drugs metabolized by CYP2D6. Prediction of the CYP2D6 activity score might be described as MA intoxication. The objective of this study was to categorize the CYP2D6 activity score using the urinary amphetamine (AM)/MA ratio. Urine samples (n = 23,258) were collected. The levels of MA and AM were determined by a gas chromatography-nitrogen-phosphorus detector. The log AS was calculated by an AM/MA ratio and classified into four groups following the percentile position: lower than the 2.5th, the 2.5th-the 50th, the 50th-97.5th, and greater than the 97.5th percentile, respectively. The AS value for males presented was less than 0.024, 0.024-0.141, 0.141-0.836, and greater than 0.836. Meanwhile, the AS values were revealed to be lower than 0.023, 0.023-0.148, 0.148-0.850, and higher than 0.850 for females. The AS value of CYP2D6 can be applied to describe the toxicity of MA in forensic crime scenes and relapse behavior.
Collapse
Affiliation(s)
- Jatuporn Chaichana
- Toxicology Section, Regional Medical Science Center 1 Chiang Mai 191 Tumbon Don Keaw, Ampher Mae Rim, Chiang Mai 50180, Thailand
| | - Manee Khamenkhetkarn
- Toxicology Section, Regional Medical Science Center 1 Chiang Mai 191 Tumbon Don Keaw, Ampher Mae Rim, Chiang Mai 50180, Thailand
- Correspondence: (M.K.); (C.J.); Tel.:+66-53112188 (M.K.); +66-53935432 (C.J.)
| | | | - Tawachai Monum
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Timothy E. O’Brien
- Department of Mathematics and Statistics, Loyola University Chicago, 1032 W.Sheridan Road, Chicago, IL 60660-1537, USA
| | - Yutti Amornlertwatana
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Churdsak Jaikang
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (M.K.); (C.J.); Tel.:+66-53112188 (M.K.); +66-53935432 (C.J.)
| |
Collapse
|
15
|
Cytochromes P450 and P-Glycoprotein Phenotypic Assessment to Optimize Psychotropic Pharmacotherapy: A Retrospective Analysis of Four Years of Practice in Psychiatry. J Pers Med 2022; 12:jpm12111869. [PMID: 36579580 PMCID: PMC9693601 DOI: 10.3390/jpm12111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Altered cytochromes P450 enzymes (CYP) and P-glycoprotein transporter (P-gp) activity may explain variabilities in drug response. In this study, we analyzed four years of phenotypic assessments of CYP/P-gp activities to optimize pharmacotherapy in psychiatry. A low-dose probe cocktail was administered to evaluate CYP1A2, 2B6, 2D6, 2C9, 2C19, 3A4, and P-gp activities using the probe/metabolite concentration ratio in blood or the AUC. A therapeutic adjustment was suggested depending on the phenotyping results. From January 2017 to June 2021, we performed 32 phenotypings, 10 for adverse drug reaction, 6 for non-response, and 16 for both reasons. Depending on the CYP/P-gp evaluated, only 23% to 56% of patients had normal activity. Activity was decreased in up to 57% and increased in up to 60% of cases, depending on the CYP/P-gp evaluated. In 11/32 cases (34%), the therapeutic problem was attributable to the patient's metabolic profile. In 10/32 cases (31%), phenotyping excluded the metabolic profile as the cause of the therapeutic problem. For all ten individuals for which we had follow-up information, phenotyping allowed us to clearly state or clearly exclude the metabolic profile as a possible cause of therapeutic failure. Among them, seven showed a clinical improvement after dosage adaptation, or drug or pharmacological class switching. Our study confirmed the interest of CYP and P-gp phenotyping for therapeutic optimization in psychiatry.
Collapse
|
16
|
Lin YH, Wu CS, Liu CC, Kuo PH, Chan HY, Chen WJ. Comparative Effectiveness of Antipsychotics in Preventing Readmission for First-Admission Schizophrenia Patients in National Cohorts From 2001 to 2017 in Taiwan. Schizophr Bull 2022; 48:785-794. [PMID: 35569004 PMCID: PMC9212105 DOI: 10.1093/schbul/sbac046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND HYPOTHESIS Antipsychotics remain the main treatment for schizophrenia, but their effectiveness is challenging to compare. We aimed to assess the comparative real-world effectiveness of antipsychotics in preventing readmission among patients in Asia with early-stage schizophrenia to inform clinical decision making. STUDY DESIGN We did a retrospective cohort study of first-admission schizophrenia patients (ICD-9-CM: 295; ICD-10-CM: F20 and F25) from January 1, 2001, to December 31, 2017. The cohort was identified from the National Health Insurance Research Database NHIRD for Psychiatric Inpatients. The exposure was any antipsychotics prescribed post-discharge. The primary outcome was the readmission risk due to psychotic disorders, which was measured by adjusted hazard ratios (aHRs). Within-individual extended Cox models were applied for analyses, where the periods of oral risperidone use served as his or her own control. STUDY RESULTS We selected 75 986 patients (men, 53.4%; mean [SD] age, 37.6 [12.0] years; mean [SD] duration of follow-up, 8.9 [5.0]) who were first admitted to psychiatric wards with schizophrenia in Taiwan. Among them, 47 150 patients (62.05%) had at least one readmission within 4 years. Compared to the period under treatment with oral risperidone, that under monotherapy with long-acting injectable antipsychotics (LAIs) had the lowest risk for psychotic readmission, with a risk reduction of 15-20%. However, the prevalence of person-prescription prevalence of LAIs remained low (< 10%) during the follow-up period. CONCLUSIONS The use of LAIs after the first admission for schizophrenia has notable advantages in preventing readmission. Such formulations should be offered earlier in the course of illness.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chi-Shin Wu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chen-Chung Liu
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan,Department of Psychiatry, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hung-Yu Chan
- Department of Psychiatry, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan,Office of Superintendent, Taoyuan Psychiatric Center, Ministry of Health and Welfare, Taoyuan City, Taiwan
| | - Wei J Chen
- To whom correspondence should be addressed; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, 17 Xu-Zhou Road, Taipei 100, Taiwan; tel: +886-2-3366-8037, fax +886-2-2356-0840, e-mail:
| |
Collapse
|
17
|
Lenk HÇ, Klöditz K, Johansson I, Smith RL, Jukić MM, Molden E, Ingelman-Sundberg M. The Polymorphic Nuclear Factor NFIB Regulates Hepatic CYP2D6 Expression and Influences Risperidone Metabolism in Psychiatric Patients. Clin Pharmacol Ther 2022; 111:1165-1174. [PMID: 35253216 PMCID: PMC9314634 DOI: 10.1002/cpt.2571] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 12/02/2022]
Abstract
The genetic background for interindividual variability of the polymorphic CYP2D6 enzyme activity remains incompletely understood and the role of NFIB genetic polymorphism for this variability was evaluated in this translational study. We investigated the effect of NFIB expression in vitro using 3D liver spheroids, Huh7 cells, and the influence of the NFIB polymorphism on metabolism of risperidone in patients in vivo. We found that NFIB regulates several important pharmacogenes, including CYP2D6. NFIB inhibited CYP2D6 gene expression in Huh7 cells and NFIB expression in livers was predominantly nuclear and reduced at the mRNA and protein level in carriers of the NFIB rs28379954 T>C allele. Based on 604 risperidone treated patients genotyped for CYP2D6 and NFIB, we found that the rate of risperidone hydroxylation was elevated in NFIB rs28379954 T>C carriers among CYP2D6 normal metabolizers, resulting in a similar rate of drug metabolism to what is observed in CYP2D6 ultrarapid metabolizers, with no such effect observed in CYP2D6 poor metabolizers lacking functional enzyme. The results indicate that NFIB constitutes a novel nuclear factor in the regulation of cytochrome P450 genes, and that its polymorphism is a predictor for the rate of CYP2D6 dependent drug metabolism in vivo.
Collapse
Affiliation(s)
- Hasan Çağın Lenk
- Center for Psychopharmacology, Diakonhjemmet Hospital, Vinderen, Oslo, Norway.,Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Katharina Klöditz
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Inger Johansson
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Robert Løvsletten Smith
- Center for Psychopharmacology, Diakonhjemmet Hospital, Vinderen, Oslo, Norway.,NORMENT, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marin M Jukić
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden.,Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Vinderen, Oslo, Norway.,Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
The GG genotype of the serotonin 4 receptor genetic polymorphism, rs1345697, is associated with lower remission rates after antidepressant treatment: Findings from the METADAP cohort. J Affect Disord 2022; 299:335-343. [PMID: 34906639 DOI: 10.1016/j.jad.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Pharmacological studies have yielded valuable insights into the role of the serotonin 4 receptor (HTR4) in major depressive episodes (MDE) and response to antidepressant drugs (AD). A genetic association has been shown between HTR4 and susceptibility to mood disorders. Our study aims at assessing the association between the HTR4 genetic polymorphism, rs1345697, and improvement in depressive symptoms and remission after antidepressant treatment in MDE patients. METHODS 492 depressed patients from the METADAP cohort were treated prospectively for 6 months with ADs. The clinical outcomes according to HTR4 rs1345697 were compared after 1 (M1), 3 (M3), and 6 (M6) months of treatment. Mixed-effects logistic regression and adjusted linear models assessed the association between rs1345697 and 17-item Hamilton Depression Rating Scale (HDRS) score improvement and response/remission. RESULTS Over the 6 months of treatment, mixed-effects regressions showed lower improvements in HDRS scores (Coefficient=1.52; Confident Interval (CI) 95% [0.37-2.67]; p = 0.009) and lower remission rates (Odds Ratio=2.0; CI95% [1.0-4.1]; p = 0.05) in GG homozygous patients as compared to allele A carriers. LIMITATIONS The major limitations of our study are the uncertainty of the rs1345697 effect on HTR4 function, the substantial drop-out rate, and the fact that analysis is not based on randomization between polymorphism groups. CONCLUSIONS In our study, patients who were homozygous carriers of the variant G of the HTR4 rs1345697 had lower depressive symptoms improvement and 2-fold lower remission rates after antidepressant treatment as compared to allele A carriers. Randomization study should be done to confirm these results.
Collapse
|